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We present a number of analytical results which should guide the interpretation of lattice data in

theories with an infrared fixed point (IRFP) deformed by a mass term �L ¼ �m �qq. From renormaliza-

tion group (RG) arguments we obtain the leading scaling exponent, F�m�F , for all decay constants of

the lowest lying states other than the ones affected by the chiral anomaly and the tensor ones. These

scaling relations provide a clear cut way to distinguish a theory with an IRFP from a confining theory with

heavy fermions. Moreover, we present a derivation relating the scaling of h �qqi �m� �qq to the scaling of the

density of eigenvalues of the massless Dirac operator �ð�Þ � �� �qq . RG arguments yield � �qq ¼ ð3�
��Þ=ð1þ ��Þ as a function of the mass anomalous dimension �� at the IRFP. The arguments can be

generalized to other condensates such as hG2i �m4=ð1þ��Þ. We describe a heuristic derivation of the result

on the condensates, which provides interesting connections between different approaches. Our results are

compared with existing data from numerical studies of SU(2) with two adjoint Dirac fermions.
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I. INTRODUCTION

There are numerous examples of two-dimensional field
theories that are invariant under the full conformal group.
In four dimensions, the beta function of N ¼ 4 super
Yang-Mills is known to vanish to all orders in perturbation
theory, for any value of the coupling, so that the theory is
scale invariant. Other theories have isolated zeroes of the
beta function that correspond to fixed points of the renor-
malization group (RG) flow. For instance, the gauge cou-
pling g in QCD flows to zero as the energy scale is
increased, leading to the well-known phenomenon of
asymptotic freedom; in this case g ¼ 0 is commonly called
an UV fixed point. On the other hand, if a theory has an IR
fixed point (IRFP), the couplings will flow to such a fixed
point at large distances, and the theory becomes scale
invariant in the large-distance regime. Theories with an
IRFP do not break chiral symmetry spontaneously, and are
said to lie in the conformal window.

Supersymmetric examples of theories within the confor-
mal window have been studied in detail—see e.g. Ref. [1]
for a review. Recently there has been a lot of interest in
identifying nonsupersymmetric gauge theories with an
IRFP. The main motivation, besides intrinsic interest,
comes from the fact that theories near the conformal
window correspond to the class of theories underlying
walking technicolor [2–6], which is the phenomenologi-
cally most viable offspring of technicolor theories [7–10].
A chirally broken theory near the edge of the conformal
window is supposedly identified by an enhancement of the
ratio h �qqi=f3� with respect to a QCD-like theory [10].
Unfortunately this quantity does not display a simple

known parametric behavior. Another strategy, which is
adopted in this paper, is to first identify theories within
the conformal window, and then approach the boundary of
the window using the available information on the color-
flavor phase diagram [2,3,6,11].
The identification of conformal theories using numerical

simulations is a difficult task, since the only observable
quantities would be the power-law scaling of correlators at
large distances. However actual lattice simulations are
performed in a finite volume, and with a nonvanishing
fermion mass; both the mass and the finite size of the
system are relevant operators at large distances and drive
the theory away from conformal behavior. Turning a tech-
nical limitation into a tool, it has become a standard
strategy to consider conformal gauge theories (CGT) can-
didates deformed by a mass term, and to identify them
from the study of their hadronic observables. Thus, if there
exists an IRFP, the lattice results should be described by a
mass-deformed conformal gauge theory (mCGT), obtained
by adding a bare mass to the original Lagrangian

�L ¼ �m �qq: (1)

As a consequence of the deformation, these theories are
expected to develop a mass gap and a fermion condensate
and thus give rise to asymptotic states and related observ-
ables, which scale to zero as the massless limit is ap-
proached. For any observable O the leading exponent �O
of the mass deformation is defined from its scaling asm !
0:

O �m�O þ higher order inmþ terms analytic inm:

(2)

These critical exponents can be measured on the lattice and
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it is the aim of this work to provide predictions for them
that can be tested numerically.

The paper is organized as follows. In Sec. we set the
framework by discussing some characteristics of theories
inside the conformal window. In Sec. II we discuss general
aspects of IRFPs, and introduce the standard tools for
analyzing the behavior of field correlators near a fixed
point of the RG flow. Thereby we obtain the hyperscaling
relations that are usually derived in the context of critical
phenomena [12], and we study the information that they
yield in the framework of mCGT.

Section III is devoted to the study of the chiral conden-
sate in mCGTs. First we review the relation between the
scaling of the chiral condensate with the fermion mass, and
the density of eigenvalues of the massless Dirac operator in
the infinite-volume limit. As stated above, the chiral con-
densate must vanish as the fermion mass is taken to zero at
a rate that is dictated by a critical exponent � �qq. The

nonanalytic dependence of the fermion condensate on the
fermion mass is directly related to the scaling exponent for
the eigenvalue density of the massless Dirac operator. As
pointed out in Ref. [13], the exponents turn out to be the
same:

h �qqi �m� �qq ) �ð�Þ � �� �qq : (3)

The scaling exponent � �qq is determined as a function of

��, the anomalous dimension of the mass at the IRFP. The
RG analysis, which applies to all condensates, yields

� �qq ¼ ð3� ��Þ
ð1þ ��Þ : (4)

We then present the determination of this coefficient from a
heuristic calculation, which provides some physical insight
in the dynamics of mCGT. The limitations of such a
heuristic approach are highlighted, and the interpretation
of IR and UV cutoffs is clarified. We conclude this section
by analyzing current lattice data for the eigenvalue distri-
bution in an SU(2) gauge theory with two flavours in the
adjoint representation.

In Sec. IV we explore the consequences of hyperscaling
for the decay constants of the hadronic states. Our results,

summarized in Table I, can schematically written as

G�mð�O�1Þ=1þ�� ; h0jOð0ÞjHðpÞi ¼ G; (5)

for operators with scaling dimension �. Further informa-
tions are obtained by combining these results with the
chiral Ward identities in section IVB; these scaling pre-
dictions for the decay constants are then compared with
recent results from numerical simulations of potential
mCGT on the lattice. Finally we discuss the implication
of the scaling of the decay constants for the width of the
hadronic states, and compare the scaling of the decay
constants in a mCGT to the one of heavy quarkonia states
in a chirally broken theory like QCD.

Conformal window—discussion and results

It is well known that SUðNÞ gauge theories with nf
fermions are asymptotically free as long as nf does not

exceed an upper limit that depends on the number of colors
Nc and the fermion representation R. At small distances the
gauge coupling decreases logarithmically, and the dynam-
ics is successfully described by perturbation theory. In the
SU(3) gauge theory minimally coupled to nf ¼ 2 light

flavors in the fundamental representation, the coupling
increases at large distances, and the theory undergoes
confinement and spontaneous chiral symmetry breaking,
exhibiting a spectrum of bound states. In the massless
limit, the spectrum includes three massless Goldstone bo-
sons, known as ð�0; �þ; ��Þ, reflecting the spontaneous
breaking of chiral symmetry. As a consequence, there is a
gap in the spectrum between the pions and the rest of the
states whose masses are parametrically of the order of
some hadronic scale � ’ �QCD, and remain finite in the

chiral limit. At low energies compared to � the dynamics
are successfully described by an effective theory of self-
interacting pions, known as chiral perturbation theory. A
small nonvanishing mass can easily be incorporated as a
perturbation of the massless theory.
As the number of light fermions is increased, before

asymptotic freedom is lost, the theory may develop an
infrared fixed point (IRFP) due to the effect of the fermions

TABLE I. Scaling laws, G½F� �m�G½F� , for the decay constants of the lowest lying states. In regard to the V=A decay constants and
formula (51) note that GV=A $ MV=AFV=A in terms of counting scaling powers. The symbol ym � 1þ �� denotes the scaling

dimension of the mass (7). Recall that the lowest bound state scales as MH �m1=ym (14) and the nonanalytic part of the quark
condensate is given by: h �qqi �mð3���Þ=ym (4). The symbol a denotes the adjoint flavour index, and �a are the generator normalized as
tr½�a�b� ¼ 1

2�
ab.

