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In high-density QCD the hadron production stems from decay of mini jets that have the transverse

momenta of the order of the saturation scale. It is shown in this paper that this idea is able to describe in a

unique fashion both the inclusive hadron production for
ffiffiffi
s

p � 546 GeV including the first data from LHC

and the deep inelastic scattering at HERA. Recently reported data from ALICE, CMS, and ATLAS

including inclusive charged-hadron transverse momentum and multiplicity distribution in pp collisions

are well described in our approach. We provide predictions for the upcoming LHC measurements.

DOI: 10.1103/PhysRevD.82.014022 PACS numbers: 13.60.Hb

I. INTRODUCTION

The first LHC data [1–4] on inclusive hadron production
call for a theoretical understanding of these processes
based on QCD. At first sight the inclusive hadron produc-
tion is a typical process that occurs at long distances where
one has to use the nonperturbative methods of QCD.
Therefore, the field of long distance processes seems to
be a relevant subject to the domain of high-energy phe-
nomenology with the main ingredients soft Pomeron and
secondary Reggeons. Such phenomenology is able to de-
scribe inclusive hadron production data (see Ref. [5] and
references therein) but cannot be considered satisfactory
since both soft Pomerons and Reggeons cannot be ex-
plained in terms of QCD ingredients, quarks and gluons.
It should be also mentioned that the increase with energy of
the average transverse momentum of the produced hadron
observed experimentally [2,3] cannot be explained in the
Reggeon approach.

However, high-density QCD [6–12] leads to a com-
pletely different picture of inclusive hadron production.
In this approach the system of parton (gluons) at high
energy forms a new state of matter color glass condensate
(CGC). In the CGC picture, at high energy the density of
partons �p, with the typical transverse momenta less than

Qs, reaches a maximum value �p / 1=�s � 1 (�s is the

strong-coupling constant). Qs is the new momentum scale
(saturation momentum) that increases with energy. At high
energies/small Bjorken-x Qs � �, where � is the scale of
soft interaction. Therefore, �sðQsÞ � 1, and this fact al-
lows us to treat this system on solid theoretical basis. On
the other hand, even though the strong-coupling �s be-
comes small due to the high density of partons, saturation
effects, the fields interact strongly because of the classical
coherence. This leads to a new regime of QCD with non-
linear features which cannot be investigated in a more
traditional perturbative approach.

In the framework of the CGC approach, the secondary
hadrons are originated from the decay of gluon minijets
with the transverse momentum equal to the saturation scale

QsðxÞ. The first stage of this process is under theoretical
control and determines the main characteristics of the
hadron production, especially as far as energy, rapidity,
and transverse-momentum dependence are concerned. The
jet decay, unfortunately, could be treated mostly phenom-
enologically. However, we can hope that the phenomeno-
logical uncertainties would be reduced to several constants
whose values will be extracted from the experiment.
Actually, such a description has passed the first check

with the experimental data: the Kharzeev-Levin-Nardi
(KLN) paper [13] explains the main features of inclusive
hadron production in heavy-ion ion and hadron ion as well
as proton-proton collisions [14] at Relativistic Heavy Ion
Collider (RHIC). In this paper, we wish to improve the
KLN approach by introducing two new elements, the
probability to find gluon with fixed transverse momentum
that describes the deep inelastic scattering (DIS) data and
that satisfies the Balitsky-Kovchegov [9,11] nonlinear
equation and a different description of inclusive hadron
production at low transverse momenta of gluons. Overall
success of our description indicates universality of the
saturation physics which can be further tested at LHC
and in future collider experiment.
In the next section, we discuss the kt factorization and

main formulas that we use. In particular, we consider the
interrelation between the color-dipole scattering amplitude
and the unintegrated gluon density that follows from the
recent development of high-density QCD [15]. An impor-
tant improvement here to the previous works based on the
KLN approach is the explicit inclusion of the impact-
parameter dependence of the saturation scale. Section III
is devoted to comparison with the experimental data and to
discussion of various predictions for higher LHC energies.
As a conclusion, in Sec. IV, we highlight our main results
and predictions for LHC.

II. INCLUSIVE GLUON PRODUCTION IN
HIGH-DENSITY QCD

The gluon jet production in hadron-hadron collisions
can be described by kt factorization given by [15]
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d�

dyd2pT

¼ 2�s

CF

1

p2
T

Z
d2 ~kT�

h1
G ðx1; ~kTÞ�h2

G ðx2; ~pT � ~kTÞ;
(1)

where x1;2 ¼ ðpT=
ffiffiffi
s

p Þe�y, and pT and y are the transverse

momentum and rapidity of the produced gluon jet. �hi
G are

the probability to find a gluon that carries xi fraction of
energy with kT transverse momentum, and CF ¼ ðN2

c �
1Þ=2Nc is the SUðNcÞ Casimir operator in the fundamental
representation with the number of colors equals Nc.

For a proof of kt factorization see Ref. [15] and also
Refs. [16–20] which confirm the former proof.1 We need to
recall that the proof for the kt factorization was given for
the scattering of a diluted system of partons, say for virtual
photon, with a dense one. Our main idea is that we have
gluon saturation for proton-proton scattering, or, in other
words, we are dealing with interactions of two dense
systems of partons (gluons). Therefore, the kt factorization
has to be considered here as an assumption. It should be
noticed that the proof given in Refs. [15–20] shows that the
kt factorization is valid in the situation where two scales of
hardness, the transverse momentum of the produced gluon
(pT) and the saturation scale, are both larger than the scale
of the soft interaction (�). For dense-dense system scat-
tering, we have actually three scales, pT and two saturation
scales. However, only for the kinematic region where both
x1 and x2 are small, and for pT which is smaller than both
saturation scales, we have to make an assumption about kt
factorization. In other cases in which one of the saturation
scales is small, we are dealing with diluted-dense system
scattering. We believe that the kT factorization is currently
the best tool at our disposal for the processes considered in
this paper.

