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In light cone gauge, a gauge link at light cone infinity is necessary for transverse momentum-dependent

parton distribution to restore the gauge invariance in some specific boundary conditions. We derive such

transverse gauge link in a more regular and general method. We find the gauge link at light cone infinity

naturally arises from the contribution of the pinched poles: one is from the quark propagator and the other

is hidden in the gauge vector field in light cone gauge. Actually, in the amplitude level, we have obtained a

more general gauge link over the hypersurface at light cone infinity which is beyond the transverse

direction. The difference of such gauge link between semi-inclusive deep inelastic scattering and Drell-

Yan processes can also be obtained directly and clearly in our derivation.
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I. INTRODUCTION

Nucleon structure functions are physical observables
and can be measured in deep inelastic scattering (DIS).
In the naive parton model [1], the structure functions are
expressed in terms of the probability of finding quarks and
gluons in the parent nucleon. In collinear QCD factoriza-
tion formulas, such structure functions can be given by
compact operator matrix elements of the target [2]

qðxÞ ¼ 1

2

Z dy�

2�
e�ixpþy�hPj �c ðy�; ~0?Þn6 L½y�; ~0?; 0; ~0?�

� c ð0; ~0?ÞjPi; (1)

where

L ½y�; ~0?; 0; ~0?� � P exp

�
�ig

Z y�

0
d��Aþð��; ~0?Þ

�

(2)

is the gauge link between the quark fields, which arises
from final state interactions between the struck quark and
the target spectators. In Eqs. (1) and (2), all fields are
evaluated at equal yþ ¼ 0. Since structure functions, as
physical observables, should not be dependent on the
gauge that we choose, it is necessary to introduce such
gauge link to ensure the gauge invariance of matrix ele-
ment. In the light cone gauge Aþ ¼ 0, where the path-
ordered exponential in Eq. (2) reduces to unity, we can
identify the quark distribution in Eq. (1) as a probability
distribution as we made in naive parton model. Actually, in
collinear structure function such as Eq. (1), we can
always select a clever gauge to vanish the gauge link.
But when we consider the transverse-momentum depen-
dent quark distribution, such naive manipulation will result
in inconsistency. In the nonsingular gauge, in which the
gauge potential vanishes at the space-time infinity, the

transverse-momentum parton distribution is defined in
the literature as [2–4]

qðx; ~k?Þ ¼ 1

2

Z dy�

2�

d2 ~y?
ð2�Þ2 e

�ixpþy�þi ~k?� ~y?hPj �c ðy�; ~y?Þn6

�Ly½1; ~y?; y�; ~y?�L½1; ~0?; 0; ~0?�
� c ð0; ~0?ÞjPi; (3)

where

L ½1; ~y?; y�; ~y?� � P exp

�
�ig

Z 1

y�
d��Aþð��; ~y?Þ

�
;

(4)

and all fields are evaluated at equal yþ ¼ 0. From Lorentz
invariance, parity invariance and time reversal invariance,
the transverse-momentum parton distribution can be de-
composed into the following expressions:

qðx; ~k?Þ ¼ fðx; k?Þ þ ~S � ð ~̂p� ~k?Þf?1Tðx; k?Þ=M; (5)

where ~S is the spin of the target nucleon and ~̂p is a unit
vector along the direction of the target momentum in
infinite momentum frame. The function f?1Tðx; k?Þ is just
the Sivers function and can contribute to single spin asym-
metries. It is verified in Ref. [5] that the Sivers function
vanishes unless there is the gauge link in Eq. (4), which is
yielded by the final state interactions [6]. In the light cone
gauge, however, it seems as if the gauge link in Eq. (4)
would become unity and the final interaction vanish ac-
cordingly, too. Hence, there will be inconsistent results
from different gauges, which is impossible, since physical
observables should not depend on the gauge by choice. Ji
and Yuan in [7] have shown that the final state interaction
effects in single spin asymmetry can be recovered properly
in the light cone gauge by taking into account a transverse
gauge link at y� ¼ þ1. Further in [8], Belitsky, Ji, and
Yuan demonstrate the existence of extra leading twist
contributions from transverse components of the gauge*gaojh79@ustc.edu.cn
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potential at the light cone infinity. It turns out that these
contributions just form a transverse gauge link in light cone
gauge. In this paper, we will give another more regular and
systematic method to obtain such transverse gauge link in
light cone gauge. We find the gauge link at light cone
infinity will arise naturally from the pinched poles, one
of which is provided by the quark propagator and the other
is hidden in the gauge vector field in light cone gauge.
Actually, it turns out that we obtain a more general gauge
link over hypersurface y� ¼ 1, instead of only transverse
gauge link. The difference of such gauge link between
semi-inclusive deep inelastic scattering (SIDIS) and
Drell-Yan (DY) processes can also be shown directly and
clearly in our derivation. The paper is organized as follows:
in the next section, we will introduce some kinetics defi-
nitions and notations which will be involved all through
our paper. In Sec. III, we would like to give a brief review
on the singularity in light cone gauge and different pre-
scriptions for different light cone pole structures. Then in
Sec. IV, we will devote to deriving the gauge link in light
cone gauge in SIDIS process. In Sec. V, we will deal with
the DY process and compare it with the SIDIS process. A
very short summary is given in the end. Other relevant
work on the transverse gauge link can be found in the
literature [9,10].