O def h0jOð0ÞjJPðCÞðpÞi JPðCÞ �O ¼ dO þ �O �G½F�
S �qq GS 0þþ 3� �� ð2� ��Þ=ym
Sa �q�aq GSa 0þ 3� �� ð2� ��Þ=ym
Pa �qi�5q GPa 0� 3� �� ð2� ��Þ=ym
V �q��q ��ðpÞMVFV 1�� 3 1=ym
Va �q���

aq ��ðpÞMVFVa 1� 3 1=ym
Aa �q���5�

aq ��ðpÞMAFAa ½ip�FPa � 1þ½0�� 3 1=ym½1=ym�
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on the running of the coupling. We shall denote by nf;c the

number of fermions above which the theory exhibits an
IRFP. In this case the theory becomes scale-invariant at
large distances, while the short-distance behavior is still
the one dictated by asymptotic freedom. As a consequence
of the scale invariance at large distances, the theory cannot
be in a confining phase and chiral symmetry remains
unbroken. The long-distance dynamics is governed by
the critical exponents of the IRFP, which determine the
scaling laws in the vicinity of the fixed point. The Banks-
Zaks theories [14], where Nc and nf are arranged such that

the critical coupling g� � 1, provide oneworking example
of a theory within the conformal window. Early studies of
near conformal and IRFP theories were based on approxi-
mate solutions of the Schwinger-Dyson equations [15,16];
these analyses were extended to higher representations in
Ref. [11]. Unfortunately it is very difficult to control the
systematic errors due to the truncation of the 1PI vertices
appearing in the Schwinger-Dyson equations. Moreover
Schwinger-Dyson equations predict the anomalous dimen-
sion of the mass to be around one, whereas unitarity
constraints on the conformal group [17], in principle, allow
for �� � 2.

Recent results have appeared recently, that address this
problem either from an RG point of view [18–20], or from
a gauge/string duality perspective [21–23]. We defer the
investigation of the connections between our results and
these other approaches for further studies.

Recent numerical simulations of gauge theories on the
lattice have triggered a renewed interest in those theories
and in turn in technicolor models. Algorithmic progresses
have made lattice simulations with light dynamical fermi-
ons accessible on current hardware [24–26]. This opens the
possibility to obtain first principles results for technicolor,
and several preliminary investigations have appeared
[13,27–45]. It is important to bear in mind that recent
lattice results for theories that may lie inside the conformal
window are plagued by systematic errors, and their inter-
pretation still needs to be clarified. A recent discussion of
the lattice artefacts in simulations of theories with a po-
tential IRFP can be found in Refs. [44,46]. For these
theories, unlike in QCD, there are no experimental results
to guide the lattice simulations.

Therefore, it is crucial to develop analytical results in
order to guide the lattice studies, and help in analyzing
their outcome. A wider range of analytical predictions,
together with more extensive simulations, will help in
finding robust evidence for the existence of IRFPs.

II. INFRARED FIXED POINTS

Let us henceforth consider theories inside the conformal
window, i.e. gauge theories minimally coupled to a number
nf of Dirac fermions, with the number of flavors and their

representation adjusted so that the theories are scale-
invariant at large distances when the fermions are massless.

In general, fixed points of RG flows are identified by the
zeroes of the 	 functions that describe the evolution of
dimensionless couplings. The typical evolution of a run-
ning coupling is sketched in Fig. 1. The running coupling
flows to a constant value at small energies, which corre-
sponds to a zero of the beta function. The value g� of the
coupling at the fixed point, and the precise shape of the
nonperturbative function gð�Þ are scheme dependent.
However the existence of the fixed point and the critical
exponents are universal.
The fermion mass is a relevant coupling at the IRFP, and

drives the theory away from it. In a theory with a non-
vanishing fermion mass, the fermionic degrees of freedom
decouple at low energies, and the theory behaves like a
pure Yang–Mills theory. The running of the gauge coupling
for the massive theory is given by the dashed curve at small
� in Fig. 1, where the running of the coupling below some
scale �IR is explicitly drawn. Note that in the presence of
an IRFP �IR goes to zero as the fermion mass vanishes.
The running of the mass is described by its anomalous

dimension, which has the opposite sign of the anomalous
dimension of the renormalized composite operator �qq,

�
d

d�
�qqj� ¼ � �qqð�Þ �qqj� ¼ �ð�Þ �qqj�: (6)

We have explicitly indicated the scale dependence of the
various quantities. In this paper wewill use the symbol � to
denote the anomalous dimension of the mass and quark
condensate: � � ��m ¼ � �qq.

Note that the anomalous dimension away from the fixed
point depends on the renormalization scheme. However its
value �� at the IRFP is a scheme-independent quantity. A

µΛ
IR

Λ
U

g*

g

FIG. 1. Running of the coupling as a function of the energy
scale for a theory with an IRFP. At low energies the coupling
flows to a fixed-point value g�, while the high energy behavior is
the usual one expected for asymptotically free theories. The
scale �U corresponds to the energy where the running starts
to be dictated by asymptotic freedom. The dashed curve at low
energies shows the running of the coupling when a fermionic
mass term is switched on.
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concise discussion of the scheme-dependent features of
IRFPs can be found in Ref. [46].

Throughout this paper we will often refer to scaling
dimensions of operators, denoted by �; thery are obtained
as the sum of the naive mass dimension of the operator and
the anomalous dimension. For example, for the operator �qq
we write

��qq ¼ d �qq þ � �qq ¼ 3� ��; ym ¼ 1þ ��; (7)

where we have also introduced the scaling exponent ym,
which often appears in what follows and is widely used in
the RG-literature [12]. Throughout this paper we will use
these notations interchangeably.

Scaling laws are derived by assuming that the fermion
mass is the only relevant operator at the IRFP. RG equa-
tions will be used below in order to derive the scaling of the
chiral condensate as a function of the fermion mass. It is
therefore worthwhile to briefly recall how the scaling
relation for the masses in the spectrum is obtained. A
recent discussion of RG flows in the vicinity of an IRFP
can be found in Refs. [40,47,48].

Let us consider the zero-momentum vacuum correlator
of an interpolating fieldHðxÞ with the quantum numbers of
a given state in the spectrum:

CHðt; g; m̂;�Þ ¼
Z

d3xhHðt; xÞHð0Þyijg;m̂;�; (8)

where we have indicated explicitly the dependence on the
couplings and the scale �. It is useful in this context to
introduce a rescaled mass m̂ð�Þ ¼ mð�Þ=�. For the spe-
cific case of lattice simulations, the scale is set by the
inverse lattice spacing � ¼ a�1. The masses of the physi-
cal stable states are obtained from the Euclidean time
dependence of two-point functions. At large Euclidean
time t:

CHðt; g; m̂; �Þ � e�MHt; (9)

where MH is the mass of the lightest state in the channel
under examination. We examine the consequences of the
RG equation for the two-point function.