The unintegrated gluon-density �hi
G ðx1; ~kTÞ and color-

dipole–proton forward scattering amplitude Nðxi; rT; bÞ
are related in a very specific way [15]. This relation reads
as follows

�hi
G ðxi; ~kTÞ ¼

1

�s

CF

ð2�Þ3
Z

d2 ~bd2 ~rTe
i ~kT � ~rTr2

T

� Nhi
G ðyi ¼ lnð1=xiÞ; rT ; bÞ; (2)

with

Nhi
G ðyi ¼ lnð1=xiÞ; rT ; bÞ ¼ 2Nðyi ¼ lnð1=xiÞ; rT ;bÞ

� N2ðyi ¼ lnð1=xiÞ; rT; bÞ;
(3)

where Nhi
G ðyi ¼ lnð1=xiÞ; rT ;bÞ is the dipole-hadron (hi)

forward scattering amplitude which satisfies the Balitsky-
Kovchegov equation. In the above, rT denotes the trans-

verse dipole size and ~b is the impact parameter of the
scattering.
Equation (3) looks very natural at large Nc. Indeed, for

the color-dipole amplitude in the Glauber form N ¼ 1�
expð��=2Þ (� is the opacity), Eq. (3) leads to NG ¼ 1�
expð��Þ as it should be for the scattering of the two
dipoles of the same sizes. We recall that a colorless gluon
probe just creates such two quark-antiquark dipoles, and
the NG is directly related to the gluon density.
Substituting Eq. (2) in Eq. (1), and after analytically

performing some integrals, we obtain [15]

d�

dyd2pT

2CF

�sð2�Þ4
1

p2
T

Z
d2 ~bd2 ~Bd2 ~rTe

i ~kT � ~rTr2
T

� Nh1
G ðy1 ¼ lnð1=x1Þ; rT ;bÞr2

T

� Nh2
G ðy2 ¼ lnð1=x2Þ; rT ; j ~b� ~BjÞ: (4)

In the above equation, ~B is the impact parameter between

center of two hadrons, and ~b is the impact parameter of the
produced minijet from the center of the hadron, see Fig. 1.

A. Choice of color dipole scattering amplitude

As can be seen from Eqs. (2) and (4), we need here an
impact-parameter dependent color-dipole forward ampli-
tude. We will show later that the inclusion of the impact
parameter is very important in our approach and should not
be ignored. The dipole-proton forward scattering ampli-
tude NðY; r;bÞ (with Y ¼ lnð1=xÞ) can be in principle
found by solving the perturbative nonlinear small-x
Balitsky-Kovchegov (BK) [9,11] or Jalilian-Marian-
Iancu-McLerran-Weigert-Leonidov-Kovner [12] quantum
evolution equations. Unfortunately, numerical solution to
these nonlinear equations in the presence of the impact
parameter is very challenging [23] and is not yet available.
Moreover, a numerical solution does not give us the full
control on the phenomenological parameters that have
been used, and we certainly lose the transparency and
simplicity of physical interpretation if we rely only on
the numerical solutions. Therefore, we choose a different

FIG. 1 (color online). Minijet production in hadron-hadron
collisions in the transverse plane. The impact parameter between
two hadrons is ~B.

1Reference [21] states that Eq. (1) is not correct.
Unfortunately, there are no discussions in the paper regarding
why their result is so different from the other published papers.
However, Braun has recently shown that Ref. [21] actually leads
to the kt factorization [22].
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approach to the solution of the BK equation that was
suggested in Ref. [24]. First, we recall that the BK equation
predicts the geometric-scaling behavior [25], namely, the
amplitude NðY; r; bÞ is not a function of three variables but
it is a function of only one variable Z2 ¼ r2Q2

sðx; bÞ
(NðY; r;bÞ ¼ FðZÞ), where Qsðx;bÞ is the saturation mo-
mentum.2 We also know [26] the behavior of the scattering
amplitude deeply in the saturation region (Z � 1)

NðY; r; bÞ ¼ 1� exp

�
� �ð�crÞ

2ð1� �crÞ ln
2Z

�
; (5)

where �ð�Þ is the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
kernel

!ð�Þ ¼ ��s�ð�Þ ¼ ��sf2c ð1Þ � c ð�Þ � c ð1� �Þg; (6)

with a notation ��s ¼ �sNc=�. In the above, we define
c ðxÞ ¼ d ln�ðxÞ=dx and �ðxÞ is the Euler function. The
parameter �cr is the solution to the following equation:

d�ð�crÞ
d�cr

¼ � �ð�crÞ
1� �cr

: (7)

In Ref. [26], a solution was found for the entire kinematic
region for a simplified BFKL kernel, namely, instead of
Eq. (6), the following kernel was used:

