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Recent theoretical investigations have unveiled a rich structure in the quantum chromodynamics phase

diagram, which consists of quark-gluon plasma and the hadronic phases but also supports the existence of

a crossover transition ending at a critical end point (CEP). We find a too large variation in the

determination of the coordinates of the CEP in the temperature (T) baryon chemical potential (�B)

plane; and, therefore, its identification in the current heavy-ion experiments becomes debatable. Here we

use an equation of state for a deconfined quark-gluon plasma using a thermodynamically-consistent

quasiparticle model involving noninteracting quarks and gluons having thermal masses. We further use a

thermodynamically-consistent excluded-volume model for the hadron gas, which was recently proposed

by us. Using these equations of state, a first-order deconfining phase transition is constructed using

Gibbs’s criteria. This leads to an interesting finding that the phase transition line ends at a critical end point

(CEP) beyond which a crossover region exists. Using our thermal hadron gas model, we obtain a chemical

freeze out curve, and we find that the CEP lies in close proximity to this curve as proposed by some

authors. The coordinates of CEP are found to lie within the reach of Relativistic heavy-ion collider

experiment.
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I. INTRODUCTION

QCD, the non-Abelian gauge theory of strong interac-
tion, predicts a phase transition between a hot and dense
hadron gas (HG) and the quark gluon dominated phase,
which is called as quark-gluon plasma (QGP) [1,2].
However, even after an intensive experimental as well as
theoretical research spreading over the last two decades,
our knowledge regarding the properties and signals of QGP
is still very limited [3,4]. Even the phase boundary between
the two phases remains in the literature as a conjectured
one because the nonperturbative aspects of QCD are still
dominant near the region close to the phase transition. In
order to test the appearance of a deconfined QGP, which
exists in a transient phase, we need a proper understanding
of its subsequent hadronization process about which our
knowledge is really very poor. The numerical method of
lattice QCD can properly describe both the phases i.e.,
QGP and HG. However, lattice QCD studies have yielded
results for finite and large values of temperature T and
�B ¼ 0, and now we have surmounted difficulties in get-
ting results for small, non vanishing values of �B [5,6].
Thus, we feel an urgent need to formulate a phenomeno-
logical model, which can successfully reproduce the lattice
QCD data, and, hence, we can further use it to obtain the
properties of QGP and to determine the QCD phase dia-
gram in the entire ðT;�BÞ plane.

In this paper, we present a thermodynamically self-
consistent quasiparticle model of QCD, which describes
a gas of quasiparticles with effective masses generated
through the interactions among its basic constituents.

This model has been found to work well above and around
the critical temperature Tc. In order to describe the low
energy HG phase, we work with our own model, which has
been found in the past to give a proper description of the
hot and dense HG [7]. The investigation of the structure of
the QCD phase diagram has emerged as one of the most
important and challenging topics in the nuclear and particle
physics today. The precise determination of the phase
boundary between QGP and HG at high temperature T
and small �B has been a subject of intense research in
recent years from experimental as well as theoretical points
of view [8,9]. Lattice simulations first revealed that the
transition between HG and QGP phase at�B ¼ 0 and large
T is a crossover transition and there were further indica-
tions that the crossover transition turned into a first-order
chiral phase transition for nonvanishing and finite values of
�B [10]. Several attempts have since been made to locate
precisely the critical end point (CEP) i.e., an ending point
of the first-order chiral transition as �B decreases [11].
Although the existence of CEP was predicted a long time
ago by a few lattice calculations, the absence of the CEP in
the phase diagram was also noticed in some recent lattice
calculations [12,13]. Thus, the location and the existence
of the CEP in the phase diagram is still a matter of debate.
Therefore, it is worthwhile to investigate the precise loca-
tion of the CEP and to determine its properties in detail
with the help of various phenomenological models [9].
However, confusion prevails since the coordinates of the
CEP in the ðT;�BÞ plane vary wildly in various models.
Moreover, we are still not certain whether the conjectured
phase boundary represents the chiral and/or deconfining
phase transition line. Various calculations based on lattice
QCD and/or effective models work with the basic assump-*cpsingh_bhu@yahoo.co.in

PHYSICAL REVIEW D 82, 014023 (2010)