In the vicinity of the fixed point, a RG transformation
acts on the correlator according to

� ¼ b�0; CHðt;g; m̂; �Þ ¼ b�2�HCHðt; g0; m̂0; �0Þ;
(10)

where �H is the anomalous dimension of the field H. The
flow of the couplings near the RG fixed point is powerlike:

g0 ¼ bygg; m̂0 ¼ bymm̂: (11)

We shall neglect henceforth the irrelevant coupling g (yg<

0). Multiplying all mass units by the factor b we obtain

CHðt; m̂0; �0Þ ¼ b�2dHCHðtb�1; m̂0; �Þ; (12)

where dH is the naive mass dimension of the operator H.
Choosing b such that m̂0 ¼ 1, the equations above yield

CHðt; m̂; �Þ ¼ CHFðtm̂1=ð1þ��Þ; �Þ; (13)

where F is some function that, for fixed �, depends on the

rescaled variable x ¼ tm̂1=ð1þ��Þ only. The detailed depen-
dence of the prefactor CH on the parameters of the theory is
postponed to the next section, where it will play a promi-
nent role. Comparing Eq. (13) with the expected behavior
Eq. (9) yields

MH ’ cH�m̂1=ð1þ��Þ as m ! 0: (14)

Note that the scaling of the massMH is entirely determined
by the anomalous dimension �� and does not depend on the
specific choice of the interpolating operator H. Equation
(14) shows that all lowest state masses scale with with
same exponent 1=ð1þ ��Þ, while the proportionality con-
stant cH depends on the chosen channel. While each indi-
vidual mass in the spectrum vanishes, ratios of masses
should remain constant as the chiral limit is approached.
This scaling is consistent e.g. with the scenarios proposed
in Refs. [49,50].
In the derivation above we have not considered the

effects of a finite decay width. At least one channel ought
to be stable and therefore not affected by the width.
According to an inequality by Weingarten [51], valid for
nF � 2, this should be the mass of the lowest pseudoscalar
flavor-nonsinglet, which we shall later on denote by MPa .
For all other states one might wonder how the width
interferes with the derivation above. Could the width and
the mass conspire to cancel their leading mass scaling
behavior in such a way as to invalidate Eq. (14)? We would
like to bring forward two reasons why this should not be
the case. First the difference in the largeNc-scaling of mass
and width [�H=MH �Oð1=NcÞ] from QCD should hold in
mCGT too and serve as a parametric argument against such
a cancellation. Second we show in appendix C that in the
approximation where the self-energy is treated as being
constant such a cancellation can be excluded. This seems
intuitively plausible since in Euclidian time the mass and
decay width behavior are associated with exponential and
oscillatory behavior, respectively.
On the contrary since mass and width do not seem to

interfere in the leading large t- behavior Eq. (13) suggests
that both the mass and the width of the resonance scale
according to

M; ��m1=ð1þ��Þ; (15)

We shall revisit the scaling of the width in Sec. IV, after
discussing the scaling of the decay constants and derive

�ðA ! Bþ CÞ �m1=ð1þ��Þ for a specific decay A ! Bþ
C.
The behavior (14) is markedly different from what is

observed in the spectrum of theories where chiral symme-
try is spontaneously broken, like e.g. in QCD. In the latter
theories, the Goldstone bosons become massless in the
chiral limit, while the other states remain massive, with
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their masses being of the order of some typical hadronic
scale �. For theories with an IRFP, all states become
massless, presumably at the same rate, which prevents a
simple description of the nonperturbative low energy had-
ronic dynamics in terms of an effective theory like chiral
perturbation theory.

Let us conclude this section by recalling how the finite-
size effects can be analyzed using RG equations. We shall
discuss explicitly the case of the correlator CH, including
the dependence on the size of the system L. We remind the
reader that by studying finite volume effects, it is implied
that the box is larger than the typical scale, L 	 ��1, and
therefore does not interfere with characteristic short-
distance dynamics. The solution of the RG equation, in-
cluding the L-dependence, scales as

CHðt; m̂; L;�Þ ¼ b�2�HCHðt; m̂0; L;�0Þ; (16)

according to a modified version of Eq. (10). Rescaling the
energies by the factor b, and using the power-law scaling of
the couplings near the IRFP yields

CHðt; m̂; L;�Þ ¼ b�2ðdHþ�HÞCHðb�1t; bymm̂; b�1L;�Þ:
(17)

Choosing b such that b�1L ¼ L0, where L0 is a reference
length, yields

CHðt; m̂; L;�Þ ¼
�
L

L0

��2�H

CH

�
t

L=L0

; x
1

�Lym
0

; L0; �

�
;

(18)

where we have introduced the scaling variable x ¼ Lymm.
Comparing Eq. (18) with the expected asymptotic be-

havior in Eq. (9) we obtain

MH ¼ L�1fðxÞ; (19)

where fðxÞ is some function of the scaling variable x,
expected to vanish when x goes to zero. In order to recover
the correct scaling with m in the thermodynamic limit

fðxÞ � x1=ym; as x ! 1: (20)

As one can see from Eq. (19), if the fermion mass is
decreased at fixed � and L, then the mass of the states in
the spectrum will initially decrease until the Compton
wavelength of the states is of the order of the linear size
of the system. When this happens, the mass of the states
saturates and scales with the inverse size L�1. Results for
MHL computed on different volumes should follow a
universal curve when studied as a function of the scaling
variable x.

III. MODIFIED BANKS-CASHER RELATION

In this section we relate the scaling exponent of the
chiral condensate � �qq to the scaling of the eigenvalue

density of the massless Dirac operator. We then illustrate
how the RG equations yield a prediction for the exponent

in terms of the anomalous dimension �� introduced in
Eq. (6). These results follow readily from the RG scaling
of the free energy and the field correlators in the vicinity of
fixed point, and were already presented in Ref. [13]. Here
we discuss in detail the derivation of these results in the
context of a mCGT, generalizing to other condensates such
as the gluon condensate, and compare them to a more
heuristic derivation.

A. Eigenvalue density �ð�Þ and the scaling exponent
� �qq

It is useful to recall the basic steps in the derivation of
the Banks-Casher formula, in order to highlight the order
in which the limits are taken, the divergences that may
appear, and to identify the differences from the case of a
conformal theory.
We closely follow the discussion in Ref. [52] and extend

it at appropriate places to mCGT. The fermion propagator
can be written as

hqðxÞ �qðyÞi ¼ X
n

unðxÞuyn ðyÞ
m� i�n

; (21)

where the eigenmodes of the massless Euclidean operator
D � ��D

� have been introduced:

DunðxÞ ¼ �nunðxÞ: (22)

Since the eigenfunctions occur in pairs with opposite ei-
genvalues, the chiral condensate in a finite volume V is
given by

h �qqiV ¼ 1

V

Z
dxh �qðxÞqðxÞi ¼ � 2m

V

X
�n>0

1

m2 þ �2
n

: (23)

Taking the infinite volume limit at fixed mass, the sum over
positive eigenvalues can be replaced by

h �qqi ¼ lim
V!1h �qqiV ¼ �2m

Z 1

0
d�

�ð�Þ
m2 þ �2

; (24)

where �ð�Þ denotes the number density of eigenvalues per
unit volume. Equation (24) is purely formal at this stage in
the sense that a UV-regularization is needed on both sides.
In four dimension the divergences are logarithmic and
quadratic, respectively.1 The divergences can be isolated
via a twice-subtracted spectral representation:

h �qqi ¼ �2m
Z �

0
d�

�ð�Þ
m2 þ �2

� 2m5
Z 1

�

d�

�4

�ð�Þ
m2 þ �2

þ �1mþ �2m
3: (25)