II. SOME DEFINITIONS AND NOTATIONS

In studying SIDIS or DY process, it is convenient to
choose the light cone coordinate system in which we
introduce two lightlike vectors n� and �n�,

n� ¼ ð0; 1; ~0?Þ; �n� ¼ ð1; 0; ~0?Þ; n � �n ¼ 1: (6)

With these basis vectors, we may write any vector k� as

(kþ; k�; ~k?), where kþ ¼ k � n; k� ¼ k � �n. For example,
in SIDIS process, we choose the proton infinite momentum
frame, in which the proton’s momentum and the virtual
photon’s momentum are given by, respectively,

p� ¼ pþ �n�; q� ¼ �xBp
� þ Q2

2xBp
þ n�: (7)

where xB ¼ Q2=2p � q and Q2 ¼ �q2.
In order to make the derivation more compact and

elegant in the following sections, let us introduce some
notations. For any momentum vector k� and the gauge
potential vector A�, we will manipulate the following
decomposition:

k� ¼ ~k� þ xp�; A� ¼ ~A� þ Aþ �n�; (8)

where ~k� ¼ ð0; k�; ~k?Þ, x ¼ kþ=pþ, and ~A� ¼
ð0; A�; ~A?Þ. For any coordinate vector y�, we will make
the dual decomposition,

y� ¼ _y� þ y�n�; (9)

where _y� ¼ ðyþ; 0; ~y?Þ. When there is no confusion, we

will rewrite y� as (y�; _y). With such notations, we have k �
y ¼ ~k � _yþ xpþy�, and in light cone gauge where Aþ ¼
0, we also have A� ¼ ~A�. It should be noted that in light
cone coordinate, the covariant vector and contravariant
vector are related by Aþ ¼ A�, A� ¼ Aþ and A? ¼ �A?.

III. SPURIOUS SINGULARITY IN LIGHT CONE
GAUGE

The light cone gauge n � A ¼ 0 is widely used in per-
turbative QCD calculations [11,12], and under such a
physical gauge condition, the probability interpretation is
expected to hold. The Yang-Mills theories, quantized in
light cone gauge, have been studied by several authors
[13,14]. However, when we calculate with the gauge
propagator in such gauge in perturbation theory, we have
to introduce some spurious pole to regularize associated
light cone singularity. There have been a variety of pre-
scriptions suggested to handle the singularities [15–19], in
which most attempts were pragmatic. The literature [8,20]
states that in general, in light cone gauge, the gauge
potential can not be arbitrarily set to vanish at the infinity,
the spurious singularities, characteristic of all the axial
gauges, are physically related to the boundary conditions
that one can impose on the potentials at the infinity. In our
paper, we will consider three different boundary conditions
as in [8], i.e.

Advanced: ~Að1; _yÞ ¼ 0;

Retarded: ~Að�1; _yÞ ¼ 0;

Antisymmetric: ~Að�1; _yÞ þ ~Að1; _yÞ ¼ 0:

(10)

The typical integration we will meet with in our derivation
is the Fourier transformation of the gauge potential, such as

~A �ðkþ; _yÞ �
Z 1

�1
dy�eikþy� ~A�ðy�; _yÞ: (11)

Manipulating this integration by parts, we obtain

Z 1

�1
dy�eikþy� ~A�ðy�; _yÞ

¼
�
i

kþ

�Z 1

�1
dy�eikþy�@þ ~A�ðy�; _yÞ; (12)

where @þ ¼ @� ¼ @=@y�. Since the boundary condition is
set, the term [ i

kþ ] can be regularized by definite prescrip-

tion,

Advanced:

�
i

kþ

�
¼ i

kþ � i�
;

Retarded:

�
i

kþ

�
¼ i

kþ þ i�
;

Antisymmetric:

�
i

kþ

�
¼ 1

2

�
i

kþ þ i�
þ i

kþ � i�

�
;

(13)

where the last propose is just the conventional principal
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value regulation when the antisymmetry boundary condi-
tion is assigned. Hence, we notice that there is a secret pole
structure in gauge potential in momentum space. We will
show that it is just this pole that will contribute to the final
gauge link at the light cone infinity.

