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We report on numerical lattice QCD calculations of some of the low moments of the nucleon structure

functions. The calculations are carried out with gauge configurations generated by the RBC and UKQCD

Collaborations with (2þ 1)-flavors of dynamical domain-wall fermions and the Iwasaki gauge action

(� ¼ 2:13). The inverse lattice spacing is a�1 ¼ 1:73 GeV, and two spatial volumes of ð2:7 fmÞ3 and

ð1:8 fmÞ3 are used. The up and down quark masses are varied so the pion mass lies between 0.33 and

0.67 GeV, while the strange mass is about 12% heavier than the physical one. The structure function

moments we present include the fully nonperturbatively renormalized isovector quark momentum fraction

hxiu�d, the helicity fraction hxi�u��d, and transversity h1i�u��d, as well as an unrenormalized twist-3

coefficient d1. The ratio of the momentum to helicity fractions, hxiu�d=hxi�u��d, does not show

dependence on the light quark mass and agrees well with the value obtained from experiment. Their

respective absolute values, fully renormalized, show interesting trends toward their respective experi-

mental values at the lightest quark mass. A prediction for the transversity, 0:7< h1i�u��d < 1:1, in theMS

scheme at 2 GeV is obtained. The twist-3 coefficient, d1, though yet to be renormalized, supports the

perturbative Wandzura-Wilczek relation.

DOI: 10.1103/PhysRevD.82.014501 PACS numbers: 11.15.Ha

I. INTRODUCTION

We report numerical lattice quantum chromodynamics
(QCD) calculations of some low moments of nucleon
structure functions using the lattice gauge ensembles [1]
jointly generated by the RIKEN-BNL-Columbia (RBC)
and UKQCD Collaborations with ‘‘2þ 1’’ flavors of dy-
namical domain-wall fermions (DWF) [2–4]. Recently,
there has been an increased interest in lattice calculations
of these moments (see [5–7] for recent reviews).

The structure functions are measured in deep-inelastic
scattering of electrons off a nucleon [8–19], the cross
section of which is factorized in terms of leptonic and
hadronic tensors, / l��W

��. Since the electron leptonic

tensor, l��, is known, the cross section provides us with

structure information about the target nucleon through the
hadronic tensor,

W�� ¼ i
Z

d4xeiqxhNjT½J�ðxÞJ�ð0Þ�jNi: (1)

Here, q denotes the spacelike four-momentum transferred

to the nucleon from the electron through a virtual photon.
The hadronic tensor is decomposed into symmetric unpo-

larized and antisymmetric polarized parts, W�� ¼
Wf��g þW½���:

Wf��gðx;Q2Þ ¼
�
�g�� þ q�q�

q2

�
F1ðx;Q2Þ

þ
�
P� � �

q2
q�

��
P� � �

q2
q�

�
F2ðx;Q2Þ

�
;

(2)

W½���ðx;Q2Þ ¼ i�����q�

�
S�
�
½g1ðx; Q2Þ þ g2ðx; Q2Þ�

� ðq � SÞP�

�2
g2ðx;Q2Þ

�
; (3)

with kinematic variables defined as P� the nucleon mo-
mentum, S� the spin normalized with the nucleon massM,
S2 ¼ �M2, � ¼ q � P, x ¼ Q2=2�, and Q2 ¼ jq2j. The
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unpolarized structure functions are F1ðx;Q2Þ and
F2ðx;Q2Þ, and the polarized, g1ðx;Q2Þ and g2ðx;Q2Þ.
Their moments are described in terms of Wilson’s operator
product expansion:

2
Z 1

0
dxxnF1ðx;Q2Þ ¼ X

q¼u;d

cðqÞ1;nð�2=Q2; gð�ÞÞhxniqð�Þ

þOð1=Q2Þ; (4)

Z 1

0
dxxn�1F2ðx;Q2Þ ¼ X

f¼u;d

cðqÞ2;nð�2=Q2; gð�ÞÞhxniqð�Þ

þOð1=Q2Þ; (5)

2
Z 1

0
dxxng1ðx;Q2Þ ¼ X

q¼u;d

eðqÞ1;nð�2=Q2; gð�ÞÞhxni�qð�Þ

þOð1=Q2Þ; (6)

2
Z 1

0
dxxng2ðx;Q2Þ ¼ 1

2

n

nþ 1

� X
q¼u;d

½eq2;nð�2=Q2; gð�ÞÞdqnð�Þ

� 2eq1;nhxni�qð�Þ� þOð1=Q2Þ; (7)

where the Wilson coefficients, c1, c2, e1, and e2, are
perturbatively known. The moments, hxniqð�Þ, hxni�qð�Þ,
and dqnð�Þ are calculable on the lattice as forward nucleon
matrix elements of certain local and gauge-invariant
operators.

In addition, the tensor charge,

h1i�qð�Þ ¼ M

2ðS�P� � S�P�Þ hP; Sj �qi����5qjP; Si; (8)

which probes the transverse spin structure of the nucleon,
will soon be reported by experiments [20,21]. This quantity
is calculated on the lattice in much the sameway as the DIS
structure function moments are calculated.