The subtraction constants �1 and �2 contain the UV-
divergences. Their respective behaviours are �1 ��2

UV,

1Note that if the regulated theory breaks chiral symmetry
explicitly, as is the case with lattice Wilson fermions, then a
cubic divergence appears that survives in the chiral limit [53].
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and �2 � log½�2
UV�, and their actual values depend on two

physical renormalization conditions used to define the
finite condensate on the left-hand side (LHS) of Eq. (24).
We shall investigate the limiting behavior when m ! 0.
The second integral and the subtraction terms in Eq. (25)
vanish in the chiral limit (m ! 0). Therefore only the first
integral, sensitive to the IR region, can result in a non-
analytic term and has to be investigated further. A simple
change of variable yields

h �qqi ¼ �2
Z �=m

0
dx

�ðmxÞ
1þ x2

þAðmÞ; (26)

where AðmÞ stands for an analytic function of m. From
Eq. (26), following the same arguments used in QCD, one
can readily obtain

h �qqi �m!0 m� �qq , �ð�Þ ��!0 �� �qq : (27)

This in turn implies

� �qqjQCD-like ¼ 0; � �qqjmCGT > 0; (28)

since in QCD the condensate remains finite in the chiral
limit, while it vanishes in mCGT.

Let us derive the same scaling coefficient � �qq (4) from a

RG analysis. The starting point is the two-point function
C �qqðt; m̂; �Þ, as in Eq. (8), where the hadronic field H ¼
�qq, and the explicit dependence on the coupling g is sup-
pressed. The solution of the RG equations for this specific
case is

C �qqðt; m̂; �Þ ¼ b�2��qqC �qqðtb�1;bymm̂; �Þ: (29)

Imposing again bymm̂ ¼ 1, finally leads to

C �qqðt; m̂; �Þ ¼ m̂2��qq=ymC �qqðtm̂1=ym ; 1; �Þ: (30)

Inserting a complete set of states the exponential decrease
of any state other than the vacuum for large t results in

C �qqðt; m̂; �Þ �t!1 m2� �qq ; (31)

whence the scaling exponent (27) follows:

� �qq ¼
��qq

ym
¼ 3� ��

1þ ��
: (32)

The eigenvalue density then scales as

�ð�Þ � �ð3���Þ=ð1þ��Þ; (33)

this result generalizes the Banks-Casher relation for QCD
[54]:

h �qqijm¼0 � 0 ) �ð0Þ ¼ ��h �qqijm¼0 (34)

to mCGT. It is interesting to remark that Refs. [13,45,55]
state different predictions for the scaling exponent. Our
determination of this critical exponent agrees with
Ref. [13].

Surely this derivation generalizes to any other operator,
for example, the gluon condensate for which one gets

�G2 ¼ �G2

ym
¼ 4

1þ ��
: (35)

The scaling dimension of the gluon condensate is four
since it appears in the Lagrangian density of a four dimen-
sional scale-invariant theory.

B. Alternative and heuristic derivation of � �qq

Let us now present an alternative derivation of the scal-
ing exponents � �qq and �G2 in Eqs. (32) and (35), which is

of a heuristic nature but might provide some physical
insight. The discussion for h �qqi, which we shall adopt
here before generalizing it to hG2i closely follows
Ref. [56].23 In this work we refine the discussion and
interpretation of IR and UV terms by making use of the
scaling of the hadronic masses in Eq. (14) and the inter-
pretation of subtraction terms in Eq. (25).
In a low energy effective theory describing the dynamics

of the operator �qq,4 the mass deformation in Eq. (1)
corresponds to a tadpole term and demands a reminimiza-
tion of the potential to find the stable vacuum. The poten-
tial for �qq is not known but the scaling of the two-point
function is governed by the anomalous dimension. It has
been proposed in Ref. [58] to mimic the continuous spec-
trum of such an operator by introducing a tower of scalar
fields with suitably adjusted masses and couplings:

�qqðxÞ �X
n

fn’nðxÞ; h’nj �qqj0i � fn;

f2n ¼ �2ðM2
nÞ��qq�2 M2

n ¼ n�2;

(36)

where the quantity � describes the mass spacing between
the ’n-modes. The decomposition (36) reproduces the
two-point function of a conformal theory in Minkowski
space in the limit � ! 0 [58], up to potential subtraction
ambiguities. Note that in Eq. (36) we have not tried to keep
track of the overall mass dimension and normalization
since they are irrelevant for scaling properties. The poten-
tial part of the Lagrangian L ¼ �m

P
nfn’n �

1=2
P

nM
2
n’

2
n then leads to the equation of motion for ’n

of the form

mfn þM2
n’n ¼ 0 ) h’ni ¼ �mfn=M

2
n; (37)

with solution as indicated on the right. Thus leading to a
VEV,

2The computation in Ref. [56] differs by in an additional term
�L� ð �qqÞ2 which is not relevant here.

3The calculation is similar to an analysis of a scale-invariant
theory with a scalar operator and tadpole term Ref. [57] in the
context of the unparticle scenario, where 2 � �� � 1 (�U ¼
3� ��) was assumed and made it necessary to introduce (vari-
ous) IR regularizations.

4We refrain to change to a notation �qq ! OU since we are not
interested in parametrizing an effective theory for OU as in
Ref. [56].
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h �qqi �X
n

fnh’ni ¼ �m
X
n

f2n
M2

n

!�!0 �m
Z �2

UV

�2
IR

dðsÞds

dðsÞ ¼
� s��qq�3 �2

IR � s � �2
U

ð�2
UÞ��qq�3 �2

U � s � �2
UV

(38)

where IR and UV cutoffs, to be discussed below, were
introduced. We have taken into account the running of the
gauge coupling as indicated in Fig. 1, though showing a
somewhat cavalier attitude towards the treatment of the
transition region to be justified later on. The nonanalytic
part in m, if present, is hidden in the IR cutoff. It seems
natural that the latter is governed by the typical hadronic
mass scale, i.e.�IR ’ cMH, where c is a constant irrelevant
to our investigations. The integral can be computed and
yields

h �qqi � �mðM2
HÞ��qq�2 þmð�2

UÞ��qq�3�2
UV: (39)

Thus using the scaling of the hadronic masses (14), (7), and
(39) becomes

h �qqi �mð3���Þ=1þ�� þAðmÞ ) � �qq ¼ 3� ��
1þ ��

; (40)

where as previously AðmÞ �OðmÞ denotes an analytic
function in m. We have therefore derived the exponent � �qq

in Eq. (3). The UV-divergent term in Eq. (39) corresponds
to the quadratic divergence discussed in the previous sec-
tion and is irrelevant for the nonanalytic part and the
scaling exponent � �qq. The nonappearance of the logarith-

mic divergence might be related to the fact that we do not
consider the back reaction of the mass perturbation on the
spectrum such as taking into consideration power correc-
tion in m in the couplings fn.

Surely this procedure generalizes to any gauge invariant

term in the Largangian �L ¼ mð4��OÞ=ymO in which case
the condensate (40) assumes the form:

hOijIR �mð4��OÞ=ymðM2
HÞ�O�2 �m�O=ym ; (41)

in accordance with Eq. (32) which is absolutely general.
The subscript IR indicates that UV terms have been
omitted.