1550-7998=2010=82(1)=014023(8) 014023-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.014023


tion that the finite �B chiral phase transition is first order,
and, hence, the ending point of the line should automati-
cally give the CEP, which is a second-order phase transi-
tion point. However, we know that the chiral symmetry is
broken in the color-flavor locked (CFL) region which has
extremely large values of �B. Theoretically, this topic has
largely been investigated using several phenomenological
models which can give results in the entire ðT;�BÞ plane,
whereas ab initio calculations are still limited to very small
values in �B. However, all these efforts result in a very
wide variation in the coordinates of the CEP [11]. In a
recent paper, we proposed a new EOS for HG fireball
where the geometrical size of the baryons in HG is explic-
itly incorporated as the excluded-volume correction in a
thermodynamically-consistent manner [7]. Furthermore,
we used a bag model EOS for the QGP phase and a first-
order phase transition is constructed by equating pressures
of both the phases using Gibbs’s criteria. We thus obtain an
interesting result that such a simple picture not only re-
produces the entire conjectured phase boundary but the
first-order phase transition line ends at a CEP beyond
which a crossover region persists [7]. The coordinates of
CEP as obtained in our calculation are found to be com-
patible with the prediction of a recent lattice gauge calcu-
lation of Gavai and Gupta [14]. Most importantly, we find
here a deconfining phase transition in contrast to other
calculations where the phase boundary depicts a chiral
symmetry restoring phase transition. However, bag model
is often a crude description to a gas of weakly interacting
QGP, and the nonperturbative effect in this model arises
from the pressure of the vacuum through the use of a
phenomenological bag constant. In the present work, we
consider QGP as a system of quasiparticles, which are
quarks and gluons possessing temperature-dependent
masses arising due to vacuum interactions [15–18].
Recently, these models are made thermodynamically
self-consistent by incorporating suitable corrections in
two different ways and, hence, are referred to as QPM I
and QPM II in the following. Moreover, these descriptions
were initially given for the gluon plasma only. We extend
both the models for a QGP with finite baryon chemical
potential �B, and we further assume their validity starting
from a threshold temperature T0 ¼ 100 MeV below the
critical temperature Tc, and we adjust the parameters of the
models accordingly. We further compare their predictions
for the energy density � and the pressure p of the QGP with
those obtained previously from the lattice simulation ap-
proach. Furthermore, we obtain a new EOS for the hot and
dense HG as formulated in the previous paper and con-
struct the phase boundary by equating the QGP pressure
with that of HG pressure. We thus determine the critical
parameters in the Gibbs’s construction of a first-order
deconfining phase transition. We draw the phase boundary
line, and the end of the line determines the coordinates of
the CEP. We also find the existence of a crossover tran-

sition lying beyond CEP. Finally, we compare our findings
with those obtained in various other models.
The plan of the paper runs as follows. There are two

types of quasiparticle models which are thermodynami-
cally self-consistent. In Sec. II, we describe quasiparticles
(QP), their corresponding equation of state, and discuss the
criterion of thermodynamical consistency. In Sec. III, we
describe the first thermodynamically-consistent quasipar-
ticle model [15] of Gorenstein and Yang, the dependence
of the quark and gluon masses on the temperature, and the
extension of the model to describe the physics at finite �B.
In Sec. IV, we discuss the second thermodynamically-
consistent quasiparticle model [16] of Bannur and its ex-
tension for the finite�B. In Sec. V, we give our formulation
for an excluded-volume model for the hot and dense
hadron gas, and we discuss about its thermodynamical
consistency. Section VI summarizes our results and
discussions.

II. QUASIPARTICLE MODELS (QPM)

Quasiparticles are the thermal excitations of the inter-
acting quarks and gluons. The quasiparticle model in QCD
is a phenomenological model which is widely used to
describe the nonideal behavior of QGP near the phase
transition points. It was first proposed by Goloviznin and
Satz [17] and then by Peshier et al. [18] to explain the EOS
of QGP obtained from lattice gauge simulation of QCD at
finite temperature. In quasiparticle models, the system of
interacting massless quarks and gluons can be effectively
described as an ideal gas of ‘‘massive’’ noninteracting
quasiparticles. The mass of these quasiparticles is tempera-
ture dependent and arises because of the interactions of
quarks and gluons with the surrounding matter in the
medium. These quasiparticles retain the quantum numbers
of the real particles i.e., the quarks and gluons. It was
assumed that energy ! and momentum k of the quasipar-
ticles obey a simple dispersion relation :