!ð�Þ ¼ ��s

� 1
� for Z ¼ rQsðxÞ � 1;
1

1�� for Z ¼ rQsðxÞ> 1;
(8)

which describes only leading twist contribution to the full
BFKL kernel of Eq. (6). The lesson from this solution is
very instructive: for r2Q2

sðxÞ � 1, the amplitude N satisfies
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
(BFKL) linear evolution equation with the boundary con-
dition NðY; r;bÞ ¼ N0 ¼ Constant for r2 ¼ 1=Q2

sðxÞ,
while for r2Q2

sðxÞ> 1, we have a solution that has the
form of Eq. (5). Using these general features of the solution
we choose the model suggested in Ref. [27], which im-
proves the earlier studies on this line [24,28]. In this model,
the color-dipole–proton forward scattering amplitude is
given by

NðY; r; bÞ ¼
�
N0ðZ2Þ2ð�sþð1=	
YÞ lnð2=ZÞÞ for Z ¼ rQsðxÞ � 2;
1� expð�Aln2ðBZÞÞ for Z ¼ rQsðxÞ> 2;

(9)

where the saturation scale Qsðx; bÞ (denoted by QsðxÞ for
brevity) is given by

Qsðx; bÞ ¼
�
x0
x

�

=2

exp

�
� b2

4ð1� �crÞBCGC

�
: (10)

As we have already mentioned Eq. (9), as well as
Eq. (10), has the form of the solution to the BK equation
at a fixed QCD coupling. For Z< 1, the effective anoma-
lous dimension �s þ 1

	
Y lnð2ZÞ with �s ¼ 1� �cr follows

from the BFKL (and DGLAP) equation in the vicinity of
the saturation line (see Ref. [24] for the detailed
derivation).

For the leading-order BFKL kernel with frozen QCD
coupling, the parameters of Eqs. (9) and (10) have the
following values

1� �cr ¼ 0:63; 
 ¼ ��s

�ð�crÞ
1� �cr

¼ 4:88 ��s;

	 ¼ �00ð�crÞ
�0ð�crÞ ¼ 9:9:

(11)

The parameters A and B can be found from a matching
ofN and its logarithmic derivatives atZ ¼ 2, whileN0 and
BCGC remain fitting parameters.
Generally speaking, the model given by Eqs. (9) and

(10) can be viewed as an approximation to the solution of
the BK equation. However, because the b-dependent nu-
merical solution to the BK equation is not yet available
[23], we are doomed to resort to such an approximation.
This model differs from other saturation models on the
market since it apparently incorporates all known proper-
ties of the exact solution to the BK equation including the b
dependence of the scattering amplitude (see Ref. [26]).
The advantage of Eqs. (9) and (10) is that these equa-

tions give the possibility to take into account the next-to-
leading order (NLO) corrections. Two features of the non-
linear low-x equations can be calculated in the next-to-
leading order using the kernel of the linear equation, the
energy behavior of the saturation scale [6,29,30], and the
behavior of the solution deeply in the saturation domain
[26]. It has been shown that the NLO correction to the
BFKL equation (and therefore BK equation) are large and
it changes considerably the value of 
 from 
 	 0:9 to 
 	
0:3 for ��s ¼ 0:2 [31,32]. The value of �s in Eq. (9) is also
affected by the NLO corrections as well as by the running
QCD coupling [31–33]. It is, therefore, generally believed
that the higher-order corrections to the NLO BK equation
should be important. The actual calculation of higher-order
corrections to these nonlinear evolution equations still
remains as a challenge. Since the general behavior of the
amplitude Eq. (9) will remain unchanged after inclusion of
higher-order corrections, we effectively incorporate the

2Notice that here we assumed that the geometric scaling is also
valid in the presence of impact-parameter dependence of the
saturation scale. It should be stressed that the proof of the
geometric-scaling behavior [25] could be easily generalized to
the case of the scattering amplitude that depends on the impact-
parameter b. In the analytical solution of Ref. [26], which gives
the theoretical basis for the chosen parametrization of the dipole
amplitude here, the b dependence is taken into account, there-
fore, this solution gives a theoretical example of the general
proof.
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higher-order corrections by taking the value of parameters

, �s, N0, x0, and BCGC obtained from a fit to the DIS data
at low Bjorken x x < 0:01 [27]. Therefore, the saturation
model that we use here gives also a good description of the
HERA data at low x. In order to simulate the behavior of
gluon density at large x ! 1, we product the unintegrated
gluon density with ð1� xÞ4 as prescribed by quark count-
ing rules [34]. This factor stems from the correct descrip-
tion of the HERA data on DIS.

B. Physical observables

The rapidity distributions of the minijets can be calcu-
lated using Eq. (1)

dNminijet

d�
¼ h½�
 1

�nsd

Z
d2pT

d�

dyd2pT

½Eq: ð1Þ
; (12)

where � is the pseudorapidity and h½�
 is the Jacobian
which takes account of the difference between rapidity y
and the measured pseudorapidity � [13];

hð�;pTÞ ¼ cosh�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

jet
þp2

T

p2
T

þ sinh2�

r ; (13)

where mjet is the mass of minijet. One also has to express

rapidity y in Eq. (1) in terms of pseudorapidity �. This
relation is given by

yð�; pTÞ ¼ 1

2
ln

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

jet
þp2

T

p2
T

þ sinh2�

r
þ sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
jet
þp2

T

p2
T

þ sinh2�

r
� sinh�

9>>>=
>>>;
: (14)