The easiest way to illustrate the validity of such regu-
larization is just to set

~A �ðy�Þ ¼
8<
:
Advanced: �ð�y�Þ;
Retarted: �ðy�Þ;
Antysymmetry: 1

2½�ðy�Þ � �ð�y�Þ�;
(14)

where the function �ðy�Þ is the usual step function. It is a
trivial exercise to show that they can result in the proper
pole structure as we present in Eq. (10).

As we mentioned above, in the light cone gauge, we can
not impose on the gauge potential the boundary condition

both ~A�ðþ1; _yÞ ¼ 0 and ~A�ð�1; _yÞ ¼ 0. We can only

choose either of them as the boundary condition to remove
the residual gauge freedom and the other one will be
subjected to satisfy the field equation or the request that
the total gauge energy momentum is finite. However, as a
matter of fact, we can still impose a weaker condition, that
the gauge potential must be a pure gauge. In the Abelian
case,

~A �ð�1; _yÞ ¼ ~@��ð�1; _yÞ (15)

or in the non-Abelian case

~A �ð�1; _yÞ ¼ !�1ð�1; _yÞ~@�!ð�1; _yÞ; (16)

where ! ¼ expði�Þ. In the non-Abelian case, ~A� � ~Aa
�t

a

and � � �ata where ta are the generators of non-Abelian
group in the fundamental representation. Keeping the lead-
ing term in the Tailor expansion of! around�, we recover
the same expression as Eq. (15) in the Abelian case. It
follows that

�ðþ1; _yÞ ¼ �
Z _1

_y
d _� � ~Aðþ1; _�Þ; (17)

where the integral runs over any path on the hypersurface
y� ¼ 1. Notice that this equation always holds for
Abelian gauge potential, and holds for the non-Abelian
case only when the� is small. It will be interesting thing to
investigate what the nonleading terms contribute to in the
non-Abelian case, which is beyond the scope of this paper.
We will show that the linear term, such as in Eq. (17), will
lead to the gauge link at the light cone infinity.

IV. GAUGE LINK IN LIGHT CONE GAUGE
IN SIDIS

In DIS process, the hadronic tensor is defined by

W�� ¼ 1

4�

X
X

Z d3pJ

ð2�Þ3 ð2�Þ
4	ð4ÞðPX þ pJ � p� qÞ

� hPjj�ð0ÞjpJ; XihpJ; Xjj�ð0ÞjPi: (18)

The tree scattering amplitude corresponding to Fig. 1 reads

M
�
0 ¼ hpJ; Xjj�ð0ÞjPið0Þ ¼ �uðkþ qÞ
�hXjc ð0ÞjPi;

(19)

where k denotes the momentum of intial quark scattered by
the photon with momentum q.
The one-gluon amplitude in light cone gauge corre-

sponding to Fig. 2 reads

M�
1 ¼

Z d4k1
ð2�Þ4

Z
d4y1e

iðk�k1Þ�y1 �uðkþ qÞ
�1

� k6 1 þ q6
ðk1 þ qÞ2 þ i�

hXj ~A�1
ðy1Þ
�c ð0ÞjPi: (20)

The quark propagator can be decomposed into two parts,

k6 1 þ q6
ðk1 þ qÞ2 þ i�

¼ 1

2p � ðk̂1 þ qÞ
�

k̂6 1 þ q6
ðx1 � x̂1 þ i�Þ þ p6

�
;

(21)

where k̂1 � ðx̂1pþ; k�1 ; k1?Þ with x̂1 ¼ k̂þ=pþ ¼
xB þ k2?=2p � ðk1 þ qÞ is determined by the on-shell con-

dition ðk̂1 þ qÞ2 ¼ 0. Actually, to obtain the Eq. (21), we
have neglected the contribution

FIG. 1. The tree diagram in DIS process.

FIG. 2. The one-gluon exchange diagram in DIS process.
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�ð�k�1 � q�Þ
2p � ðk̂1 þ qÞ

�
k̂6 1 þ q6

ðx1 � x̂1 � i�Þ þ p6
�
; (22)

which will contribute at higher twist level since they vanish
in the limit q� ! þ1. The last term in Eq. (21) is the so-
called ‘‘contact’’ term of a normal propagator which does
not propagate along the light cone coordinate [21]. Such a
contact term will always result in higher twist contribution
and does not contribute to gauge link at all. Hence, when
we are considering the leading twist contribution in our
following derivation, we can just drop such contact terms
and only keep the pole terms, i.e. the first term in Eq. (21):