!2ðk; TÞ ¼ k2 þm2ðTÞ; (1)

where mðTÞ is the temperature-dependent mass of the
quasiparticle. The pressure and energy density of the ideal
gas of quasiparticles are dependent on ! and mðTÞ and are
given by [15]

pidðT;mÞ ¼ � Td

2�2

Z 1

0
k2dk ln

�
1� exp

�
�ð!��qÞ

T

��
;

(2)

�idðT;mÞ ¼ d

2�2

Z 1

0
k2dk

!

½expð!��q

T Þ � 1� ; (3)

where d represents the degeneracy factor for quarks and/or
gluons. However, Gorenstein and Yang pointed out that
this model involves a thermodynamical inconsistency [15].
It did not satisfy the fundamental thermodynamic relation:
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�ðTÞ ¼ T dpðTÞ
dT � pðTÞ. So, they reformulated the statistical

mechanics for a system whose constituents follow a
medium-dependent dispersion relation, and the above in-
consistency problem was handled by them by introducing a
temperature-dependent vacuum energy term, which effec-
tively cancelled the inconsistent term. Alternatively,
Bannur also pointed out the reason for the above thermo-
dynamical inconsistency [16]. If the particle mass in the
system is not constant and it depends upon the medium,
then the relation used between the pressure and grand
canonical partition function does not hold good. So one
can start from the definitions of the energy density and the
average particle number density in the grand canonical
ensemble formalism and in this way a different
thermodynamically-consistent quasiparticle model for
QGP can be obtained.

III. FIRST QUASIPARTICLE MODEL (QPM I)

Gorenstein and Yang initially formulated a
thermodynamically-consistent quasiparticle model for a
gluon plasma at �B ¼ 0, and later they extended it for
the QGP having a finite value of �B. In this model, the
effective mass of the gluon changes with T and �B as
follows [15]:

m2
gðTÞ ¼ Nc

6
g2ðTÞT2

�
1þ N0

f

6

�
; (4)

where Nc represents the number of colors. We have also
taken Nc ¼ 3 in our calculation. And

N0
f ¼ Nf þ 3

�2

X
f

�2
f

T2
: (5)

Here, Nf is the number of flavors of quarks and �f is the

quark chemical potential belonging to the flavor f.
Similarly, the effective mass of a quark of flavor f changes
with T and �B as [19]

m2
qfðTÞ ¼

g2ðTÞT2

6

�
1þ �2

f

�2T2

�
: (6)

Here, g2ðTÞ is the QCD running coupling constant. We
have taken the following form for g2ðTÞ [20,21]:
�SðTÞ ¼ g2ðTÞ

4�

¼ 6�

ð33� 2NfÞ lnð T
�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

�2
q

T2

q
Þ

�
�
1� 3ð153� 19NfÞ

ð33� 2NfÞ2
lnð2 ln T

�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

�2
q

T2

q
Þ

lnð T
�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

�2
q

T2

q
Þ

�
;

(7)

where �T is the QCD scale-fixing parameter, which char-
acterizes the strength of the interaction. We have taken
�T ¼ 115 MeV in our calculation. Here, parameter a is
equal to 1

�2 [22].

After reformulating the statistical mechanics and incor-
porating the additional medium contribution, the pressure
p and energy density � for a system of quasiparticles can be
written in a thermodynamically-consistent manner as fol-
lows [15,18]:

pðT;mÞ ¼ pid � BðT;�BÞ; (8)

�ðT;mÞ ¼ �id þ BðT;�BÞ: (9)

The first term on the right hand side of both the equations is
the standard ideal gas expression given by Eq. (1) and (2),
respectively. The second term represents the medium con-
tribution:

BðT;�BÞ ¼ lim
V!1

E0

V
; (10)

where E0 is the vacuum energy in the absence of quasi-
particle excitations or zero point energy. However, this
energy term is not a constant but depends upon �B and
T. The BðT;�BÞ can be derived as follows [23]:

BðT;�BÞ ¼ B0 � d

4�2

Z T

T0

dT
dm2ðTÞ
dT

Z 1

0

k2dk

!