We consider it worthwhile to discuss the term �L�G2,
resulting in the gluon condensate. From Eq. (41), paying
attention to the UV terms in addition one gets

hG2i � ðM2
HÞ�G2

�2 þ ð�2
UVÞ�G2�2 (42)

and with (14) and �G2 ¼ 4 one gets

hG2i �m2ð�
G2

�2Þ=ym þAðm0Þ

) �G2 ¼ 2ð�G2 � 2Þ
ym

¼ 4

1þ ��
; (43)

the same scaling as in Eq. (35). The Aðm0Þ refers to the
term proportional to �4

UV. It originates from the region of
asymptotic freedom and is interpreted as a mixing with the

identity. Such contributions, sometimes called renorma-
lons, have hitherto prevented an extraction or a proper
definition of a gluon condensate in lattice QCD.

C. Critical discussion

Although the derivation above reproduces the correct
result there remain some points that deserve further clari-
fication. For this discussion we shall first think of the
theory when m ¼ 0. Assuming that this effective field
theory approach, the deconstruction (36), can be extended
to higher orders one would need to introduce higher order
terms, starting from cubic ones, into the effective
Lagrangian in order to reproduce higher correlation func-
tions. There are two important effects, due to higher order
terms.
First, are they going to modify the leading order extrac-

tion of the h �qqi directly? The answer appears to be no,
since the initial potential does not know about the small
parameter m and perturbing the system by the term in
Eq. (1) does not lead to major correction to any order but
in the linear one. That this is self-consistent can be seen
more explicitly by plugging in the VEV h’ni �m as in
Eq. (37) into a fictitious higher order term. Second, does
the quadratic order need to be modified? Since the higher
order terms are going to modify the two-point function, the
answer appears to be yes. As long as these modifications
are of the form M2

njhigher order � n
 with 
> 1, they will

give rise to subleading effects in m. Although this appears
likely we have not tried to resolve this issue in this paper
but obviously this question deserves further study.5

D. Lattice data

Note that the anomalous dimension �� is related to the
running of the fermion mass, and has been computed by
Schrödinger Functional methods in Ref. [46]. On the other
hand, as discussed above, the exponent � �qq characterizes

the behavior of the eigenvalue density around zero, so that
in principle it can be extracted from the eigenvalue density.
First results for the eigenvalue spectrum of the Dirac

operator have been presented in Refs. [32,47] for an SU(2)
gauge theory with two Dirac fermions in the adjoint rep-
resentation. An extensive study of the 200 lowest eigen-
values is available only for the 163 lattice studied in the
references above. As argued in Ref. [59], the mode number
of the massive Dirac operator:

�ðM;mÞ ¼
Z þ�

��
d��ð�Þ; (44)

5One might also be concerned that the mixing of different ’n
modes might reshuffle hierarchies. That this is not the case for
the analytic part follows from the fact that the modes with low n
are responsible for the nonanalytic part and that the higher
modes are numerically suppressed with respect to the lower
modes by h’ni ¼ h’1i=n1þ�� [56].
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where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �m2

p
, carries the same information as

the density itself. The mode number can be renormalized
and yields a RG invariant, universal quantity that describes
the physical properties of the Dirac spectrum independent
of the regularization used.

The mode number can easily be computed from the
available eigenvalue distributions. Results obtained at 	 ¼
2:25 on a 32
 163 lattice are reported in Fig. 2 for differ-
ent values of the fermion mass am. The quantity of interest
is the extrapolation of the mode number to the thermody-
namic and massless limit:

lim
m!0

lim
V!1�ðM;mÞ: (45)

Using the current data at a single value of the volume,
where a reasonable amount of data is available Ref. [47],
the first extrapolation cannot be performed. We defer this

analysis for further studies as larger lattices become avail-
able, and concentrate instead on the extrapolation to the
chiral limit. The data in Fig. 2 show that there is a depen-
dence of the mode number on the PCAC mass. The data at
the two lightest masses are compatible within the statistical
errors, and we shall take the data at the lightest mass for our
analysis.
In the chiral limit, the mode number is expected to scale

as

�ð�; 0Þ ¼ Cð�� gÞ� �qqþ1; (46)

where the possibility of a nonvanishing spectral gap g, as
suggested for instance in Ref. [60], is taken into account in
the functional form of the fitting function. we therefore end
up with fitting the data to three parameters, namely C, g,
and the exponent. The data are consistent with such a
power-law behavior, however the value of the exponent
depends critically on the range used for the fit. The plot in
the left panel of Fig. 3 shows the result of a fit that has a fit
range� 2 ½0:002; 0:014�, in lattice units. The result for the
critical exponent is 1þ � �qq ¼ 1:65ð4Þ, which can be trans-
lated into a fitted value for the mass anomalous dimension,
yielding �� ¼ 1:42ð5Þ. Note that this value is quite differ-
ent from the one found in previous studies [46,47].
However, if the fit range is reduced to � 2
½0:003; 0:008�, then the fitted exponent is �� ¼ 1:1ð3Þ.
The latter value is still larger than the one obtained form
the Schrodinger functional studies, it clearly shows that the
fitted exponent depends critically on the fit range. More
extensive data on the eigenvalue distributions are needed in
order to be able to extract the critical exponent in a reliable
manner.
Note that the error induced by varying the fitting range

turns out to be larger than the statistical error, and that this
result is obtained at one value of the lattice volume, and
could be affected by finite size effects. A more compre-
hensive analysis of the volume dependence of the eigen-

0.001 0.01

Λ

10

100
ν(

Λ
, m

)
am=0.068
am=0.055
am=0.031
am=0.010

FIG. 2 (color online). The mode number �ðM;mÞ for the
SU(2) gauge theory with two fermions in the adjoint represen-
tation. The data show the dependence of the mode number on the
scale � for several values of the quark mass.
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FIG. 3 (color online). Fit of the mode number �ðM;mÞ to a power-law behavior. The two plots represent two fits to the same data
over two different ranges.
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value distribution is needed. More extensive lattice data
should become available in the near future.

IV. DECAY CONSTANTS

This section explores the information that can be gath-
ered from the RG scaling of matrix elements of given
operators. In Sec. IVA we show that the scaling of decay
constants of the lowest lying states directly follow from its
anomalous dimension through the Callan-Symanzik equa-
tions. In Sec. IVB we deduce consequences from spectral
representations of the Ward identities and low energy
theorems for pseudoscalar and scalar states evaluated at
zero momentum. In Sec. IVC we compare our theoretical
predictions with recent lattice data. Finally, miscellaneous
matters of interest are presented in Sec. IVD. In
Appendix A the pseudoscalar WI at large momentum
transfer is used to deduce further information.