The distribution Eq. (1) refers to the radiated gluons with
zero mass while what is actually measured experimentally
is the distribution of final hadrons. We, therefore, should
make an assumption about hadronization of gluons which
is an entirely nonperturbative process that has to be mod-
eled in any approach due to lack of understanding of the
confinement of quarks and gluon in QCD. However, it is
well known that the general assumption about hadroniza-
tion leads to the appearance of mass of the minijet, which is
approximately equal tom2

jet ’ 2�pT (see Ref. [13]), where

� is the scale of soft interaction. The minijet mass mjet

effectively incorporates the nonperturbative soft prehadro-
nization in the pseudorapidity space. Accordingly, one
should also correct the kinematics every where in Eq. (1)

due to the presence of a nonzero minijet mass, namely,

replacing pT !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

jet

q
in x1, x2, and also in the

denominator of 1=p2
T . One can see that Eq. (1) has infrared

divergence at pT ! 0 for the kinematic region kT � pT

when mjet ¼ 0. In Ref. [13] it was suggested to integrate

over kT � pT . The reason is that such an integration re-
produces the factorization formula at large pT � � for the
DGLAP evolution. However, as we explained above it is

more natural to replace pT by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

jet

q
in Eq. (1), which

consequently also regulates the denominator due to the
presence of a nonzero minijet mass (the appearance of
such mass is the general property of the hadronization
processes).
In Eq. (12), we do not take into account the fragmenta-

tion of the produced gluon (minijet) into hadrons. We rely
on the principle of Local Parton-Hadron Duality (LPHD)
[35,36], namely, the form of the rapidity distribution will
not be distorted by the jet decay, and only a numerical
factor will differ the minijet spectrum from the hadron one.
We believe that it is better to use the LPHD scheme than to
deal with the fragmentation’s functions for which we have
no theoretical justifications at low pT . It should be stressed
that the same idea has been used in the KLN approach
which describes the rapidity distribution of heavy-ion col-
lisions data in a wide range of energies. This idea has also
worked perfectly in eþe� annihilation into hadrons
[35,36].
We should stress that the value of inelastic nonsinglet

diffractive (NSD) cross section �nsd cannot be calculated
in our approach and has to be taken from the soft-
interaction models such as in Refs. [37,38]. The NSD cross
section �nsd is defined as �nsd ¼ �tot � �el � �sd � �dd,
where �el, �sd, and �dd are the cross sections of elastic,
single, and double diffraction, respectively. However, the
experimental data on �dd is very limited [39]; �sd is
measured with rather large errors [40,41], and, even for
the total cross section �tot [41], we have two values at the
Tevatron energies [42]. Therefore, we should stress that in
this way we can only predict d�=dy rather than dNch=dy.
In order to overcome this problem, here we choose a
different strategy: the physical meaning of �nsd in
Eq. (12) is the area of interaction which can be calculated
in our approach. Indeed, using Eq. (4), one can calculate
the average impact parameter for the inclusive production
of the minijet

h ~b2jeti ¼
R d2pT

p2
T

R
d2 ~bd2 ~Bd2rTðb2 þ j ~b� ~Bj2Þei ~kT � ~rTr2

TN
h1
G ðy1 ¼ lnð1=x1Þ; rT; bÞr2

TN
h2
G ðy2 ¼ lnð1=x2Þ; rT ; j ~b� ~BjÞR d2pT

p2
T

R
d2 ~bd2 ~Bd2rTe

i ~kT �~rTr2
TN

h1
G ðy1 ¼ lnð1=x1Þ; rT ; bÞr2

TN
h2
G ðy2 ¼ lnð1=x2Þ; rT ; j ~b� ~BjÞ

:

(15)

The NSD cross section �nsd is then equal to the average interaction area up to a constant �NSD ¼ M�h ~b2jeti. The prefactor
M will be determined and discussed later. We should draw the reader’s attention to the fact that such a picture for the
inelastic cross section corresponds, in a sense, to the geometric-scaling behavior of the scattering amplitude. Indeed, the
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high-density QCD deals with the partonic wave function of
a fast hadron which describes a coherent system of partons
(quarks and gluon). At high energy, the coherence of
partons is destroyed during a short time and the partons,
distributed as in the wave function, are produced. These
partons contribute to the inelastic cross section. The elastic
(diffractive) cross section corresponds to a rare event
where the target does not destroy (or destroyed only par-
tially) the coherence of the gluons in the wave function
(see, for example, Ref. [43]). The geometric-scaling be-
havior, as well as the saturation phenomenon, in general,
means that partons are distributed uniformly in the trans-
verse plane in the wave function of a fast hadron in a such
way that the wave function generates a uniform distribu-
tion of the produced partons after the interaction with the

target. Therefore, the NSD (inelastic) cross section is
proportional to the area occupied by partons. Actually,
such a view on the inelastic cross section was suggested
in the KLN approach [13] but for nucleus-nucleus and
hadron-nucleus collision. Therefore, we generalize this
approach to hadron-hadron scattering. We believe that if
the LHC data at higher energy will support this idea, it will
be a strong argument in favor of the saturation approach.
The relation �NSD ¼ �tot � �el � �sd � �dd shows the
obvious fact that the prediction for elastic and diffractive
scattering are much more complicated and less transparent
in the saturation approach. This is well-known fact, at least
for diffractive production [44].
The average transverse momentum of the minijet is

defined in the usual way:

hpjet;Ti ¼
Z

d�h½�

Z

d2pTjpTj d�

d�d2pT

½Eq: ð1Þ

�Z

d�h½�

Z

d2pT

d�

d�d2pT
½Eq: ð1Þ
 (16)

The advantage of this quantity is that it can be calculated
without usual uncertainties associated with the soft-
interaction physics. The average transverse momentum of
the jet can be directly related to the saturation scale via
Eqs. (1), (9), and (16), and it has the following simple form
at large Qs � mjet

hpjet;Ti / Qs

lnðQ2
s=m

2
jet þ 1Þ þQ

; (17)

where the parameter Q is of order of 1 and takes into
account the contribution of integrals in Eq. (16) for pT >
Qs.