� 1

½expð!��q

T Þ� � 1
; (11)

where B0 is the integration constant i.e., the value of
BðT;�BÞ at T ¼ T0. The expression for BðT;�BÞ in
Eq. (11) and the forms of Eqs. (8)–(10) give a compelling
evidence that BðT;�BÞ may be treated as T and
�B-dependent bag constant term [24]. In our calculation

we take B1=4
0 ¼ 185 MeV and T0 ¼ 100 MeV. We have

also taken �B ¼ 3�q.

IV. SECOND QUASIPARTICLE MODEL (QPM II)

The second thermodynamically-consistent quasiparticle
model is given by Bannur [16]. Bannur first figured out
why there exists a thermodynamical inconsistency in the
quasiparticle description of Peshier et al. The relation
between pressure and grand canonical partition function
cannot hold good if the particles of the system have a
temperature-dependent mass. So he used the definition of
average energy and average number of particles and de-
rived all the thermodynamical quantities from them in a
consistent manner. In this model, the effective mass of the
gluon is the same as given in Eq. (4). However, the effec-
tive mass of the quarks involves the following relation:

m2
q ¼ m2

q0 þ
ffiffiffi
2

p
mq0mth þm2

th; (12)

wheremq0 is the rest mass of the quarks. In this calculation,

we have usedmq0 ¼ 8 MeV for two light quarks ðu; dÞ and
mq0 ¼ 80 MeV for strange quark. In the above Eq. (12)

mth represents the thermal mass of the quarks and it can be
written as [23]
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m2
thðT;�Þ ¼ N2

c � 1

8Nc

�
T2 þ�2

q

�2

�
g2ðTÞ: (13)

Taking these values for the effective masses, energy den-
sity can be derived from the grand canonical partition
function in a thermodynamically-consistent manner and
is given as

� ¼ T4

�2

X1
l¼1

1

l4

�
dg
2
�gðxglÞ þ ð�1Þl�1dq coshð�q=TÞ�qðxqlÞ

þ ð�1Þl�1 ds
2
�sðxslÞ

�
; (14)

with �iðxilÞ ¼ ðxilÞ3K1ðxilÞ þ 3ðxilÞ2K2ðxilÞ, where K1

and K2 are the modified Bessel functions, with xi ¼ mi

T

and index i runs for gluons, up-down quarks q, and strange
quark s. Here, di are the degeneracies associated with the
internal degrees of freedom. Now, by using the thermody-

namic relation � ¼ T @p
@T � p, pressure of system at�q ¼ 0

can be obtained as

pðT;�q ¼ 0Þ
T

¼ p0

T0

þ
Z T

T0

dT
�ðT;�q ¼ 0Þ

T2
; (15)

where p0 is the pressure at a reference temperature T0. We
have used p0 ¼ 0 at T0 ¼ 100 MeV in our calculation.
Using the relation between the number density nq and the

grand canonical partition function, we can get the pressure
for a system at finite �B:

pðT;�qÞ ¼ pðT; 0Þ þ
Z �q

0
nqd�q ; (16)

where the expression for nq can be given as follows:

nq ¼
dqT

3

�2

X1
l¼1

ð�1Þl�1 1

l3
sinhð�q=TÞIiðxilÞ (17)

with IiðxilÞ ¼ ðxilÞ2K2ðxilÞ. Thus, all the thermodynamical
quantities can be obtained in a consistent way by using this
model.

V. EOS FOR A HADRON GAS

There is no deconfinement transition if the hadron gas
consists of pointlike particles, and consequently HG pres-
sure is always larger than QGP pressure. Therefore, inclu-
sion of a repulsive interaction between two baryons having
a hard-core size reduces the HG pressure, and, hence, it
stabilizes the formation of QGP at high baryon densities.
Recently we have proposed a thermodynamically-con-
sistent excluded-volume model for hot and dense HG. In
this model, the grand canonical partition function for the
HG, with full quantum statistics and after incorporating
excluded-volume correction, can be written as [25]

lnZex
i ¼ gi

6�2T

Z V�P
j

NjV
0
j

V0
i

dV
Z 1

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q

� 1

½expðEi��i

T Þ þ 1� ; (18)