A. Hyperscaling and decay constants

Let us consider an operator O with scaling dimension
�O and quantum numbers such that it couples to a state
jHðpÞi with strength GH for scalar operators and FH for
vector operators. We shall choose GH to exemplify the
equations below:

h0jOð0ÞjHðpÞi ¼ GH; �O ¼ dO þ �O: (47)

Information on the lowest lying state can be gained from
the large time behavior of the Euclidian two-point function
COðt;g;m;�Þ defined in Eq. (8):

COðt;g;m;�Þ !t!1
e�MHt

h0jOð0ÞjHðpÞihHðpÞjOð0Þj0i
2MHV

¼ e�MHt
jGHj2
2MHV

(48)

The scaling of jGHj can be inferred by applying a renor-
malization group transformation � ¼ b�0 and imposing
bymm̂ð�Þ ¼ 1 as in Sec. III A. The LHS becomes

COðt; m̂; �Þ ¼ m̂2�O=ymCOðtm̂1=ym ; 1; �Þ; (49)

whereas the right-hand side (RHS) scales as

jGHj2
2MHV

� m̂2�GH
�1=ymþ3=ym : (50)

Combining Eqs. (49) and (50) we obtain

jGHj � m̂�O�1=ym : (51)

The definitions of the decay constants, their anomalous
dimensions and resulting scaling coefficients are summa-
rized in Table I.

We would like to the draw the reader’s attention to the
fact that the pseudoscalar decay constant, as defined in
Table I, is related through the PCAC relation as

@ � Aa ¼ 2mPa;) 2mGPa ¼ M2
PaFPa : (52)

The scaling is consistent with our findings from Eq. (51)
since

1þ ð2� ��Þ=ym ¼ 2=ym þ 1=ym: (53)

Let us briefly discuss the scaling dimensions of the opera-
tors given in Table I. The currents V, Va have vanishing
anomalous dimension since they are conserved currents
that are associated with global symmetries. The axial
current Aa is only partially conserved, see Eq. (52). It is
broken by a soft term whose renormalization does not
affect the divergence @ � Aa and therefore Aa has vanishing
anomalous dimension. Moreover this implies thatmPa is a
renormalization group invariant and thus �Pa ¼ 3� ��.
The scaling dimension of S was already discussed in
Sec. II. In the case where there are no masses Sa and Pa

have the same renormalization constant. This is explicit to
all orders in perturbation theory and should also hold
nonperturbatively. Neglecting effects of the mass on ��
one concludes �Sa ¼ 3� ��. The flavor-singlet axial vec-
tor identity is anomalous. The topological charge density
mixes with the axial vector, which therefore does not
renormalize multiplicatively. This is further discussed in
Appendix B 2

B. Low energy theorems from ward identities and alike

In the previous subsection we have inferred the scaling
laws of the decay constants of the lowest lying states from
the anomalous dimensions. Further information can be
obtained by analyzing WIs.
In appendix B we recall the derivation of two standard

WIs, Eqs. (B2) and (B9), and a low energy theorem,
Eq. (B10):

ð2mÞ2�PaPb
ð0Þ ¼ �2m�abh �qqi

ð2mÞ2�PPð0Þ ��~Q ~Qð0Þ ¼ �4mh �qqi
�SSð0Þ ¼ � @

@m
h �qqi; (54)

where �XYðq2Þ is the time-ordered two-point function, cf.
(B3). Information on the decay constants can be gained by
investigating the dispersion representation of the two-point
functions:

�PaPb
ðq2Þ ¼ 1

�

Z
cut

ds
Im½�PaPb

ðsÞ�
s� q2 � i0

þ cþ dq2 þ . . . ;

(55)

where we have chosen�PaPb
as representative for definite-

ness. The symbols c and d denote subtraction constants due
to UV-divergences of which only c is relevant since q2 ¼ 0
in the equations above.6 At q2 ¼ 0 Eq. (55) writes,

6Note c vanishes for �~Q ~Qð0Þ since the latter vanishes to all
orders in perturbation because ~Q can be written as a total
derivative.
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�PaPb
ð0Þ ¼ 1

�

Z
cut

ds
Im½�PaPb

ðsÞ�
s� i0

þ c1 þ c2m
2; (56)

where c ¼ c1 þ c2m
2 are the subtraction constants due to a

quadratic and logarithmic divergence of which only c1 is
relevant for our discussion.

We would like to make a comment of speculative nature.
Assuming that the lowest state,

�PaPb
ð0Þ ¼ �ab

G2
Pa

M2
Pa

þ . . . ; (57)

contributes to the leading scaling of the RHS of Eqs. (54)

G2
Pa

M2
Pa

þ . . .þ c1 ¼ � 2

m
h �qqi; (58)

then, using the results forMH and setting aside the issue of
the subtraction constant c1 �Oðm0Þ for the moment, the
scaling laws in Table I are reproduced for Pa and S and

G2
P � ð ~GP=2mÞ2

M2
P

�m� �qq�1 ¼ mð2ð1���ÞÞ=ð1þ��Þ; (59)

would follow from the pseudoscalar WI, where the decay

constants GP and ~GP are defined as follows.

h0jPð0ÞjPðpÞi ¼ GP; h0j ~Qð0ÞjPðpÞi ¼ ~GP: (60)

The result for P, if correct, is new but on the other hand not
very practical as it is the difference of two positive terms.
Another possibility, or rather an extension of the scenario
above, is that the hadron mass scaling is universal and that
the width does not upset the parametric effects,7 which
would result in all decay constants scaling in the same way.
Clearly these statements above are of a speculative nature
driven by the knowledge of the lowest lying decay con-
stants from the Callan-Symmazik equations. It is also
amusing to see in what way the scaling laws for those
two channels turn out to be the same. One might wonder
about the influence and the origin of the subtraction terms
in the WI (54). They match the divergences of the quark
condensate on dimensional grounds. In fact, it can be seen
that they match exactly. Following Ref. [56] we can fix the
coupling

h0j �qqj’ni ¼
ffiffiffiffiffiffiffiffiffiffi
B��qq

2�

s
fn (61)

(36) at ��qq ¼ 3 by demanding that the deconstructed

version matches �ð0ÞSS in the region where the theory is
asymptotically free. At vanishing quark mass and Oðg0Þ
the time dependent scalar correlator, �ðq2ÞSS, is given by

�ðq2ÞSS ¼ B3

2�

Z sds

s� q2
; B3 ¼

Ncnf
4�

: (62)

We have factored out the coefficient B3, which matches the
deconstructed version. The condensate (38) in the asymp-
totically free region, with the normalization (61), becomes

h �qqi ¼ �m
B3

2�

Z
ds � 1: (63)

Whence an exact matching of the divergences in the cor-
relation function (54) on the LHS, and the quark conden-
sate on the RHS is found. Thus the UV divergences of the
quark condensate and the ambiguity in defining the �ðq2Þ
functions from a dispersion relation do match exactly. The
deconstructed version (36) of the condensate is therefore
consistent with the WI. Note the extra factor of 1 half on
the RHS of the nonsinglet pseudoscalar WI is due to the
normalization tr½�a�b� ¼ 1

2�
ab of the flavor generators.8

C. Comparison with data

The scaling predictions obtained above can be compared
to the recent lattice data presented in Ref. [44] for the
SU(2) gauge theory with two flavors in the adjoint repre-
sentation. The dependence of the pseudoscalar decay con-
stant on the fermion mass is reported in Fig. 4. It is clear
from the plot that the nonanalytic dependence of FPa on the
fermion mass can not be determined from current lattice
data, where no curvature is visible. This is confirmed
quantitatively by trying to fit the data to a power-law
dependence on the fermion mass. Rather than trying to
determine the exponent from the fit, we keep the exponent
fixed, and fit the proportionality coefficient only. As shown
in the figure, good fits to the data at the smaller masses can
be obtained for different values of �FPa

by adjusting the

constant of proportionality c.
A preliminary estimate for the mass anomalous dimen-

sion was obtained from numerical simulations using the
Schrödinger functional in Ref. [46]. A value of �� ’ 0:5 is
compatible with the results in Ref. [46], and leads to
�GPa

’ 1:0 and �FPa
’ 0:33. This is represented by the

blue line in the figure. As discussed above, the value c
can be adjusted to yield a good description of the data at the
smaller masses. Note that we only expect the scaling to
hold in the limit where the fermion mass goes to zero,
therefore it seems natural to exclude the heavier points
from this analysis. However, further systematic uncertainty
is introduced by the choice of the fitting range.
The situation improves only slightly when looking at the

dependence of the coupling GPa on the fermion mass,
which is presented in Fig. 5. A two-variable fit of the
data can be performed in this case, and yields a scaling
exponent �GPa

¼ 1:3ð2Þ. Note that, using the scaling for-

7This should be true in the large Nc-limit where the width is
suppressed by 1=Nc as compared to the mass.