M̂�
1 ¼

Z d3 ~k1
ð2�Þ4

Z
d3 _y1

Z pþdx1
2�

Z
dy�1

� eið~k�~k1Þ� _y1þiðx�x1Þpþy� 1

2p � ðk̂1 þ qÞ �uðk̂þ qÞ
�1

� k̂6 1 þ q6
ðx1 � x̂1 þ i�Þ hXj

~A�1
ðy1Þ
�c ð0ÞjPi; (23)

where another notation M̂
�
1 with extra an ^ is introduced to

remind us that the only pole term is kept, and we have also
separate the integral over x1 and y�1 from the others which
means we will finish integrating them out first in the
following. Before proceeding further, we should first
choose a specific boundary condition for the gauge poten-

tial ~A� at infinity. Let us start with the retarded boundary

condition ~Að1; _yÞ ¼ 0. Using the Eq. (12) accordingly
which corresponds to retarded boundary condition, we
have

M̂
�
1 ¼

Z d3 ~k1
ð2�Þ4

Z
d3 _y1

Z dx1
2�

Z
dy�1

� eið~k�~k1Þ� _y1þiðx�x1Þpþy� �uðkþ qÞ
�1

� k̂6 1 þ q6
2p � ðk̂1 þ qÞ

1

ðx1 � x̂1 þ i�Þ
i

ðx� x1 þ i�Þ
� hXj@þ ~A�1

ðy1Þ
�c ð0ÞjPi: (24)

Now, we can finish integrating over x1 and y�1 first,

Z dx1
2�

Z
dy�1 e

iðx�x1Þpþy� 1

ðx1 � x̂1 þ i�Þ
i

ðx� x1 þ i�Þ
� @þ ~A�1

ðy1Þ
¼ 1

x� x̂1

Z
dy�1 ð�ðy�Þeiðx�x̂1Þpþy� þ �ð�y�ÞÞ@þ ~A�1

ðy1Þ

¼ 1

x� x̂1

Z
dy�1 ð�ðy�Þ þ �ð�y�ÞÞ@þ ~A�1

ðy1Þ
þ higher twist

¼ 1

x� x̂1
~A�1

ðþ1; _y1Þ þ higher twist; (25)

where only the leading term in the Tailor expansion of the

phase factor eiðx�x̂1Þpþy� is kept, because the other terms
are proportional to ðx� x̂1Þn ¼ ½k2?=2p � ðkþ qÞ �
k21?=2p � ðk1 þ qÞ�n (n � 1), which will contribute at

higher twist level. Only keep leading twist contribution
and inserting Eq. (25) into Eq. (24), we have

M̂1 ¼
Z d3 ~k1

ð2�Þ4
Z

d3 _y1e
ið~k�~k1Þ� _y1 �uðkþ qÞ
�1

� k̂6 1 þ q6
2p � ðk̂1 þ qÞ

1

x� x̂1
hXj ~A�1

ðþ1; _y1Þc ð0ÞjPi:

(26)

Using Eq. (15) and performing the integration by parts over

_y1 where ~@� ! �ið~k� ~k1Þ�, we obtain

M̂ 1 ¼
Z d3 ~k1

ð2�Þ4
Z

d3 _y1e
ið~k�~k1Þ� _y1 �uðkþ qÞð~k6 � ~k6 1Þ

� k̂6 1 þ q6
2p � ðk̂1 þ qÞ

�i

x� x̂1
hXj�ðþ1; _y1Þc ð0ÞjPi:

(27)

To carry out the matrix algebra further, we note that

~k6 � ~k6 1 ¼ ðk6 þ q6 Þ � ðk̂6 1 þ q6 Þ � ðx� x̂1Þp6 ; (28)

together with the on-shell conditions

�uðkþ qÞðk6 þ q6 Þ ¼ 0; and ðk̂6 1 þ q6 Þ2 ¼ 0: (29)

Using these equations, we reduce the M̂1 into

M̂1 ¼
Z d3 ~k1

ð2�Þ4
Z

d3 _y1e
ið~k�~k1Þ� _y1 �uðkþ qÞp6 ðk̂6 1 þ q6 Þ

� �i

2p � ðk̂1 þ qÞ hXj�ðþ1; _y1Þc ð0ÞjPi

¼ �uðkþ qÞhXji�ðþ1; 0Þc ð0ÞjPi

þ
Z d3 ~k1

ð2�Þ4
Z

d3 _y1e
ið~k2�~k1Þ� _y1 �uðkþ qÞð~k6 � ~k6 1Þp6

� �i

2p � ðk̂1 þ qÞ hXj�ðþ1; _y1Þc ð0ÞjPi: (30)

Since the last term in Eq. (30) only contributes to higher
twist, keeping only the leading twist contribution, we
finally obtain

M̂ 1 ¼ �uðkþ qÞhXji�ðþ1; 0Þc ð0ÞjPi: (31)