where gi is the degeneracy factor of ith species of baryons,

Ei is the energy of the particle (Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q
), V0

i is the

eigenvolume of one baryon of ith species and
P

jNjV
0
j is

the total occupied volume, and Nj represents total number

of baryons of jth species.
Now we can write Eq. (17) as

lnZex
i ¼ V

�
1�X

j

nexj V
0
j

�
Ii�i; (19)

where Ii represents the integral

Ii ¼ gi
6�2T

Z 1

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q 1

½expðEi

T Þ þ �i�
; (20)

and �i ¼ expð�i

T Þ is the fugacity of the particle; nexj is the

number density of jth type of baryons after excluded-
volume correction and can be obtained from Eq. (18) as

nexi ¼ �i

V

�
@ lnZex

i

@�i

�
T;V

: (21)

This leads to a transcendental equation as

nexi ¼ ð1� RÞIi�i � Ii�
2
i

@R

@�i

þ �2
i ð1� RÞI0i ; (22)

where I0i is the partial derivative of Ii with respect to �i and
R ¼ P

in
ex
i V0

i is the fractional occupied volume. We can
write R in an operator equation as follows [7]:

R ¼ R1 þ �̂R ; (23)

where R1 ¼ R0

1þR0 with R
0 ¼ P

n0i V
0
i þ

P
I0iV0

i �
2
i ; n

0
i is the

density of pointlike baryons of ith species, and the operator

�̂ has the form

�̂ ¼ � 1

1þ R0

X
i

n0i V
0
i �i

@

@�i

: (24)

Using Neumann iteration method and retaining the series

up to �̂2 term, we get

R ¼ R1 þ �̂R1 þ �̂2R1 ; (25)

and Eq. (24) can be solved numerically. Finally, we get for
the total pressure [25] of the hadron gas,

pex
HG ¼ Tð1� RÞX

i

Ii�i þ
X
i

pmeson
i : (26)

In (26), the first term represents the pressure due to all
types of baryons where excluded-volume correction is
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incorporated and the second term gives the total pressure
due to all mesons in HG having a pointlike size. This
makes it clear that we consider the hard-core repulsion
arising between two baryons which possess a hard-core
size. In this calculation, we have taken an equal volume

V0 ¼ 4�r3

3 for each type of baryon with a hard-core radius

r ¼ 0:8 fm. We have taken all baryons and mesons and
their resonances having masses up to 2 GeV=c2 in our
calculation for HG pressure. We have also used the condi-
tion of strangeness conservation by putting

P
iSiðnsi �

�nsi Þ ¼ 0, where Si is the strangeness quantum number of
the ith hadron and nsi ð �nsi Þ is the strange (antistrange) hadron
density, respectively. Using this constraint equation, we get
the value of strange chemical potential in terms of �B. We
want to stress here that the form of this model used under
Boltzmann approximation has been found to describe
[26,27] very well the observed multiplicities and the ratios
of the particles in heavy-ion collisions.

VI. RESULTS AND DISCUSSION

In order to demonstrate that both types of quasiparticle
models reproduce the lattice results with the value of
parameters chosen here, we show in Fig. 1 the results of
our calculations for the variation of energy density with
respect to temperature at different �B. We find that the
predictions from both these models (QPM I and QPM II)
compare well with the lattice data [28]. However, it cannot

be regarded as a very good fit to the data. It is worthwhile to
emphasize that our calculation involves two parameters�T

and T0. We have used T0 ¼ 100 MeV and�T ¼ 115 MeV
for a reasonable fit to the data. However, the effect of the
change in values of the parameters on the curve is negli-
gibly small. For example, if we take �T ¼ 115 MeV and
T0 ¼ 120 MeV, there is no noticeable change in the pre-
dictions of both the models and the curve almost overlaps
on the previous one as shown in Fig. 1. However, the curve
with the parameter values �T ¼ 100 MeV and T0 ¼
100 MeV lies slightly above the previous curve in both
the models. Moreover, the results of QPM may improve if
we use thermal gluon mass as m2

gðTÞ ¼ g2ðTÞT2=3 instead

of m2
gðTÞ ¼ g2ðTÞT2=2 as pointed out by Bannur [16,21].