In order to calculate the transverse momentum of had-
rons, which is measured experimentally, we need to recall
that ~phadron;T ¼ z ~pjet;T þ ~pintrinsic;T which leads to

hphadron;Ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hzpjet;Ti2 þ hpintrinsic;Ti2

q
; (18)

where z is the fraction of energy of the jet carried by the
hadron. hpintrinsic;Ti is the average intrinsic transverse mo-

mentum of the hadron in the minijet. In other words, this is
the transverse momentum of the hadron in the minijet that
has only longitudinal momentum.

In the framework of the LHPD, the pT spectrum of the
produced hadron is equal to

dNhadron

d2pT

¼
Z

d�h½�
 1

�nsd

d�

d�d2pjet;T

� ½Eq:ð1Þ with pjet;T ¼ pT=z
; (19)

where in the above pT is the transverse momentum of the
produced hadron.

In the CGC scenario, the gluon saturation scale is pro-
portional to the density of partons (see Refs. [13,14]). The
parton density is proportional to the multiplicity, and,

therefore, we can use the following expression for the
saturation momentum in the event with the multiplicity
of the hadrons n:

QsðxÞ ! Qsðn; xÞ ¼ n

hniQsðxÞ; (20)

where hni is the average multiplicity that has been mea-
sured in inclusive production without any selection related
to multiplicity, and QsðxÞ is the saturation scale for inclu-
sive hadron production or Qsðn ¼ hni; xÞ. Using Eq. (17)
again, one can relate the saturation scale at a given multi-
plicity to the average transverse momentum of the pro-
duced minijets at large Qs � mjet,

hpjet;T; ni / Qsðn; xÞ
lnðQ2

sðn; xÞ=m2
jet þ 1Þ þQ

: (21)

III. COMPARISON WITH THE EXPERIMENTAL
DATA AND PREDICTION FOR HIGHER

ENERGIES

In the derivation of the kt factorization it was assumed
that the strong-coupling �s is a constant. As a general-
ization, in Eq. (1), we replace �s by �sðpTÞ, where pT is
the transverse momentum of the minijet, and in Eq. (2) we
also replace 1=�s by 1=�sðQsðxiÞÞ, where QsðxiÞ is the
saturation scale in hadron hi. This seems to be the most
natural way of introducing the running coupling, which
still preserves the form of Eq. (4) apart from the overall
factor outside of integrals, which now depends on kine-
matics. Indeed the inclusion of running strong coupling
leads to improvement of our description. For the running
strong-coupling �s, we employ the same scheme as used
by the KLN approach [13], namely, we use the leading-
order running coupling with smooth freezing below the
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virtuality Q2 	 0:8 GeV2, at the value of �IR
s 	 0:5. This

is in accordance with many evidences from jet physics
which indicates that the QCD coupling may stay reason-
ably small �IR

s ¼ 0:4� 0:6 in the infrared region [45].
The impact-parameter dependence in our formulation

emerges from the employed impact-parameter dependent
saturation scale, see Eqs. (9) and (10). In this model, the
profile of the saturation scale in the proton is assumed to be
a Gaussian. It is difficult to interpret the parameter BCGC in
Eq. (10) in terms of proton size due to the dipole size r and
rapidity Y dependence of the anomalous dimension.
Nevertheless, in order to have a intuitive picture, one
may take 2BCGC as relative average squared transverse
radius of the proton. The value of BCGC ¼ 7:5 GeV�2

was obtained as a fit in order to describe the slope of t
distribution of diffractive processes at HERA [27], which
in turn fixes the normalization of the color-dipole–proton
cross section. In Fig. 2 (right), we show the average impact

parameter of jet h ~b2jeti from center of the hadrons. Notice

that for obtaining h ~b2jeti, the overall coefficient in Eq. (15)

will be dropped out, and we are left with no free parameter.

The h ~b2jeti is about 2:5BCGC and it slightly increases with

energy.
The mass of minijet mjet is proportional to the saturation

scale m2
jet ’ 2�pT [13] since the typical transverse mo-

mentum of the minijets is the saturation scale Qs, and � is

the scale of soft interaction. The saturation scale in the
CGC-b model Eq. (9) changes slowly with energy. For our
interested range of energy considered in this paper at
midrapidity � ¼ 0 and pT ¼ 1 GeV for the central colli-
sions b ¼ 0, we have Qs 	 0:6� 0:8 GeV. Taking the
scale of soft interaction equal to pion mass � 	 m� ¼
0:14 GeV, we have mjet 	 0:4� 0:5 GeV. We will first

assume a fixed value for the minijet mass mjet ¼ 0:4 GeV.

To estimate the effect of the minijet mass, we will later
consider a case with a different value for mjet.