In this paper we report our lattice numerical calculations
of the following four moments of the structure functions:
the quark momentum fraction hxiqð�Þ, the helicity fraction
hxi�qð�Þ, the tensor charge h1i�qð�Þ, and twist-3 coeffi-

cient dq1 of the g2 polarized structure function. These are
the moments that can be calculated without finite momen-
tum transfer. For the former three moments, the momen-
tum and helicity fractions and tensor charge, we restrict
ourselves to the isovector flavor combination, q ¼ u� d,
as this simplifies nonperturbative renormalization. All
three are nonperturbatively renormalized and readily com-
parable with the corresponding experiments.

The numerical calculations of these moments use the
lattice gauge ensembles generated by the RBC and
UKQCD Collaborations with 2þ 1 flavors of dynamical
domain-wall fermions. The good chiral and flavor symme-

tries of DWF make our calculations and analyses straight-
forward: in contrast to more conventional fermion
formalisms, such as staggered or Wilson, there is no ques-
tion in defining nucleon quantum numbers, nor complica-
tions arising from explicit breaking of chiral symmetry.
This advantage is especially important in nonperturba-
tively renormalizing the results so they can be compared
with experiment and phenomenology. In this paper we
report results from the ensembles with lattice cutoff a�1 ¼
1:73ð3Þ GeV [1]. We consider two spatial volumes, with
linear size about 2.7 and 1.8 fm each. The strange quark
mass is fixed at a value about 12% heavier than its physical
value, and the degenerate up and down quark mass is
varied for four values from about three quarter to one fifth
of the strange quark mass. Since we only vary the light
quark mass in our simulation while the strange quark mass
is held fixed, in the following we call the light up and down
quark mass mf, in lattice units, unless explicitly stated

otherwise.
The rest of this paper is organized as follows: We

explain our computational method in Sec. II. In Sec. III,
we first summarize the numerical lattice QCD ensembles
used for this work. Then, we discuss in detail the known
systematic errors in the relevant form factors calculated on
these ensembles. The numerical results are presented in
Sec. IV. Finally, we give the conclusions in Sec. V.
We note that some preliminary results from this study

were presented in Refs. [22–24].

II. FORMULATION

We refer the reader to our recent publications [25–27]
and references cited there in for details of our computa-
tional method. Here, we give a brief summary for readers’
convenience. We use the standard proton operator, B ¼
�abcðuTaC�5dbÞuc to create and annihilate proton states. We
Gaussian-smear this operator for better overlap with the
ground state with both zero and finite momentum. A
Gaussian radius of 7 lattice units was chosen after a series
of pilot calculations. Since the up and down quark mass are
degenerate in these calculations, isospin symmetry is ex-
act. This is of course a well-known good approximation.
We project onto the positive-parity ground state, so our
proton two-point correlation function takes the form

C2ptðtÞ ¼
X
�;�

�
1þ �t

2

�
��

hB�ðtsinkÞ �B�ðtsourceÞi; (9)

with t ¼ tsink � tsource. We insert an appropriate operator
Oð ~q; t0Þ at time t0, tsource � t0 � tsink, and possibly finite
momentum transfer ~q, to obtain a form factor or structure
function moment three-point correlation function,

C�;O
3pt ðt; t0; ~qÞ ¼

X
�;�

���hB�ðtsinkÞOð ~q; t0Þ �B�ðtsourceÞi; (10)

with appropriate projection, � ¼ 1þ�t

2 , for a spin-
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unpolarized, and � ¼ 1þ�t

2 i�5�k, k � 4, for a polarized

nucleon. Ratios of these two- and three-point functions
give plateaus for 0< 	 ¼ t0 � tsource < t that are fitted to
a constant to extract the bare lattice matrix elements of
desired observables: e.g. at q2 ¼ 0, we use the ratio

hOibare ¼ C�;O
3pt ðt; 	Þ
C2ptðtÞ : (11)

In this paper we limit ourselves to those low structure
function moments that are calculable at q2 ¼ 0, as are
listed in Table I.

The structure function moments are renormalized non-
perturbatively using the Rome-Southampton regularization
independent (RI-MOM) scheme [28,29]. The chiral sym-
metry of DWF is relied on to suppress mixing with lattice-
artifact operators. The specific procedures for the operators
studied in this paper have been described in previous RBC
publications [25,26]. Here, we summarize them for the
readers’ convenience. First, we take the Fourier transform
of the Green’s function for operator O� constructed from a
point-source propagator at the origin,

GO�
ðp; p0; aÞ ¼ X

x;y

e�ip�xþip0�yhc ðxÞO�ð0Þ �c ðyÞi; (12)

¼ X
x;y

e�ip�xþip0�yhSðx; 0Þ�Sð0; yÞi; (13)

where O� is one of Oq
44, O

�q
34 , O

5q
f34g, or O

5q
½34�. The needed

Fourier-transformed point-source and point-split–source
propagators are

Sðp; aÞ ¼ X
x

e�ip�xSðx; 0Þ; (14)

D�Sðp;aÞ ¼
X
x

1

2
e�ip�x½Sðx;��̂ÞU�ð��̂Þ

� Sðx; �̂ÞUy
�ð0Þ�: (15)

Next, the Green’s function is amputated, and evaluated
for the case of exceptional momenta (p ¼ p0),

�O�
ðp; aÞ ¼ hSðp; aÞ�1iGO�

ðp;p; aÞhSðp; aÞ�1i: (16)

ZRI is obtained by requiring the renormalized Green’s
function, after some suitable projection, be equal to its
tree-level counterpart [28],

ZO�
ð�; aÞ�1Zqð�;aÞ ¼ 1

12
Trð�O�

ðp; aÞP�Þjp2¼�2 : (17)

The projectors for each O� are listed in Table I. Since we
wish to match these renormalized operators to the pertur-

bative MS scheme, the renormalization scale � must be
large enough for perturbation theory to be valid, but not so
large to introduce lattice artifacts. Thus, � should satisfy
�QCD � � � 1=a. In practice, we have found that the

upper bound is not so strict, and can be replaced by the
milder condition that ðpaÞ2 < 3.
Finally, the following steps, similar to those from [26]

allow us to convert the renormalization constants to the

continuum MS scheme at 2 GeV.
(1) Obtain ZRIð�Þ: The ratio of ZO�

ð�; aÞ=Zqð�; aÞ to
ZA=Zqð�; aÞ is computed and yields ZO�

ð�;aÞ=ZA.