In Fig. 2, we have presented the results of our calcula-
tions for the QGP pressure p=T4 in both the quasiparticle
models and shown its temperature variation at different
values of �B. We compare our results with those recently
reported in lattice simulations [28,29]. We find that the fits
by QPM II look slightly better than those given by QPM I.
These results give us extreme confidence in both types of
quasiparticle models being used as phenomenological
models. Although, phenomenology cannot work as a sub-
stitute for a formal theory like QCD. Since the utility of
lattice QCD calculations at very large �B is still not
possible, we usually take the help of quasiparticle models
in such circumstances. It is now widely used to describe the
nonideal behavior of QGP observed near the critical line.
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FIG. 1. Variation of �=T4 with temperature in Quasiparticle models. Left panel shows calculations based on the QPM I, and right
panel demonstrates those of QPM II.
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Moreover, we attempt to extend its uses at lower values of
temperature, e.g., T0 < Tc (we take T0 ¼ 100 MeV).
Usually, authors have studied the quasiparticle models
above Tc only; and therefore, the rapid rise of pressure
and energy density at or around Tc is not properly taken
care of in these models. Our method of obtaining critical
parameters ðTc;�cÞ involves the use of Gibbs’s equilib-
rium criteria of equating HG and QGP pressures and to
determine where these pressure lines intersect each other.
Therefore, we want to know precisely the values of QGP
pressure at temperatures T0ð<TcÞ also. The comparison of
our calculations with the lattice results yields the required
test about the suitability of quasiparticle EOS for QGP. In
Fig. 2, we have again demonstrated how the changes in the
parameter values affect the results. We find that �T ¼
115 MeV and T0 ¼ 120 MeV yield a curve which overlaps
with the curve obtained with �T ¼ 115 MeV and T0 ¼
100 MeV. Similarly, if we use �T ¼ 100 MeV and T0 ¼
100 MeV there is a slight change in the curve, but the
overall effect is found to be small.

In Fig. 3, we have shown the phase boundary obtained in
our model. Surprisingly, we again find here that the first-
order deconfining phase transition line ends at a critical end
point and the coordinates of CEP are (TCEP ¼ 183 MeV,
�CEP ¼ 166 MeV) in QPM I and (TCEP ¼ 166 MeV,
�CEP ¼ 155 MeV) in QPM II. It is interesting to find
that the critical points obtained by us lie closer to CEP of

FIG. 3. The location of QCD critical point in QCD phase
diagram. P1 is the phase boundary in bag model (BM), P2 is
the phase boundary in QPM I, and P3 is the phase boundary in
QPM II. F1 is the chemical freezeout line obtained using our HG
model. C1ðTCEP ¼ 183 MeV; �CEP ¼ 166 MeVÞ is the CEP on
P2 obtained in QPM I, and C2ðTCEP ¼ 166 MeV; �CEP ¼
155 MeVÞ is the CEP on P3 obtained in QPM II. The labels
used in the figure are explained in Table I.
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some lattice calculations [14]. These points also compare
well with the coordinates of CEP (TCEP ¼ 160 MeV,
�CEP ¼ 156 MeV) obtained by us in the previous publi-
cation [7] using bag model calculation. Here, we would
like to stress again that the changes in the parameter values
(�T ¼ 115 MeV and T0 ¼ 120 MeV) do not show any
appreciable change in the coordinates of CEP in both the
models. However, the parameter values (�T ¼ 100 MeV
and T0 ¼ 100 MeV) yield the new coordinates of CEP as
(TCEP ¼ 166 MeV, �CEP ¼ 155 MeV) in the QPM I and
(TCEP ¼ 152 MeV, �CEP ¼ 151 MeV) in QPM II, and
these are small but noticeable changes. We also find a
crossover region existing beyond the critical point where
HG pressure, which is solely dominated by mesonic pres-
sure term in Eq. (25), is always less than the QGP pressure.
Therefore, no phase transition exists in this region. Since
the temperature is much higher, the thermal fluctuations
break mesonic constituents of HG into quarks, antiquarks,
and gluons. We have tabulated in Table I the location of
CEP obtained from various calculations for a comparison.
For convenience, we have shown above the dark solid line
all the values obtained in SU(3) flavor calculations. Below
the solid line, the values of SU(2) are also shown in order to
make the comparison complete.