In order to obtain the multiplicity distribution of hadrons
in pp collisions from the corresponding minijets produc-
tion cross section Eqs. (1) and (12), we have to fix some
unknown parameters. First, based on the gluon-hadron
duality, the rapidity distribution of hadron and radiated
minijets can be different by a factor C. Second, although
the kt factorization incorporates the small-x evolution tak-
ing into account the higher-order gluon scatterings and
nonlinear gluon recombination effects, nevertheless, given
that we resort to a phenomenological color-dipole model,
there might be still some extra contributions which are
missed in our formulation. The discrepancy between the
exact calculation and our formulation can be then effec-
tively taken into account with a extra K factor. Finally, in
order to obtain the charged-particle multiplicity, we should
divide the minijet cross section with nonsinglet diffractive
cross section which, as we already discussed, is obtained
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FIG. 2 (color online). Right: Shows the average impact parameter of the produced minijet hb2jeti given by Eq. (15) as function of
energy. Left: The comparison with the experimental data and prediction for dNch=dy using Eq. (12) with �nsd ¼ M�hb2jeti for j�j<
2:4. The curves are normalized by data at

ffiffiffi
s

p ¼ 546 GeV, see the text for the details. The experimental data are from Refs. [1,2,48].
The error bars on the UA5 and ALICE data points are statistical. We show only systematic errors for the CMS data points.
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via �nsd ¼ M�h ~b2jeti with a new unknown dimensionless

parameter M. Fortunately, these three unknown prefactors
C,K, andM appear as a product and can be reduced to only
one unknown parameter, which will be determined with a
fit to the experimental data for the charged-particle multi-

plicity dNch

d� at midrapidity for the lowest energy considered

here
ffiffiffi
s

p ¼ 546 GeV. Therefore, we obtain KC
M ¼ 2:32 atffiffiffi

s
p ¼ 546 GeV. We assume that this overall normalization
factor is energy independent. We expect that the energy
dependence of the normalization factor to be proportional
to 1þOð1= lnð1=xÞÞ. Then, for higher energy

ffiffiffi
s

p
>

546 GeV, we do not have any free parameters in our
calculation, and our results may be considered as predic-
tions of the model. Notice that we have employed a color-
dipole model that its free parameters were obtained from a
fit to the HERA data for xB < 0:01 and Q2 2 ½0:25; 45
;
therefore, our formulation is less reliable at lower energies
(now used here). In Fig. 2 (left), we show the charged
multiplicity distribution for pp collisions at various ener-
gies. Our model gives a good description of all available
data for

ffiffiffi
s

p � 546 GeV, including the recently released
data from ALICE [1], CMS [2], and ATLAS [3] at 0.9 and
2.36 TeV. We also show our predictions for the LHC
energies at 7, 10, and 14 TeV. It is seen that as the energy
increases, the peak of rapidity distribution at forward
(backward) becomes more pronounced. This effect has

been also observed in Ref. [46], where it was shown that
the rapidity dependence of the invariant cross section, for
both identified hadrons and direct photon, has a peak at
forward rapidities, and this peak will be further enhanced
by saturation effects [46].
In Fig. 3 (right), we show the charged-hadron pseudor-

apidity density in the central region � ¼ 0 as a function of
center-of-mass energy in pp collisions. Notice that since
our prescription is valid only for the NSD interactions, we
do not show the corresponding data for the inelastic event
selection. We have also shown recently reported charged-
particle pseudorapidity density from ALICE [4] at 7 TeV in
j�j< 1 for inelastic collisions with at least one charged
particle in that region (denoted by INEL> 0). Again, this
point is out of the scope of our calculation, and we did not
expect to explain it.
The main source of possible theoretical error in our

calculation is due to the uncertainties associated with
assuming a fixed value for the minijet mass for all energies
and the uncertainty in value of energy-independent nor-
malization factor KC=M obtained from a fit. The value of
minijet mass is controlled by the saturation scale, and, as
we already discussed, it can be mjet � 0:65 GeV for our

interested range of energy here. Notice that the saturation
scale in our model varies very slowly with energy. The
upper limit of the theoretical uncertainty band in Fig. 3
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(right) corresponds to a higher minijet mass mjet ¼
0:5 GeV. The experimental systematic and statistical er-
rors in the data point taken for fixing the normalization also
induce uncertainty in the value of prefactor KC=M ob-
tained from a fit. This error is included in the band shown
in Fig. 3 (right) and is less than the uncertainties coming
from modeling the minijet mass. Overall, we expect less
than 6% theoretical error in our calculation at higher
energies.

Our approach improves saturation based (KLN ap-
proach) calculation [13] in several ways, including, using
a correct relation between the unintegrated gluon density
and the forward dipole-nucleon amplitude Eqs. (2) and (3)
in the kt factorization Eq. (1). As it is seen, this relation is
not a simple Fourier transform of the dipole amplitude,
which is commonly used in literature and also depends on
the impact parameter. The impact-parameter dependence
in these equations is not trivial and in principle should not
be assumed as an overall factor. We then employed an
impact-parameter dependent saturation model which was
obtained from a fit to low Bjorken-x HERA data. In this
sense, we had no freedom in modeling the saturation
physics compared to the KLN approach. Moreover, since
we have an impact-parameter formulation here, we could
calculate the average relative interaction area at higher
energies and, thereby, could also determine the relative
increase of the NSD cross section. It should be recalled
that in the KLN approach, the information about �nsd was
taken from the models for the soft high-energy interac-
tions, which is alien to the saturation approach. In both
approaches, lower energy data for pp was used to fix the
overall normalization factor. Therefore, we expect the dis-
crepancies between our predictions and the KLN to be
more pronounced at higher energies. This is, indeed, the
case as it can be seen in Fig. 3 that the KLN prediction
underestimates the multiplicity at higher energies.