Each of the factors in the ratio is first extrapolated to
the chiral limit, mf ¼ �mres, at fixed momentum.

Using ZA ¼ 0:7161 [1], we can determine
ZO�

ð�;aÞ in Eq. (17), the renormalization constant

in the RI scheme, which we denote as ZRI.

(2) Convert to MS scheme: We are interested in con-

tinuum quantities, mostly calculated in the MS
scheme. The conversion factors between RI and

MS schemes for the operators discussed here have

been calculated in Refs. [30,31]. To get ZMSð�Þ, we
use �ð3Þ

s ð�Þ obtained by numerically solving the
renormalization group equation with the four-loop
anomalous dimension [32] and initial condition

TABLE I. Operators used in the structure function moment
calculations, including the notation for the operator, the explicit
operator form, the hypercubic group representation, the correla-
tor ratios, and the projection operators used in the nonperturba-
tive renormalization of the operator in Eq. (17).

Quark momentum fraction hxiq
O� Oq

44 ¼ �q½�4D
$

4 � 1
3

P
k�kD

$
k�q

Hypercubic group rep. 3þ1

Correlator ratio Rhxiq ¼
C
�;Oq

44
3pt

C2pt
¼ mNhxiq

Nonperturbative renormalization

(NPR) projection

P q�1
44 ¼ �4p4 � 1

3

P
i¼1;3�ipi

Quark helicity fraction hxi�q
O� O5q

f34g ¼ i �q�5½�3D
$

4 þ �4D
$

3�q
Hypercubic group rep. 6�3

Correlator ratio Rhxi�q ¼
C
�;O5q

f34g
3pt

C2pt
¼ mNhxi�q

NPR projection P 5q�1
34 ¼ i�5ð�3p4 þ �4p3Þ

Transversity h1i�q
O� O�q

34 ¼ �q�5�34q
Hypercubic group rep. 6þ1

Correlator ratio Rh1i�q ¼
C
�;O�q

f34g
3pt

C2pt
¼ h1i�q

NPR projection P�q�1
34 ¼ �5�34

Twist-3 matrix element d1

O� O5q
½34� ¼ i �q�5½�3D

$
4 � �4D

$
3�q

Hypercubic group rep. 6þ1

Correlator ratio Rd1 ¼
C
�;O5q

½34�
3pt

C2pt
¼ d1

NPR projection P 5q�1
½34� ¼ i�5ð�3p4 � �4p3Þ
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�ð5Þ
s ðmZÞ ¼ 0:1176 [33], following the method in

Appendix A of Ref. [34].
(3) Running to 2 GeV with two-loop anomalous dimen-

sions [31,35]. This will take away the continuum
running factor.

(4) Remove ðapÞ2 lattice artifacts: We fit the remaining
momentum dependence, which we will observe to
be very small, to the form f ¼ AðapÞ2 þ B and

finally get ZMSð2 GeVÞ.

III. ENSEMBLES

We follow the same sampling procedure as in our nu-
cleon form factor calculations reported in Ref. [27].

A. Statistics

The RBC-UKQCD joint (2þ 1)-flavor dynamical DWF
ensembles [1] are used for the calculations. These ensem-
bles are generated with Iwasaki gauge action [36] at the
coupling � ¼ 2:13 which corresponds to the lattice cutoff
of a�1 ¼ 1:73ð3Þ GeV, which is determined from the ��
baryon mass [1].

The dynamical up, down, and strange quarks are de-
scribed by DWF actions with fifth-dimensional extent of
Ls ¼ 16 and the domain-wall height of M5 ¼ 1:8. The
strange quark mass is set at 0.04 in lattice units and turned
out to be about 12% heavier than the physical strange
quark, after taking into account the additive correction of
the residual mass, mres ¼ 0:00315. The degenerate light
quark masses in lattice units, 0.005, 0.01, 0.02 and 0.03,
correspond to pion masses of about 0.33, 0.42, 0.56, and
0.67 GeV and nucleon masses, 1.15, 1.22, 1.38, and
1.55 GeV.

Two lattice sizes are used for our study, 163 � 32 and
243 � 64, corresponding to linear spatial extent of approxi-
mately 1.8 and 2.7 fm, respectively. The smaller volume
ensembles, calculated only with the heavier three light
quark masses, are used for a finite-volume study. On the
163 ensembles, we use 3500 trajectories separated by 5
trajectories at mf ¼ 0:01 and 0.02, and by 10 at 0.03. The

main results are obtained from the larger volume ensem-
bles with the number of the configurations summarized in
Table II.