We find that there exists a very wide variation in the
coordinates of CEP obtained in different models. We no-

tice that the critical end points obtained in the deconfining
phase transition are usually located at �B < 200 MeV,
whereas chiral CEP have much larger �B. So there is a
good chance for observing CEP at RHIC by using energy
scan [47]. We also find that CEP obtained in our models
almost overlaps with the points on the freeze out curve.
The freeze out point occurs close to RHIC energy, and,
hence, the fluctuations in multiplicity etc. can experimen-
tally provide a clear signal for CEP.
Before we conclude, we would like to discuss the recent

lattice data obtained by de Forcrand and Philipsen [12,13],
who used 2þ 1 and 3 flavors, staggered fermions, and a
Taylor expansion in �q=T to study the curvature of the

critical surface at very light quark masses close to �q ¼ 0

surface. They noticed that the critical surface bends so that
the first-order region shrinks at higher quark masses, and,
hence, they conclude that there is no critical point at finite
chemical potential. However, it is speculated that the criti-
cal surface bends back at larger �q, and the critical point

may again reappear. In fact, a recent Nambu-Jona-Lassinio
(NJL) model calculation lends support to this speculation
[48].
In summary, we have demonstrated the occurrence of

CEP in a deconfining first-order phase transition, con-
structed by using quasiparticle model for QGP and a new
thermodynamically-consistent excluded-volume model for

TABLE I. Coordinates of CEP obtained in different models. The last column gives the corresponding label used in Fig. 3 and
Ref. [11].

Source ðTCEP; �CEPÞ MeV Comments Label

Present paper (183, 166) QPM I C1

Present paper (166, 155) QPM II C2

C. P. Singh et al. [7] (160, 156) Bag model BM

Fodor and Katz [5] (160, 725) Lattice reweighting LR I

Fodor and Katz [30] (162, 360) Lattice reweighting LR II

S. Ejiri et al. [31] (164, 420) Lattice Taylor expansion LTE I

Gavai and Gupta [14] (166.2, 182.8) Lattice Taylor expansion LTE II

Antoniou and Kapoyannis [32] (171, 385) Hadronic bootstrap I HB I

Antoniou et al. [33] (162.1, 218.7) Hadronic bootstrap II HB II

Barducci et al. [34] (91, 225) Composite operator CO

Barducci et al. [35] (97, 240) Ladder-QCD model IQCD

D. Zschiesche et al. [36] (155, 210) Chiral hadron model CHM

P. Costa et al. [37] (67.7, 318.4) SU(3) NJL NJL I

M. Ciminale et al. [38] (140, 300) SU(3) Polyakov loop extended Nambu-Jona-Lasinio (PNJL) PNJL I

P. Costa et al. [39] (79.9, 331.72) SU(2) NJL NJL II

Asakawa and Yazaki [40] (40, 1050) SU(2) NJL NJL III

Asakawa and Yazaki [40] (55, 1440) SU(2) NJL NJL IV

Berger and Rajagopal [41] (101, 633) SU(2) NJL NJL V

Scavenius et al. [42] (46, 996) SU(2) NJL NJL VI

Scavenius et al. [42] (99, 621) Linear � model LSM

Kashiwa et al. [43] (149, 783) SU(2) PNJLþ �4 PNJL II

Kashiwa et al. [43] (52, 1071) SU(2) PNJLþ vector int. PNJL III

S. Rößner et al. [44] (150, 975) SU(2) PNJL PNJL IV

Halasz et al[45] (120, 700) Random matrix RM

Hatta and Ikeda [46] (95, 837) Effective potential CJT
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hot and dense HG. In our model, we assign a hard-core
volume for baryons, and mesons are treated as pointlike
particles. So at higher temperatures, mesons can fuse into
one another, but baryons occupy space. As �B increases,
we find that the fractional occupied volume R by baryons
increases, and, hence, the mobility of baryons decreases
fast. The physical mechanism in our model is similar to the
percolation model [49], where a first-order phase transition
results due to jamming of baryons in the HG. Thus our
finding lends support to the idea of realizing a phase

transition by modelling the interactions existing in the
HG in a suitable way.
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