The average transverse momentum of charge hadrons
can be obtained from Eq. (18). In Eq. (18), the average
intrinsic transverse momentum of hadron has a purely
nonperturbative origin and is due to the finite-size effect
of hadrons. We take hpintrinsic;Ti equal to the pion mass, the

scale of soft-interaction � ¼ m�, throughout this paper. In
order to obtain the average transverse momentum of charge
hadrons, we need also to know the value of the average
momentum fraction of minijets carried by the hadrons hzi.
It is seen from Fig. 3 (left) that an average value of hzi ¼
0:48� 0:5 is remarkably able to describe the average
transverse momentum of charge hadrons in a wide range
of energies. Our theoretical curves and CMS data [2] are
for the range j�j< 2:4. One may also estimate the value of
hzi from the fragmentation functions, having in mind that
the hzi for minijets in parton-hadron duality picture is not
necessarily the same as the corresponding average of frag-
mentation momentum of the produced gluons in the parton
model. Nevertheless, employing recently developed

Albino-Kniehl-Kramer 2008 (AKK08) fragmentation
functions [47] for charged hadrons production from a
gluon, one obtains hzi ¼ 0:5, on average, over low pT ,
within the range of 1< pT ½GeV
 � 2 (AKK‘s fragmen-
tation is valid only for Q> 1 GeV). In order to further test
the validity of the value hzi 	 0:5 for the minijets, we show
in Figs. 4 and 5 (top panel) our predictions obtained from
Eq. (19) for the differential yield of charged hadrons in the
range j�j< 2:4 and at various j�j bins for ffiffiffi

s
p ¼ 2:36 TeV.

The experimental data are recently reported from CMS
collaboration [2]. It is seen that our results are in quite
good agreement with experimental data. We recall again
that the prefactor in Eq. (19) is the same as that which we
already fixed with experimental multiplicity data at low-
energy

ffiffiffi
s

p ¼ 546 GeV at � ¼ 0. Therefore, we have no
free parameters in obtaining the theoretical curves in
Figs. 4 and 5 (top). In Figs. 4 and 5 (top), we have also
shown our predictions for

ffiffiffi
s

p ¼ 7 and 14 TeV. The fact that
our model reasonably works at low pT (for

ffiffiffi
s

p ¼
2:36 TeV) is due to the fact that the saturation scale is
rather large at low pT ; for pT 	 m� we have Qs 	 1 GeV
in the central rapidity region. Notice that the LPHD, in the
simplified form that has been used here, is less reliable at
higher pT , and one should then somehow model the frag-
mentation of minijets into hadron.
In Fig. 5, there is seen a peculiar peak of the

charged hadron’s production rate at low pT 	 0:2 GeV.
Actually, the appearance of such a peak is expected in our
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formulation. Notice that from Eq. (12), the differential

yield of charged hadrons has a form d2N
d�dpT

/
2�pT

p2
Tþhzi2m2

jet

F ðx1; x2; pTÞ, where F is an analytic function.

At pT ¼ 0 trivially, we have d2N
d�dpT

¼ 0, for pT < mjethzi,
the spectra is a monotonically increasing function of pT ,
and for pT > mjethzi it is decreasing due to the denomina-

tor. The position of the peak is then approximately at pT ’
mjethzi 	 0:2 GeV, since we have hzi ¼ 0:5 and mjet ¼
0:4 GeV. This simple picture is consistent with the CMS
experimental data [2] shown in Fig. 5 (top).

In order to see more clearly the effect of the minijet mass
mjet, in Fig. 5 (down), we compare the differential yield of

charged hadrons calculated with two different values for
the minijet massmjet ¼ 0:4 and 0.8 GeV. We also show the

multiplicity distribution in the inserted panel in Fig. 5. As
we already pointed out, the mass of minijet is controlled by
the saturation scale. Obviously, from the saturation scale in
our model,mjet ¼ 0:8 GeV is too large. Therefore, it is not

surprising that the description of experimental data for
both multiplicity and spectra worsened for such a large
minijet mass. Nevertheless, it is obvious from Fig. 5 that
the position of the peak moves to a higher pT for a larger
minijet mass. Note that the CMS experimental data [2] atffiffiffi
s

p ¼ 2:36 TeV for the average transverse momentum of
charged hadrons can be reproduced with hzi ¼ 0:37, when
mjet ¼ 0:8 GeV. Again, the position of the peak in spectra

is consistent with simple formula pT ’ mjethzi 	 0:3, in

accordance with the full calculation shown in Fig. 5. Notice
that in our model calculation, shown in Fig. 5 (top), the
position of the peak persists at various rapidities bin (and
energies) since we have taken a fixed mjet for simplifica-

tion. To conclude, a precise measurement of the differential
yield of charged hadrons, at low pT for higher energies at
LHC, will provide valuable information about the minijet
mass and its connection with the gluon saturation.

In Fig. 5 (top), we also showed our theoretical predic-
tions for 7 and 14 TeV with a fixed hzi ¼ 0:5 and mjet ¼
0:4 GeV. As we already explained, due to the possible
increase of minijet mass at higher energies, the position
of peak may slightly move to higher pT within 0:2 �
pT ½GeV
 � 0:3 at

ffiffiffi
s

p ¼ 14 TeV.
In Fig. 6, we show the average transverse momentum of

charged hadrons as a function of the number of charged
particles for events within the kinematic range pT >
500 MeV. The experimental data are from ATLAS forffiffiffi
s

p ¼ 0:9 TeV [3]. The saturation scale at various multi-
plicity is given by Eq. (20), where hni can be conceived as a
normalization and its value is taken to be the charged
multiplicity at midrapidity � ¼ 0 for a given center-of-
mass energy [shown in Fig. 3 (right)]. In order to imple-
ment in our calculation the experimental kinematic con-
strain pT > 500 MeV on the measured events, we impose
that hpintrinsic;Ti> 500 MeV. The hpintrinsic;Ti has a purely

nonperturbative origin and can be of order of hadron mass.