8We have only focused on the leading quadratic divergence of
the quark condensate; it would be interesting to investigate the
logarithmic divergence as well in which case one could possibly
learn something about mass correction to the deconstructed
version presented in Sec. III B.
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mula in Table I, the result of the fit implies �� ¼ 0:30ð5Þ,
which broadly agrees with the result of Refs. [46–48].

Better control over systematic errors is required in order
to extract robust information from the scaling of the pseu-
doscalar decay constant. Current data can only be used to
check the consistency with the scaling we presented above;
Fig. 4 clearly shows that lighter masses are needed in order
to actually determine the scaling exponents from lattice
data.

D. Further remarks

1. Scaling of the decay width

Let us focus on a generic decay process A ! BC, me-
diated by some effective Lagrangian:

L eff ¼
Z

d4xGABCAðxÞBðxÞCðxÞ; (64)

where GABC is the ABC coupling, and AðxÞ; BðxÞ; CðxÞ are
the fields creating and annihilating the states A, B, C. The
fields are normalized as h0jAð0ÞjAðpÞi ¼ 1, etc. Let us now
introduce three interpolating fields JA, JB, and JC; these are
composite fields that have an overlap with the single
particle states, e.g. like quark bilinears for the simplest
type of mesons. At lowest order in GABC the correlator is
given by

hJAðxÞJBðyÞJCð0Þi �
Z

d4zGABChJAðxÞJBðyÞJCð0ÞLeffðzÞi;
(65)

and inserting a complete set of states becomes

� GAGBGC

MAMBMC

�
VT

V3

�
GABCe

�MAðtx�tzÞ�MBðty�tzÞ�MCð�tzÞ:

(66)

Using the scaling laws discussed above, we find for the
LHS of Eq. (66):

hJAJBJCi �mð�Aþ�Bþ�CÞ=ym; (67)

while from the RHS we obtain

hJAJBJCi
�mð�A�1Þ=ymmð�B�1Þ=ymmð�C�1Þ=ymm�3=ymm5=ymGABC;

(68)

and therefore

GABC �m1=ym : (69)

The scaling of GABC determines the scaling of the decay
width for this specific channel:

�ðA ! Bþ CÞ � jGABCj2
MA

�m1=ym; (70)

which corresponds to the same scaling we have argued for
in section II Eq. (15).

2. Heavy quarks or mass-deformed conformal?

It has been pointed out [42] that a confining theory with
chiral symmetry breaking, large mass term and small
volume could mimic a conformal theory with mass pertur-
bation. Thus the question: how to distinguish a conformal
theory with small mass perturbation from a heavy quark
regime? We would like to emphasize that the scaling laws
of the pseudoscalar decay constant are a major help in this
respect. The decay constant of pseudoscalar meson of two
heavy quarks, which we denote by �bb in analogy with
QCD, are expected to have the following scaling behavior:

F �bb �m�1=2; ð) G �bb �m1=2Þ: (71)
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FIG. 5 (color online). The pseudoscalar coupling GPa
as a

function of the fermion PCAC mass am. All quantities are
expressed in units of the lattice spacing, which is kept constant
as m is varied. The line represents a fit to the data assuming the
power-law behavior described above.
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FIG. 4 (color online). The pseudoscalar decay constant FPa
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a function of the fermion PCAC mass am. All quantities are
expressed in units of the lattice spacing, which is kept constant as
m is varied. The lines represent fits of the data to power-law
scaling for different values of the critical exponents �FPa

.
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This follows from the two heavy-quark state behaving like
a quantum mechanical bound state, and therefore being
treated using a quark model; Eq. (71) expresses a result
found a long time ago by van Royen and Weisskopf [61].
This is clearly different from the behavior of the decay
constant of a pseudoscalar state, or any other state, in a
mCGT, which vanishes in the limit m ! 0, cf. Table I.

V. SUMMARYAND CONCLUSIONS

In this paper we have accumulated a number of analyti-
cal results for mass scaling exponents � of the type (2) for
lowest state observables from Callan-Symmanzik equa-
tions, which should help to identify the conformal window
of four dimensional nonsupersymmetric gauge theories.
Possibly the clearest evidence of the conformal window
so far comes from the vanishing of the hadron masses and
decay constants in the chiral limit. We have identified the

scaling of F �bb �m�1=2 as a criterion to distinguish mCGT
from a heavy quark regime at small volumewhich has been
pointed out as a potential pitfall in identifying the confor-
mal window [42].

In section III A mass scaling coefficients for condensates
are determined from Callan-Symmanzik equations of
which we mention � �qq ¼ ð3� ��Þ=ð1þ ��Þ and �G2 ¼
4=ð1þ ��Þ. In Sec. III B we provide a more physical, but
somewhat more heuristic, derivations of those results and
discuss the nature of IR- and UV-regularizations within this
framework. By generalizing the Banks-Casher relation
from QCD it is shown, in section III A, that the exponent
of the eigenvalue density of the Dirac operator is � �qq,

providing an alternative method for extracting ��. As our
discussion in Sec. III D shows, it is too early to draw
conclusions on the extraction of �� by this method. In
Sec. IV we derived scaling laws for all lowest state decay
constants, summarized in Table I, other than those affected
by the chiral anomaly and of tensorial structure. Fitting to
current data for FPa

and GPa
we find results for �� com-

patible with earlier derivations of �� ’ 0:5. Summarizing,
the derivations indicate that lowest state observables O
scale as

�O ¼ �O

1þ ��
; (72)

where the one-particle state, jHðpÞi, scaling dimension
turns out to be �jHðpÞi ¼ �1=ð1þ ��Þ. Whether or not

this is true for higher states as well, remains unclear and
is more of academic interest as higher states are difficult to
assess on the lattice. The real distinction of higher states is
presumably the decay width and the associated continuum
thresholds. It is therefore tempting to think that in the large
Nc-limit, where the width is supposed to vanish, all decay
constants and masses in a specific channel scale in the
same way as the lowest one.

To this end we would like to add a few comments on
tentative conclusion on the scaling of the S-parameter. The
electroweak S-parameter is proportional to the V-A corre-
lator evaluated at zero momentum, �V�Að0Þ �R
�V�AðsÞ=sds, with the pion pole subtracted. A lattice

computation of the S-parameter for walking technicolour
(WTC) theories would be phenomenologically important.
Thus it is crucial to distinguish, in a parametric way, the
regimes of WTC and mCGT.9 Assuming that the correlator
is saturated by the lowest resonances10 �V�Að0Þ �
F2
V=M

2
V � F2

A=M
2
A � F2

�=M
2
�, it is just the pion pole that

serves as an indicator since ðM2
�ÞWTC �OðmÞ leads to

�WTC
V�Að0Þ �Oðm�1Þ and the results in Table I imply

�mCGT
V�A ð0Þ �Oð1Þ. To this end let us note that, since the

pion mass is the lowest one in the spectrum [51], a deter-
mination of F2

V=F
2
� � 1 would imply �mCGT

V�A ð0Þ< 0.