So far, the previous derivations have been restricted to

the retarded boundary condition where ~Að�1; _yÞ ¼ 0, now
let us turn to the other two boundary conditions. When we

assign the advanced boundary condition, ~Aðþ1; _yÞ ¼ 0,
which means that we should choose the advanced one in
Eqs. (12) and (13). Such a sign change in the pole structure
will lead to replacing the integration in Eq. (25) by
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Z dx1
2�

Z
dy�1 e

iðx�x1Þpþy� 1

ðx1 � x̂1 þ i�Þ
i

ðx� x1 � i�Þ
� @þ ~A�1

ðy1Þ
¼ 1

x� x̂1

Z
dy�1 ð�ðy�Þeiðx�x̂1Þpþy� � �ðy�ÞÞ@þ ~A�1

ðy1Þ
¼ higher twist: (32)

We note that, different from retarded case, the leading
contributions from two poles have canceled each other
completely, and there will be no gauge link at all. As shown
by [8], all final state interactions have been included into
the initial state light cone wave functions.

If we choose the antisymmetry boundary condition,
which corresponds to the principal value regularization,
we have

Z dx1
2�

Z
dy�1 e

iðx�x1Þpþy� 1

ðx1 � x̂1 þ i�ÞPV
i

ðx� x1Þ
� @þ ~A�1

ðy1Þ
¼ 1

x� x̂1

Z
dy�1

1

2
ð2�ðy�Þeiðx�x̂1Þpþy� � �ðy�Þ

þ �ð�y�ÞÞ@þ ~A�1
ðy1Þ

¼ 1

x� x̂1

Z
dy�1

1

2
ð�ðy�Þ þ �ð�y�ÞÞ@þ ~A�1

ðy1Þ
þ higher twist

¼ 1

x� x̂1
~A�1

ðþ1; _y1Þ þ higher twist; (33)

where PV denotes principal value. The above result appear
the same as the one in the retarded boundary condition. The
difference between retarded and principal value regulari-
zation is that final state scattering effects appear only
through the gauge link in principal regularization, while

they appear through both the gauge link and initial light
cone wave functions in retarded regularization. Such de-
tailed discussion and illustration can be found in Ref. [8].
In the above derivation, we notice that the pinched poles
are needed to pick up the gauge potential at the light cone
infinity, which will be shown to result in the gauge link that
we expect. In the following, we will only concentrate
on the retarded boundary condition in the following
derivation.
Now let us consider further the two-gluon exchange

scattering amplitude in Fig. 3,

M�
2 ¼

Z d4k2
ð2�Þ4

d4k1
ð2�Þ4

Z
d4y2d

4y1

� eiðk�k2Þ�y2þiðk2�k1Þ�y1 �uðkþ qÞ
�2

� k6 2 þ q6
ðk2 þ qÞ2 þ i�


�1
k6 1 þ q6

ðk1 þ qÞ2 þ i�

� hXj ~A�2
ðy2Þ ~A�1

ðy1Þ
�c ð0ÞjPi: (34)

Just following what we did in the M
�
1 , we drop the contact

terms which do not contribute in leading twist level and

label the residual terms as M̂2, which is given by

M̂
�
2 ¼

Z d3 ~k2
ð2�Þ3

d3 ~k1
ð2�Þ3

Z
d3 _y2d

3 _y1
Z pþdx2

2�

pþdx1
2�

Z
dy�2 dy

�
1 e

ið~k�~k2Þ� _y2þið~k2�~k1Þ� _y1þiðx�x2Þpþy�
2
þiðx2�x1Þpþy�

1 �uðkþ qÞ
�2

� k̂6 2 þ q6
2p � ðk̂2 þ qÞ


�1
k̂6 1 þ q6

2p � ðk̂1 þ qÞ
1

ðx2 � x̂2 þ i�Þ
1

ðx1 � x̂1 þ i�Þ hXj
~A�2

ðy2Þ ~A�1
ðy1Þ
�c ð0ÞjPi: (35)

Still with the help of the regularization in Eqs. (12) and (13), let us do integrating over x1 and y�1 first,