On the larger volume, at the heavier three quark masses
we make four measurements on each configuration with
the conventional single source method using tsrc ¼ 0, 16,
32, 48, or 8, 19, 40, 51. At the lightest mass the double-
source method [27] is used, and two measurements on each
configuration are carried out using the source pairs of (0,
32) and (16, 48), or (8, 40) and (19, 51). We made an
additional two measurements on roughly half of the con-
figurations with one or the other source pair. This means
that we make four, double-source measurements on almost
half of the configurations, while two double-source mea-
surements are carried out on the remaining configurations.

On the smaller volume, a single source is used, however
the location of this source is shifted for each successive
measurement in the order ðx; y; z; tÞ ¼ ð0; 0; 0; 0Þ, (4,4,4,8),
(8,8,8,16), (12,12,12,24), reducing autocorrelations.
In order to reduce possible autocorrelations among mea-

surements, they are averaged on each configuration and
then blocked into bins of 40 trajectories for the 243 en-
sembles, and 20 trajectories for the 163 ensembles. The
statistical errors are estimated by the jackknife method on
the blocked measurements.
Finally, the nonperturbative renormalization constants

were computed on the four 243 ensembles, on roughly 50
configurations each, separated by 40 trajectories. The
maximum momentum value in units of 2
=Li in each
direction was 6 (spatial) and 17 (temporal), such that
ðpaÞ2 < 3.

B. Correlation functions

The quark propagator is calculated with an antiperiodic
boundary condition in the temporal direction, and periodic
boundary conditions for the spatial directions. We employ
gauge-invariant Gaussian smearing [37,38] at the source
with smearing parameters ðN;!Þ ¼ ð100; 7Þ which were
chosen after a series of pilot calculations. For the calcu-
lation of the three-point functions, we use a time separation
of 12 time slices between the source and sink operators to
reduce effects from excited-state contributions as much as
possible.

TABLE II. Nconf , Nsep, and Nmeas denote number of gauge
configurations, trajectory separation between measurements,
and the number of measurements on each configuration, respec-
tively, on the 243 ensembles. The table also lists the pion and
nucleon mass for each ensemble [27].

mf Nconf Nsep Nmeas m
 [GeV] MN [GeV]

0.005 932a 10 4b 0.3294(13) 1.154(7)

0.01 356 10 4 0.4164(12) 1.216(7)

0.02 98 20 4 0.5550(12) 1.381(12)

0.03 106 20 4 0.6681(15) 1.546(12)

aThe total number of configurations is actually 646. We carry out
extra measurements on a subset of these (286 configurations) to
improve the statistics using different source positions.
bTwo measurements with the double-source method gives effec-
tively four measurements.

TABLE III. Bare quark momentum and helicity fractions and
their naturally renormalized ratio on the ð2:7 fmÞ3 ensemble.

mf hxiu�d hxi�u��d hxiu�d=hxi�u��d

0.005 0.201(9) 0.240(13) 0.835(46)

0.01 0.219(9) 0.261(14) 0.842(42)

0.02 0.234(8) 0.286(11) 0.821(40)

0.03 0.231(7) 0.285(10) 0.807(32)
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C. Systematic errors

There are several important sources of systematic error
that need be considered: finite spatial size of the lattice,
excited-state contamination, and nonzero lattice spacing. A
chiral-perturbation-theory-inspired analysis of the former
for meson observables suggests the dimensionless product,
m
L, of the calculated pion mass m
 and lattice linear
spatial extent L, should be set greater than 4 to ensure that
the finite-volume correction is negligible (below 1%), and
the available lattice calculations seem to support this.
While our present parameters satisfy this condition, we
discovered that even our larger volume of ð2:7 fmÞ3 is
insufficient for calculating such important nucleon proper-
ties as the axial charge [39] and form factors [27]: As we
reduce the light quark mass, eventually to m
 ¼ 330 MeV
and m
L� 4, finite-size effects become severe, exceeding
10%, at least for these quantities that are measured in
elastic processes. Similar finite-size effects may influence
the moments of structure functions we are discussing in
this paper (studies of finite-volume effects in chiral pertur-
bation theory can be found in [40,41]). On the other hand,
since these moments are extracted from experimental ob-
servables measured in very different inelastic processes,
the finite-size effect may enter differently. It is an impor-
tant goal of this work to investigate such finite-size effects
on the moments of structure functions.

In order to reduce contamination from excited states, it
is important to adjust the time separation between the
nucleon source and sink appropriately so the resultant
nucleon observables are free of contamination from ex-
cited states. The separation has to be made longer as the
quark mass is decreased. In our previous study with two
dynamical flavors of DWF quarks [26] with a similar
lattice cutoff of about 1.7 GeV, we saw systematic differ-
ences between observables calculated with the shorter time
separation of 10, or about 1.16 fm, and longer 12, or
1.39 fm: the differences amount to about 20%, or 2 stan-
dard deviations (see Fig. 1.) This would suggest that at the
shorter time separation of about 1.2 fm, the excited-state
contamination has not decayed sufficiently to guarantee
correct calculations for the ground-state observables [23].
While it is desirable to use a longer separation, it cannot be
made too long in practice without losing control of statis-
tical errors. In Fig. 2, we present the nucleon effective mass
at the lightest quark mass,mf ¼ 0:005. The nucleon signal

begins to decay at t ¼ 12, or about 1.4 fm: this is about
longest distance we can choose without losing the signal.
As will be shown in detail in this paper, the bare three-point
function signals for this source-sink separation of t ¼ 12
are acceptable. For all 3-point correlation functions we use
a canonical range of time slices from 4 to 8 to obtain
average values for matrix elements. We have checked
that changing the range to 5–7 makes very little difference,
much less than one statistical standard deviation in almost
every case, and never more than one. We note that recently

the LHP Collaboration has also looked at this issue in some
detail [42] and ends up using a shorter separation of about
1.2 fm.