To this end, we take hpintrinsic;Ti ¼ ðm� þmkÞ=2, where the
mass of � and k mesons are m� ¼ 775 MeV and mk ¼
497 MeV, respectively. In Fig. 6, we show hpTi for two
values of hzi. It is seen that our model is able to give a very
good description of the ATLAS data. We have also shown
in the same plot our predictions for the higher LHC
energies.
The general behavior of the theoretical curves, shown in

Fig. 3 (left) and Fig. 6 for the average transverse momen-
tum of the produced hadrons, is in accordance with simple
formulas given in Eqs. (17) and (21) showing a clear
connection between the gluon saturation and the measured
transverse momentum of charged hadrons.

IV. CONCLUSION

In high-density QCD, the main source of hadron pro-
duction is the decay of gluon minijets with the transverse
momentum of the order of the saturation scale. This view-
point is based on the fact that the system of partons
(gluons) creates a new state of matter, the so-called color
glass condensate, in which the gluon density reaches the
limited values of the order of 1=�s with new typical
transverse momentum (the saturation scale). We developed
a model that includes the gluon saturation and demon-
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strated that this model is able to describe both the inclusive
hadron production at high energies, including the first data
from the LHC, and the deep inelastic scattering data from
HERA in a unique fashion.

We predicted an increase of dNch=dyj�¼0 mean trans-

verse momentum and the multiplicity of produced charged
hadrons with energy, which is in accordance with the first
LHC data measured by ALICE [1,4], CMS [2], and
ATLAS [3] Collaborations, see Figs. 2, 3, and 6. In the
framework of high-density QCD, all these phenomena are
closely related to the growth of the saturation momentum
as a function of energy and of density of partons. It should
be stressed that the other high-energy phenomenological
approaches [5] cannot describe the dependence of the
average transverse momentum of the produced hadron on
energy and hadron multiplicities.

We showed that recently reported data by the CMS
collaboration [2] on the differential yield of charged had-
rons at low pT for

ffiffiffi
s

p ¼ 2:36 TeV reveal interesting infor-
mation on the minijets production and its connection with
the saturation. We showed that the appearance of a peak in
differential yield of charged hadrons at low pT is closely
related to the minijet mass and the value of the saturation
scale.

We provided various predictions for the upcoming LHC
measurements at higher energies in pp collisions. We
believe that this paper will be useful for the microscopic
interpretation of the upcoming LHC data and will lead to a
deeper understanding of the hadron interactions at high
energy in the framework of QCD.

Concluding this paper, we would like to answer the
question, what can be here considered as a possible signal
of the saturation (CGC) which is not contaminated with the
nonperturbative physics related to unknown confinement
of quarks and gluon? The main nonperturbative parameter
that we have to introduce is mjet. The rapidity distribution

dNch=d� at j�j< 1 (Fig. 2), the pt spectrum of hadron at
low pT � mjet, and the position of the maximum in

d2Nch=d�dpT (Fig. 5) depend on the value of mjet, and

the success of our description indicates that we have
chosen this parameter in a self-consistent way. However,
the energy dependence of dNch=d� at j�j � 3:5 and the
average value of the transverse-momentum hpTi of had-
rons, as well as the multiplicity dependence of hpTi and the

rapidity dependence of the maximum in d2Nch=d�dpT for
j�j � 3:5, are the typical consequences of the saturation
approach, since the main contribution in the calculations of
these observables is originated from the transverse mo-
menta of the order of Qs. Two factors determine the
behavior of the observables at j�j � 3:5: ð1� xÞ4 suppres-
sion of the gluon densities in projectile, and the increase of
the saturation momentum in the target. Since the ð1� xÞ4
factor reflects the well-known behavior of the structure
function F2 at large x, this factor will be the same in all
other approaches, while the additional increase due to the
energy dependence is a typical feature of the saturation
approach. Notice also that at LHC energy

ffiffiffi
s

p ¼ 14 TeV
the contribution of ð1� xÞ4 correction of unintegrated
gluon density within the rapidities region considered here
(Fig. 2) is negligible, and at 7 TeV this contribution is less
than 5%.
The above discussion shows that the comparison of our

prediction with the high LHC energy data will be crucial
for our approach. We are happy to make predictions before
the experimental data from the LHC at high energy. We
believe that if the coming data confirms our predictions this
will be indeed a first important step toward discovery of the
CGC phase of the matter at LHC. The fact that we had to
introduce several phenomenological parameters reflects
our lack of theoretical knowledge for quark and gluon
confinement and cannot be overcome in any models. Our
experience tells us that when the data for higher energies is
published a lot of phenomenological models will appear,
but the CGC (saturation) approach is the only one that
gives the predictions. It has happened once for nucleus-
nucleus scattering at RHIC, and we hope that the situation
will repeat itself at the LHC.
The particle production scheme presented in this paper

can be also applied to the calculation of inclusive hadron
production in heavy-ion collisions at LHC. We are cur-
rently working on this problem and plan to report on this in
the near future.
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