M̂
�
2 ¼

Z d3 ~k2
ð2�Þ3

d3 ~k1
ð2�Þ3

Z
d3 _y2d

3 _y1
Z dx2

2�

pþdx1
2�

Z
dy�2 dy

�
1 e

ið~k�~k2Þ� _y2þið~k2�~k1Þ� _y1þiðx�x2Þpþy�
2
þiðx2�x1Þpþy�

1 �uðkþ qÞ
�2

� k̂6 2 þ q6
2p � ðk̂2 þ qÞ


�1
k̂6 1 þ q6

2p � ðk̂1 þ qÞ
1

ðx2 � x̂2 þ i�Þ
i

ðx̂� x2 þ i�Þ
1

ðx1 � x̂1 þ i�Þ hXj@
þ ~A�2

ðy2Þ ~A�1
ðy1Þ
�c ð0ÞjPi

¼
Z d3 ~k2

ð2�Þ3
d3 ~k1
ð2�Þ3

Z
d3 _y2d

3 _y1
Z pþdx1

2�

Z
dy�1 e

ið~k�~k2Þ� _y2þið~k2�~k1Þ� _y1þiðx�x1Þpþy�1 � �uðkþ qÞ
�2
k̂6 2 þ q6

2p � ðk̂2 þ qÞ

�1

� k̂6 1 þ q6
2p � ðk̂1 þ qÞ

1

ðx� x̂2 þ i�Þ
1

ðx1 � x̂1 þ i�Þ hXj
~A�2

ðþ1; _y2Þ ~A�1
ðy1Þ
�c ð0ÞjPi: (36)

FIG. 3. The two-gluon exchange diagram in DIS process.

DERIVATION OF THE GAUGE LINK IN LIGHT CONE GAUGE PHYSICAL REVIEW D 82, 014018 (2010)

014018-5



Further integrating over x2 and y�2 , which is totally the same as what we did with x1 and y�1 . The results read

M̂�
2 ¼

Z d3 ~k2
ð2�Þ3

d3 ~k1
ð2�Þ3

Z
d3 _y2d

3 _y1e
ið~k�~k2Þ� _y2þið~k2�~k1Þ� _y1 �uðkþ qÞ
�2

k̂6 2 þ q6
2p � ðk̂2 þ qÞ


�1
k̂6 1 þ q6

2p � ðk̂1 þ qÞ
1

ðx� x̂2 þ i�Þ
� 1

ðx� x̂1 þ i�Þ hXj
~A�2

ðþ1; _y2Þ ~A�1
ðþ1; _y1Þ
�c ð0ÞjPi

¼
Z d3 ~k2

ð2�Þ3
d3 ~k1
ð2�Þ3

Z
d3 _y2d

3 _y1e
ið~k�~k2Þ� _y2þið~k2�~k1Þ� _y1 �uðkþ qÞ
�2

k̂6 2 þ q6
2p � ðk̂2 þ qÞ


�1
k̂6 1 þ q6

2p � ðk̂1 þ qÞ
1

ðx� x̂2 þ i�Þ
� 1

ðx� x̂1 þ i�Þ hXj~@�2
�ðþ1; _y2Þ~@�1

�ðþ1; _y1Þ
�c ð0ÞjPi: (37)

Now, we are in a position to perform integrating over ~k2 and _y2. Thanks to the integration by parts and the algebras given in
Eqs. (28) and (29), we obtain

M̂
�
2 ¼

Z d3 ~k1
ð2�Þ3

Z
d3 _y1e

ið~k�~k1Þ� _y1 �uðkþ qÞ
�1
k̂6 1 þ q6

2p � ðk̂1 þ qÞ
1

ðx� x̂1 þ i�Þ hXji�ðþ1; _y1Þ~@�1
�ðþ1; _y1Þ
�c ð0ÞjPi

¼
Z d3 ~k1

ð2�Þ3
Z

d3 _y1e
ið~k2�~k1Þ� _y1 �uðkþ qÞ
�1

k̂6 1 þ q6
2p � ðk̂1 þ qÞ

1

ðx� x̂1 þ i�Þ hXj
i

2
~@�1

�2ðþ1; _y1Þ
�c ð0ÞjPi: (38)

Repeat what we did with ~k2 and _y2 above, and we can finish integrating over ~k1 and _y1 and finally arrive at

M̂
�
2 ¼ �uðkþ qÞhXj i

2

2!
�2ðþ1; 0Þ
�c ð0ÞjPi: (39)

All through calculating M̂2, as we did with M̂1, we have neglected the higher twist contributions and only keep the leading
twist terms. FromM1 toM2, it is obvious that our procedure can be easily extended to n-gluon exchange amplitudeMn in
Fig. 4, which is given by

M̂n ¼
Z Yn

j¼1

d3 ~kj

ð2�Þ3 d
3 _yje

ið~kn�~kn�1Þ� _ynþið~kn�1�~kn�2Þ� _yn�1þ���þið~k2�~k1Þ� _y2
Yn
j¼1

pþdxj
2�

dy�j eiðxnþ1�xnÞpþy�n þiðxn�xn�1Þpþy�n�1þ���þiðx2�x1Þpþy�1

� �uðkþqÞ
�n
k̂6 n þq6

2p � ðk̂n þ qÞ � � �

�1

k̂6 1 þq6
2p � ðk̂1 þqÞ

1

ðxn � x̂n þ i�Þ � � �
1

ðx1 � x̂1 þ i�Þ
� hXj ~A�n

ðynÞ ~A�n�1
ðyn�1Þ � � � ~A�1

ðy1Þc ð0ÞjPi: (40)