FIG. 1 (color online). A nucleon observable, isovector quark
momentum fraction, hxiu�d, from RBC 2-flavor dynamical DWF
ensemble with mud ¼ 0:02 [26], with source-sink separation of
10 and 12: a clear systematic difference is seen. The shorter
source-sink separation is not manifestly free of excited-state
contamination.

0 2 4 6 8 10 12 14 16

t

0.4

0.5

0.6

0.7

0.8

0.9

Eff. mass of C
G

(t,0)

FIG. 2 (color online). Effective mass of the nucleon correla-
tion function with Gaussian smearing applied at both source and
sink, for quark mass mf ¼ 0:005.
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For low energy quantities like the pseudoscalar decay
constants, the kaon B parameter, and the � baryon mass,
the effect of nonzero lattice spacing was estimated to be
less than 4% for the configuration ensemble used in this
work [1], and subsequently confirmed on a later ensemble
with smaller lattice spacing [43,44]. We expect that similar
errors hold for the quantities discussed in this paper.
Eventually, a well controlled extrapolation to the contin-
uum limit a ¼ 0 will be required. Before doing such an
extrapolation, our primary goal is to understand the chiral
limit behavior of these matrix elements, which can be done
reliably with DWF at nonzero a.

IV. NUMERICAL RESULTS

A. Quark momentum and helicity fractions

Let us first discuss the ratio, hxiu�d=hxi�u��d, of the
isovector quark momentum fraction to the helicity fraction.
The momentum fraction, hxiu�d, which is the first moment
of the F1;2 unpolarized structure functions, and the helicity

fraction, hxi�u��d, which is the first moment of the g1
polarized structure function, share a common renormaliza-
tion because they are related by a chiral rotation and the
DWF action preserves chiral symmetry to a high degree.
Thus, this ratio calculated on the lattice is naturally renor-
malized, much like the form factor ratio [27], gA=gV , and
is directly comparable with the value obtained from
experiment.

The results of our calculation are shown in Fig. 3. They
do not show any discernible dependence on the up/down

quark mass, outside of the statistical error bars, and are in
good agreement with experiment. This is in contrast to the
renormalized ratio of gA=gV of elastic form factors which
at the lightest point deviates significantly from heavier
mass results and the experiment as a result of a large
finite-size effect [27]. This suggests the moments of in-
elastic structure functions such as the momentum fraction,
hxiu�d, and helicity fraction, hxi�u��d, may not suffer so
severely from the finite-size effect that plagues elastic form
factor calculations. Indeed the results obtained from the
smaller ð1:8 fmÞ3 volume, also shown in Fig. 3, do not
deviate significantly from the constant behavior of the
larger volume results, albeit with larger statistical errors.
Next, we discuss the absolute values of the isovector

quark momentum fraction, hxiu�d. This is the first moment
of the unpolarized structure functions, F1 and F2. In Fig. 4,
we show the bare lattice matrix elements as ratios of three-
and two-point functions for the two lightest quark mass
values of mf ¼ 0:005 (circles) and 0.01 (squares). We

extract bare values of the desired matrix element by aver-
aging over time slices 4 to 8 (values are summarized in
Tables III and IV).
These bare values need be renormalized in order to be

compared with experiment. In Fig. 5 we present the non-
perturbatively determined renormalization for the operator
Oq

44. The filled circles represent the scale-dependent renor-
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FIG. 3 (color online). Ratio of the bare, isovector, momentum,
and helicity fractions, hxiu�d=hxi�u��d, which is naturally re-
normalized for DWF. Both volumes are shown, ð2:7 fmÞ3
(circles) and ð1:8 fmÞ3 (squares). The square symbols have
been moved slightly in the plus x direction. They are in good
agreement with experiment which is denoted by the star. No
discernible dependence on volume nor pion mass can be de-
tected.
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FIG. 4 (color online). Signals for the ratio of three- and two-
point functions for the bare quark momentum fraction, hxiu�d.
Quark mass 0.005 (circles) and 0.01 (squares).

TABLE IV. Bare quark momentum and helicity fractions and
their naturally renormalized ratio on the ð1:8 fmÞ3 ensemble.

mf hxiu�d hxi�u��d hxiu�d=hxi�u��d

0.01 0.221(18) 0.263(29) 0.808(89)

0.02 0.256(14) 0.291(22) 0.875(56)

0.03 0.236(7) 0.300(11) 0.784(27)
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malization constant in the RI-MOM scheme at scale �2 ¼
p2. The filled squares correspond to the renormalization

constant given in the MS scheme at � ¼ 2 GeV, where
there remains only residual scale dependence proportional
to ðapÞ2 and a2

P
�p

4
�=p

2 lattice artifacts.