ACKNOWLEDGMENTS

L.D. D. and R. Z. gratefully acknowledge the support of
STFC. We are grateful to Biagio Lucini, Michela Petrini,
and Laurent Lellouch for discussions. We would also like
to thank Biagio Lucini, Agostino Patella, Claudio Pica, and
Antonio Rago for granting us access to the lattice data used
in this study, and for several useful discussions.

APPENDIX A: OPERATOR PRODUCT EXPANSION
IN THE DEEP EUCLIDIAN

In Ref. [62] an OPE relation is obtained which we shall
derive here in a slightly modified form. Taking the Fourier
transform of Eq. (B1) one arrives at the expression

2mq�
Z

eiq�xhTAa
�ðxÞPbð0Þi0 ¼ ð2mÞ2�PaPb

ðq2Þ
þ 2mh �qqi: (A1)

Inserting a complete set of states on the LHS and using
Eq. (52) yields

�X
P

F2
PSM

2
PS

M2
PS þQ2

þ d1 þ d2Q
2

¼ ð2mÞ2
Q2

�PaPb
ð�Q2Þ þ 2mh �qqi

Q2
; (A2)

where Q2 � �q2, and d1, d2 are subtraction constants,
which can also depend on m. Neither of these are of
relevance to us since we may simply differentiate this
expression twice with respect to Q2. Following Ref. [62],
an expansion in one inverse power ofQ2 yields Eq. (58), by
assuming that �PaPb

ð�Q2Þ does not vanish as Q2 ! 1
andm ! 0. By expanding in one more inverse power inQ2

9Of course this does not solve the problem of distinguishing
the WTC from TC regime per se.
10This is reasonably satisfied in QCD. Adding one more triplets
of states P, V, A would not really alter the conclusions above.
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one observes that the scaling of F2
PSM

4
PS has to be larger

than m2,

2�FPS
þ 4�MPS

� 2: (A3)

In the domain where 1 � ��, Eq. (A3) leads to �� � 2,
which corresponds exactly to the unitarity bound ��qq �
3� � � 1 for a scalar field [17].

APPENDIX B: WARD IDENTITIES AND A LOW
ENERGY THEOREM

In this appendix sketch the derivation of two standard
WI and one low energy theorem.

1. Ward identity for pseudoscalar non–flavor-singlet

Starting with the identity,

@�h0jTAa
�ðxÞPbð0Þj0i ¼ h0jT@ � AaðxÞPbð0Þj0i

þ �ðx0Þh0j½Aa
0ðxÞ; Pbð0Þ�j0i; (B1)

and integrating the equation over d4x one arrives at the
pseudoscalar Ward identity (WI)11:

ð2mÞ2�PaPb
ð0Þ ¼ �2m�abh �qqi; (B2)

where

�PaPb
ðqÞ ¼ i

Z
x
eiq�xh0jTPaðxÞPbð0Þj0i: (B3)

Throughout the paper �ABðqÞ denotes the time-ordered
two-point correlator of operators A and B. The RHS of
Eq. (B2) is obtained by evaluating the commutator

h0j½Qa
5jx0¼0; @ � Abð0Þ�j0i ¼ 2i�abmh �qqi: (B4)

The charge is defined as usual: Qa
5jx0¼0 ¼

R
d3xAbð0; ~xÞ.

2. (Anomalous) Ward identity for pseudoscalar
flavor-singlet

The flavor-singlet sector can be analyzed by reviewing
the Ward identities [63] used in discussing the
�0-mass/Uð1ÞA-problem in QCD. Let us define the follow-
ing flavor-singlet quantities:

PðxÞ ¼ Xnf
j¼1

�qji�5qjðxÞ; A�ðxÞ ¼
Xnf
j¼1

�qj���5qjðxÞ;

~QðxÞ ¼ g2

16�2
nf ~G
	G


	ðxÞ; (B5)

where ~G
	 ¼ 1=2�
	��G
��. The anomaly equation is

given by

@ � A ¼ 2mPþ ~Q (B6)

The integrated anomalousWard identity is readily obtained
from Eq. (B1) and reads

ð2mÞ2�PPð0Þ þ ð2mÞ�~QPð0Þ ¼ �4mh �qqi: (B7)

By observing that

0 ¼ i
Z
x
@�h0jT ~Qð0ÞA�ð�xÞj0i

¼ ð2mÞ�~QPð0Þ þ�~Q ~Qð0Þ; (B8)

the WI (B7) can be written in a more symmetric form:

ð2mÞ2�PPð0Þ ��~Q ~Qð0Þ ¼ �4mh �qqi: (B9)

3. Low energy theorem for scalar flavor-singlet

A simple and useful relation follows from the fact that
the operator SðxÞ ¼ �qqðxÞ appears in the Lagrangian.
Equation (1) implies

�SSð0Þ ¼ � @

@m
h �qqi; (B10)

where �SSðq2Þ is the time-ordered two-point function
(B3).

APPENDIX C: THE DECAY WIDTH

In this appendix we investigate whether the large tMH

behavior of a correlation function can be influenced by the
width. According to [64] the Euclidian time behavior of a
two-point function in the rest frame of the decaying parti-
cle can be written as a spectral integral of the type

CHðt; g;m;�Þ ¼ 1

�

Z
dEe�Et�ðEÞ; (C1)

where

�ðEÞ ¼ Imð�ðEÞÞ
jm2 � E2 � �ðEÞ2j (C2)

and �ðEÞ is the self-energy and m the bare mass. We shall
work in the approximation where �ðEÞ does not vary
appreciably around the peak E ¼ jMj and we neglect the
far away singularity E ¼ �jMj. The symbolM denotes the
renormalized mass: M ¼ m2 � Reð�ðMÞÞ. In this case
�ðEÞ assumes the form:

�ðEÞ ¼ �ðEÞ
ðM� EÞ2 þ �ðEÞ2 ; (C3)

where � ¼ �=2 ¼ Imð�ðEÞÞ=2M. Then the two-point
function takes the following form [64]:

CHðt; g;m;�Þ ¼ e�Mt

2M
Eið�t; ðM� �ÞtÞ; (C4)

where � is the onset of the cut, omitted in Eq. (C1), and

Ei ð
;	Þ ¼
Z 1

�	


e�x

x2 þ 
2
dx > 0: (C5)11We are using the fact that there are no Goldstone bosons since

SUðnfÞA is explicitly broken.
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If there are cancellations between the �e�Mt behavior of
the mass and the width then the following must be true:

Ei ð
;	Þ�t	M

nejbj
; (C6)

where n a real number and b is a number that would have to
be fine-tuned. It can be shown that this cannot be the case.
Consider


Eið
;	Þ ¼
Z 1

�	


2e�x

x2 þ 
2
dx �

Z 1

�	
e�xdx <1; (C7)

but then from (C6):

1>
Eið
;	Þ �t	M

nþ1ejbj
 !
!1

divergent (C8)

one gets an immediate contradiction to the hypothesis
(C6). Thus we have shown that, in the approximations
mentioned above, that a the large Euclidian time behavior
of the mass and the width do not conspire to cancel each
other.
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