We first finish integrating from xn, y
�
n to x1, y

�
1 one by one. Keeping the leading twist contribution, we have

M̂ n ¼
Z Yn

j¼1

d3 ~kj

ð2�Þ3 d
3 _yje

ið~knþ1�~knÞ� _ynþið~kn�~kn�1Þ� _yn�1þ���þið~k2�~k1Þ� _y2 �uðkþ qÞ
�n
k̂6 n þ q6

2p � ðk̂n þ qÞ � � �

�1

k̂6 1 þ q6
2p � ðk̂1 þ qÞ

� 1

ðx̂nþ1 � x̂nÞ � � �
1

ðx̂2 � x̂1Þ hXj
~A�n

ðþ1; _ynÞ ~A�n�1
ðþ1; _yn�1Þ � � � ~A�1

ðþ1; _y1Þc ð0ÞjPi; (41)

or using

~A �n
ðþ1; _ynÞ ¼ ~@�n

�ðþ1; _ynÞ; (42)

we rewrite it as

M̂ n ¼
Z Yn

j¼1

d3 ~kj

ð2�Þ3 d
3 _yje

ið~knþ1�~knÞ� _ynþið~kn�~kn�1Þ� _yn�1þ���þið~k2�~k1Þ� _y2 �uðkþ qÞ
�n
k̂6 n þ q6

2p � ðk̂n þ qÞ � � �

�1

k̂6 1 þ q6
2p � ðk̂1 þ qÞ

� 1

ðx̂nþ1 � x̂nÞ � � �
1

ðx̂2 � x̂1Þ hXj
~@�n

�ðþ1; _ynÞ~@�n�1
�ðþ1; _yn�1Þ � � � ~@�1

�ðþ1; _y1Þc ð0ÞjPi: (43)
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Continue to integrating over from ~kn and _yn to ~k1 and _y1
one by one, we can finally have

M̂ n ¼ �uðkþ qÞhXj i
n

n!
�nðþ1; 0Þc ð0ÞjPi: (44)

As a final step, we should resum to all orders and obtain

X1
n¼0

M̂n ¼ �uðkþ qÞhXj expði�ðþ1; 0ÞÞc ð0ÞjPi; (45)

or the more conventional form

X1
n¼0

M̂n ¼ �uðkþ qÞhXjP exp

�
�i

Z _1

_y
d _� � ~Aðþ1; _�Þ

�

� c ð0ÞjPi; (46)

where P expð�i
R

_1
_y d _� � ~Aðþ1; _�ÞÞ is just the gauge link

that we tried to derive. It should be noted that the gauge
link we obtain in the final result Eq. (46) is over the
hypersurface at light cone infinity along any path integral,
not restricted along the transverse direction, which means
that it is more general than what Belitsky, Ji, and Yuan have
obtained in Ref. [8].

V. GAUGE LINK IN LIGHT CONE GAUGE IN DY

Now let us turn to the DY process, which is represented
in Fig. 5, where, for brevity, we have fixed the target to be a
nucleon and the projectile to be just an antiquark, q is the
virtual photon’s momentum and q� k and p is momentum
of the projectile and target, respectively. Such simplifying
does not lose any generality when we are only considering

how to derive the gauge link, but it will be more convenient
and manifest to compare with the SIDIS process. We still
choose the light cone coordinate system, and use the two
lightlike vectors n� and �n� to fix ‘‘plus’’ and ‘‘minus’’
directions. All the notations and conventions are the same
as in DIS. The one-gluon exchange amplitude reads

M
�
1ðDYÞ ¼

Z d4k1
ð2�Þ4

Z
d4y1e

iðk�k1Þ�y1 �uðq� kÞ
�1

� q6 � k6 1
ðq� k1Þ2 þ i�

hXj ~A�1
ðy1Þ
�c ð0ÞjPi: (47)

Dropping the contact terms and assigning the retarded
boundary condition, we rewrite it as

M̂�
1ðDYÞ ¼

Z d3 ~k1
ð2�Þ4

Z
d3 _y1

Z dx1
2�

Z
dy�1 eið

~k�~k1Þ� _y1

� eiðx�x1Þpþy� �uðq� kÞ
�1
q6 � k̂6 1

2p � ðk̂1 � qÞ
� 1

ðx1 � x̂1 � i�Þ
i

ðx� x1 þ i�Þ
� hXj@þ ~A�1

ðy1Þ
�c ð0ÞjPi: (48)

It should be noticed the difference of the pole structure
between Eqs. (48) and (24). Just like we did in the SIDIS,
we can finish integrating over x1 and y�1 first,