Since the RI scheme Z factor for the derivative operator
depends not only on p2, but also on p� with � being the
direction of the derivative entering the operator, it has a
multiplicity even in the continuum at fixed p2. When

converting Z to the MS scheme, which depends only on
�2 ¼ p2, these multiple values at each p2 are linearly
combined with the appropriate matching factors to produce
a single value. Because of this averaging, the statistical
fluctuations as well as the scatter induced by the Oð4Þ
noninvariant artifacts in the MS data are expected to be
smaller than that for RI-MOM. This expectation is born out
in Fig. 5. In addition, rotational symmetry breaking from
nonzero a leads to Oð4Þ noninvariant lattice artifacts pro-
portional to a2

P
�p

4
�=p

2 [45–48]. This effect is averaged

over though the linear fit used to remove the residual
OððapÞ2Þ artifact, as described in Sec. II. After removing
the residual ðapÞ2 dependence, which is quite small, we

obtain a renormalization factor of ZMS
hxiqð2 GeVÞ ¼ 1:15ð4Þ.

To estimate the systematic error on the Z factor stem-
ming from lattice-artifact Oð4Þ symmetry breaking, we
repeat the above procedure, but use a restricted range of
smaller momenta, which are less susceptible to rotational
symmetry breaking. Using the difference in central values

from the two fits, ZMS
hxiqð2 GeVÞ increases by about 2%.

Adding this error in quadrature to the statistical one, we

obtain the final value, ZMS
hxiqð2 GeVÞ ¼ 1:15ð5Þ.

Using this renormalization constant, the quark-mass
dependence of the momentum fraction is shown in Fig. 6
and given in Table V. The results from the smaller
ð1:8 fmÞ3 volume for the heavier three quark mass values
are in agreement with respective mass-value results from
the larger volume. These heavier points stay roughly the
constant which is about 70% higher at �0:26 than the
experiment, about 0.15. This behavior is not so different
from old RBC quenched results [25] and other recent ones
[7] with similar up/down quark mass.
On the other hand, the lightest point on the larger

ð2:7 fmÞ3 volume, shows a sign of deviation away from
this constant behavior. In contrast to the form factor devia-
tions that move away from the experiment in Ref. [27], this
one trends toward the experimental value. Since a lighter
quark can more easily share its momentum with other
degrees of freedom, this trending toward the experiment
may well be a real physical effect: It is not necessarily a
result of the finite spatial size of the lattice.
Indeed, it is noteworthy that the m
L value of 3.8 for

mf ¼ 0:01 at L ¼ 1:8 fm is smaller than that of 4.5 for

mf ¼ 0:005 at L ¼ 2:7 fm. In other words, if there would

be such a finite-size effect for this quark momentum frac-
tion that scales with m
L as seen in the form factors, the
result from mf ¼ 0:01 at L ¼ 1:8 fm should move away

from that of mf ¼ 0:005 at L ¼ 2:7 fm. We note that in

[40] it was predicted that finite-volume effects in hxiu�d

would only become noticeable for very light quark masses.
The isovector quark helicity fraction, hxi�u��d, appears

as a leading twist moment of the polarized structure func-
tions g1 and g2. Figure 7 presents typical bare signals of
this quantity on the larger ð2:7 fmÞ3 volume, for the light-
quark mass points mf ¼ 0:005 and 0.01. Average values
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FIG. 5 (color online). Nonperturbative renormalization factor
for the quark momentum fraction, hxiu�d. Circles denote the RI-
MOM values, and squares denote the MS ones. The line denotes
a linear fit used to remove the leading OððapÞ2Þ lattice artifacts.
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slightly in the plus x direction for clarity.
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are extracted as for the momentum fraction, described
above. Results are summarized in Table III for the larger
volume and Table IV for the smaller volume.

The nonperturbative renormalization of hxi�u��d (for

the operator O5q
f34g), is presented in Fig. 8. We obtain a

renormalization factor of ZMS
hxi�qð2 GeVÞ ¼ 1:15ð3Þ through

the same procedure described previously for the momen-
tum fraction. This value agrees very well with the corre-
sponding value for the momentum fraction, as guaranteed
by the chiral symmetry of DWF, justifying our use of bare
quantities in the ratio, hxiu�d=hxi�u��d, earlier in this

section. Notice the much less pronounced scatter from
Oð4Þ noninvariant lattice artifacts in this case, and again,

the remarkable flatness of the MS results. The systematic
error fromOð4Þ symmetry breaking is negligible compared
to the statistical error in this case.
With this renormalization, hxi�u��d can be compared

with the experiment (see Fig. 9 and Table V). No finite-
volume effect is apparent in the data, similar to the quark
momentum fraction. The three heavier-mass results from
the smaller volume again agree with the respective larger-
mass results, suggesting the huge finite-size effect, seen in
the elastic form factors, that appears to scale with m
L, is
not present in this moment of this deep-inelastic structure
function, at least at the quark masses considered here.
Moreover, the observable exhibits very similar quark-

mass dependence to the momentum fraction, as can be
expected from the near constant behavior of their ratio:
the three heavier points stay roughly the constant and about
70% higher than the experimental value, and the lightest
point shows a sign of deviation away from this constant
behavior. This trend toward the experimental value may be
a real physical effect.
Here, we note that while our results of hxiu�d are in

agreement with nf ¼ 2 Wilson results [49], they differ

significantly from the LHP mixed-action calculations
[50]. Their values are significantly lower, by about 20%.
The main source of this discrepancy is likely due to the use
of perturbative renormalization by the LHP Collaboration.
In the LHP mixed-action calculations [50], the renormal-