Z dx1
2�

Z
dy�1 eiðx�x1Þpþy� 1

ðx1 � x̂1 � i�Þ
i

ðx� x1 þ i�Þ@
þ ~A�1

ðy1Þ

¼ � 1

x� x̂1

Z
dy�1 ð�ð�y�Þeiðx�x̂1Þpþy� � �ð�y�ÞÞ@þ ~A�1

ðy1Þ

¼ � 1

x� x̂1

Z
dy�1 ð�ð�y�Þ � �ð�y�ÞÞ@þ ~A�1

ðy1Þ þ higher twist ¼ higher twist: (49)

Opposite to the case in SIDIS, the retarded boundary condition does not lead to the gauge link at the light cone infinity and
hence all the final state interaction effects must be shifted into the initial light cone wave functions. For the advanced
boundary condition, we have

FIG. 5. The one-gluon exchange diagram in DY process.

FIG. 4. The n-gluon exchange diagram in DIS process.
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M̂
�
1ðDYÞ ¼

Z d3 ~k1
ð2�Þ4

Z
d3 _y1

Z dx1
2�

Z
dy�1 e

ið~k�~k1Þ� _y1eiðx�x1Þpþy� �uðq� kÞ
�1
q6 � k̂6 1

2p � ðk̂1 � qÞ
1

ðx1 � x̂1 � i�Þ
i

ðx� x1 � i�Þ
� hXj@þ ~A�1

ðy1Þ
�c ð0ÞjPi: (50)

Finish integrating over x1 and y�1 :
Z dx1

2�

Z
dy�1 eiðx�x1Þpþy� 1

ðx1 � x̂1 � i�Þ
i

ðx� x1 � i�Þ @
þ ~A�1

ðy1Þ

¼ � 1

x� x̂1

Z
dy�1 ð�ð�y�Þeiðx�x̂1Þpþy� þ �ðy�ÞÞ@þ ~A�1

ðy1Þ

¼ � 1

x� x̂1

Z
dy�1 ð�ð�y�Þ þ �ðy�ÞÞ@þ ~A�1

ðy1Þ þ higher twist ¼ 1

x� x̂1
~A�1

ð�1; _y1Þ þ higher twist: (51)

If we choose the antisymmetry boundary condition, we have

Z dx1
2�

Z
dy�1 e

iðx�x1Þpþy� 1

ðx1 � x̂1 � i�ÞPV
i

ðx� x1Þ@
þ ~A�1

ðy1Þ

¼ 1

x� x̂1

Z
dy�1

1

2
ð�2�ð�y�Þeiðx�x̂1Þpþy� � �ðy�Þ þ �ð�y�ÞÞ@þ ~A�1

ðy1Þ

¼ � 1

x� x̂1

Z
dy�1

1

2
ð�ðy�Þ þ �ð�y�ÞÞ@þ ~A�1

ðy1Þ þ higher twist ¼ 1

x� x̂1
~A�1

ð�1; _y1Þ þ higher twist: (52)

The difference between advanced and principal value regu-
larization in the DY process is that final state scattering
effects appear only through the gauge link in principal
value regularization, while they appear through both the
gauge link and initial light cone wave functions in ad-
vanced regularization. It follows that

M̂ 1ðDYÞ ¼ �uðq� kÞhXj
�
�i

Z _y

� _1
d _� � ~Að�1; _�Þ

�
c ð0ÞjPi:

(53)

Just as in the SIDIS process, the pinched poles are indis-
pensable to produce a finite contribution in the leading
twist level. Following the same line as the one carried
out in SIDIS, we show that the gauge link in advanced or
antisymmetry boundary conditions is given by

X1
n¼0

M̂nðDYÞ ¼ �uðq� kÞhXjP exp

�
�i

Z _y

� _1
d _� � ~Að�1; _�Þ

�

� c ð0ÞjPi: (54)

It should be noted that the light cone infinity y� ¼ þ1 has
been replaced by y� ¼ �1, reflecting that the gauge link
arises from the initial state interactions rather than from the
final state.

To summarize, in light cone gauge, we should choose a
specific boundary condition first to fix the residual gauge

freedom. Using the proper regularization corresponding to
specific boundary condition, we can obtain the residual
gauge link at infinity along the light cone coordinate. We
find the gauge link at light cone infinity arises naturally
from the pinched poles: one is from the quark propagator
and the other is hidden in the gauge vector field in light
cone gauge. Actually, it turns out that we obtain a more
general gauge link over hypersurface y� ¼ 1, which is
beyond the transverse gauge link. The difference of such
gauge link between SIDIS and DY processes can also be
obtained directly and clearly in our derivation. We expect
our regularization method will also be valuable to make it
possible to perform higher twist calculations in light cone
gauge more unambiguously.
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