ization constant is evaluated by ZO ¼ ðZO=ZAÞpert �
Znonpert
A for the operator O. In the same manner, we use

the value of ðZO=ZAÞpert for the operator O5q
f34g from

Ref. [51] and Znon-pert
A ¼ 0:7161ð1Þ from Ref. [1], and
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FIG. 7 (color online). Signals for the ratio of three- and two-
point functions for the bare quark helicity fraction, hxi�u��d.
Quark mass 0.005 (circles) and 0.01 (squares).
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evolve it to a renormalization scale of 2 GeVusing the two-
loop anomalous dimension [26,31], obtaining the renor-

malization factor Zhxi�qð2 GeVÞ ¼ 0:873ð34Þ in the MS

scheme.
If we use this renormalization factor instead of the non-

perturbative one described earlier, as shown in Fig. 10, our
results will be consistent with the LHPC results. The
difference between the nonperturbative and perturbative
renormalization factors suggests a systematic error of
about 25% should be assigned to the latter. Furthermore,
those lightest points in both quark momentum and helicity
fractions are quite close to the experiments, while the
nonperturbatively renormalized ones are significantly

away from the experiments. This indicates that the pertur-
bative calculation of the renormalization constants signifi-
cantly underestimates the renormalized value of these
particular quantities, and then exhibits an accidental con-
sistency with the experiments.
As mentioned before, it is observed that there is a

noticeable nonlinearity in the data of both hxiu�d and
hxi�u��d. These trends toward the experimental values
are easily seen in Fig. 11, where the (2þ 1)-flavor and
previous RBC quenched [25] and 2-flavor [26] results are
plotted together with the leading nonlinear behavior pre-
dicted in heavy baryon chiral perturbation theory
(HBChPT) [52–54]:
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FIG. 10 (color online). Comparison with results obtained from the mixed-action calculation [50] of the LHP Collaboration (filled
diamonds). The left (right) panel is for the renormalized value of quark momentum (helicity) fraction. Our fully nonperturbatively
renormalized results are represented by filled circles, while open diamonds denote our estimates of the same quantity with the
renormalization constant determined perturbatively.
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hxiu�d ¼ C
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1� 3g2A þ 1

ð4
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Þ2
m2


 ln

�
m2




�2

��
þ eð�2Þ m2
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Þ2
;

(18)

hxi�u��d ¼ ~C

�
1� 2g2A þ 1

ð4
F
Þ2
m2


 ln

�
m2




�2

��

þ ~eð�2Þ m2



ð4
F
Þ2
: (19)

Although our lightest point may be beyond the applicabil-
ity of HBChPT,1 the downward trends are expected to
develop at least in the vicinity of the physical pion mass
point. As a simple prediction, the curve is shown using
experimental values for the nucleon axial charge and pion
decay constant, gA ¼ 1:269 and F
 ¼ 92:8 MeV, a chiral
scale � ¼ mN ¼ 940 MeV, and by setting the unknown
low energy constants to zero, eð�Þ ¼ ~eð�Þ ¼ 0. The val-
ues in the chiral limit are obtained by requiring the curves
to agree with experiment at the physical point. It is inter-
esting to note that the quenched results show no hint of this
behavior, while the 2-flavor ones are inconclusive. We
remind the reader that for the 2-flavor data, a smaller
time separation between sources, tsep � 1:16 fm, was

used. When the separation was increased for the lightest
mass, the momentum and helicity fractions drop, but with a
significant increase in the statistical error.

Physical point values hxiu�d ¼ 0:218ð19Þ and
hxi�u��d ¼ 0:256ð23Þ, determined by simple linear chiral
extrapolation of the three lightest points, overshoot the

experimental ones by more than 2–3 standard deviations,
as shown in Fig. 12. On the other hand, the HBChPT fit
forms in Eqs. (18) and (19) with the experimental values of
gA and F
 accommodate all four data points and produce
extrapolations in good agreement with the respective ex-
perimental values2 (see Fig. 12). Fits to only the lightest
three points, or with gA ¼ 1:0, do not significantly alter the
results. We caution that at this stage these fits, and asso-
ciated values of the low energy constants, represent little
more than ‘‘phenomenological’’ fits to our data as the pion
masses used are relatively heavy and most, if not all, are
likely beyond the applicable range of HBChPT. Although
these extrapolations indicate a favorable trend, definitive
results require simulations with several lighter quark
masses than our lightest one. All fits are summarized in
Table VI.

B. Transversity (Tensor charge)

Results for the bare isovector tensor charge, h1i�u��d,
are presented in Fig. 13, and in Fig. 14 we present its
nonperturbative renormalization constant. We obtain a re-

normalization factor of ZMSð2 GeVÞ ¼ 0:783ð6Þ. The error
is statistical and systematic from rotational symmetry
breaking, and each contributes equally. However, note
that the total error is still less than 1%.
Combining them, we obtain the renormalized tensor

charge as presented in Fig. 15 and summarized in
Table V. These provide a rough physical prediction which
is still worthwhile since the experiments are yet to report a
value. If we fit the heavy three points with a constant, we
obtain a value of about 1.10(7). Alternatively, if we linearly
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FIG. 12 (color online). Linear and leading HBChPT fits to the nonperturbatively renormalized quark momentum fraction, hxiu�d,
and helicity fraction, hxi�u��d. The three lightest data points are used in the former, and all four in the latter. The diamond and triangle
denote extrapolated values at the physical point. The triangles have been shifted slightly to the left for clarity.

1It can be observed in some particular cases like the nucleon
axial charge gA and the nucleon root-mean-squared charge
radius [26,27].

2The experimental values were determined using a tool from
CTEQ [55] and data from [14,17,19].
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extrapolate the two lightest points we would obtain about
0.7.

C. Twist-3 moment

Figure 16 presents the bare lattice signals for the twist-3
moment, d1, of the polarized structure function g2. They
are summarized in Table VII.
We have not yet computed the renormalization constant

for this quantity. The quark-mass dependence of the bare
values are presented in Fig. 17. Our interest here is in
whether the perturbatively obtained Wandzura-Wilczek
relation [56] holds. From the smallness of the values
obtained, we conclude that it does. We note that our results
indicate that the lightest mass points deviate slightly from
the linear trends set by the heavier points.

TABLE VI. Summary of extrapolations to the physical point
of the renormalized first moment of the quark momentum and
helicity fractions. Physical values are given at a scale of � ¼
2 GeV. The chiral scale in the HBChPT fits is � ¼ 0:94 GeV.
The slope in the linear fit is in units of 1=ð4
F
Þ2. ‘‘LEC’’
stands for low energy constant; i.e., C in Eq. (18) is LEC 1, and
eð�Þ is LEC 2.

Moment �2=dof Phys. val. Exp. val.

HBChPT fit

LEC 1 LEC 2

hxiMS
u�d 0.1145(77) 0.001(77) 0.14 0.1493(94) 0.154(3)

hxiMS
�u��d 0.157(11) 0.073(89) 0.03 0.192(12) 0.196(4)

Linear fit

Intercept Slope

hxiMS
u�d 0.215(21) 0.25(13) 0.25 0.218(19)

hxiMS
�u��d 0.251(25) 0.34(16) 0.11 0.256(23)
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FIG. 13 (color online). Signals for the ratio of three- and two-
point functions for the bare quark transversity, h1i�u��d. Quark
mass 0.005 (circles) and 0.01 (squares).
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TABLE V. Isovector combination (u� d) of the quark mo-
mentum fraction hxiq, helicity fraction hxi�q, and transversity

h1i�q, nonperturbatively renormalized in the MS scheme at

2 GeV.

mf hxiMS
u�d (2 GeV) hxiMS

�u��d (2 GeV) h1iMS
�u��d (2 GeV)

0.005 0.231(14) 0.277(17) 0.990(35)

0.01 0.252(14) 0.302(19) 1.126(32)

0.02 0.269(14) 0.330(16) 1.084(30)

0.03 0.266(13) 0.329(15) 1.132(25)
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In Fig. 18 values on different volumes are compared. d1
appears to be insensitive to finite-volume effects, at least in
this range of light quark masses.

V. CONCLUSIONS

We have presented calculations of some of the lowest
moments of nucleon structure functions in (2þ 1)-flavor
QCD, using domain-wall fermions and the Iwasaki gauge
action. The calculations were carried out on two volumes
at a single lattice spacing (a�1 ¼ 1:73 GeV) with quark
masses that yield pion masses in the range 0.33 to
0.67 GeV. The results are encouraging.
The ratio of the bare quark momentum and helicity

fractions, which is automatically renormalized, is found
to be independent of the light quark mass through the range
of our calculations, 1

5mstrange � mud � 3
4mstrange, and

agrees with the value obtained from experiment within
statistical error. This is in contrast to a similarly automati-
cally renormalized ratio—gA=gV , of the isovector, axial-
vector, and vector charges—that is severely distorted by
the finite size of the lattice [27,39] at the lightest quark
mass.
This suggests the corresponding downward trend toward

the experimental values, as the quark mass decreases, of
both the momentum, hxiu�d, and helicity, hxi�u��d, frac-
tions is a real physical effect. Comparison of these results
on two different volumes supports this observation. In fact,
all of the moments studied here agree well, within statis-
tical errors, on two different volumes, ð2:7 fmÞ3 and
ð1:8 fmÞ3.
In addition to the momentum and helicity fractions, the

nonperturbatively renormalized tensor charge, h1i�u��d,
has been computed. The chiral extrapolation, in particular,
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TABLE VII. Bare twist-3 first moment of the polarized struc-
ture function, d1, on the ð2:7 fmÞ3 ensemble.

mf du�d
1 du1 dd1

0.005 0.0052(3) 0.0038(3) �0:0013ð2Þ
0.01 0.0137(4) 0.0108(4) �0:0029ð3Þ
0.02 0.0273(8) 0.0219(8) �0:0055ð4Þ
0.03 0.0422(9) 0.0338(9) �0:0085ð5Þ
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needs to be understood before an accurate prediction can
be made. Since upcoming experiments have yet to report a
value, we give a rough estimate, from two different chiral
extrapolations, that its value lies in the range 0.7–1.1.

The twist-3 moment of the g2 structure function, d1, is
also obtained. Though yet to be renormalized, its smallness
suggests the Wandzura-Wilczek relation holds.

The possibility that the long sought curvature of the
moments in the chiral regime is becoming visible in our
results has encouraged us to start calculations at even
smaller quark masses (m
 � 250 and 180 MeV), on an
even larger lattice (L � 4:5 fm). This ensemble, which is
being generated by the RBC and UKQCD Collaborations
[57], was conceived, in part, to attain these goals for
nucleon matrix elements.
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