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In this manuscript we study the vector-vector interaction within the hidden-gauge formalism in a

coupled channel unitary approach. In the sector C ¼ 1, S ¼ 1, J ¼ 2 we get a pole in the T matrix around

2572 MeV that we identify with the D�
s2ð2573Þ, coupling strongly to the D�K�ðD�

s�ð!ÞÞ channels. In
addition we obtain resonances in other exotic sectors which have not been studied before such as C ¼ 1,

S ¼ �1, C ¼ 2, S ¼ 0 and C ¼ 2, S ¼ 1. These ‘‘flavor-exotic’’ states are interpreted as D� �K�, D�D�,
and D�

sD
� molecular states but have not been observed yet. In total we obtain nine states with different

spin, isospin, charm, and strangeness of non-C ¼ 0, S ¼ 0 and C ¼ 1, S ¼ 0 character, which have been

reported before.
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I. INTRODUCTION

The D�
s2ð2573Þ was first observed by the CLEO collabo-

ration in 1994 [1]. Within the heavy quark symmetry
framework (HQS), the spin of the heavy quark and the
total angular momentum of the light quark are separately
conserved. As a consequence, the heavy-light systems can
be grouped in one doublet with jl ¼ 3=2 and JP ¼ 1þ; 2þ
and a second doublet with jl ¼ 1=2 and JP ¼ 0þ; 1þ. Here
jl denotes the total spin of the light quark. While the jl ¼
3=2 states are relatively narrow, the states of the jl ¼ 1=2
doublet are very broad [2]. When the D�

s2ð2573Þ was ob-
served for the first time, it was regarded as the possible
jl ¼ 3=2-doublet partner of the D�

s1ð2536Þ in this picture.

However, the quark model reveals some problems in the c �s
spectrum. First of all, the doublet with JP ¼ 0þ; 1þ has not
been observed for a long time although it is predicted to be
very broad [2]. Furthermore, the later discovery of the
D�

s0ð2317Þ and the Ds1ð2460Þ by the CLEO [3] and

BABAR [4] collaborations are difficult to explain in terms
of quark models.

Even if the JP ¼ 0þ assignment for the D�
s0ð2317Þ me-

son gets confirmed, the D�
s0ð2317Þ and Ds1ð2460Þ masses

and widths are in contradiction to typical quark model
predictions. The physical masses lie around 100 MeV
below the quark potential model which estimates a mass
of the D�

s0ð2317Þ of 2.48 [2,5] or 2.49 GeV [6] and 2.53–

2.57 GeV for the Ds1ð2460Þ.
In addition, the widths for these two states are very

small, <3:5 and <3:8 MeV for the D�
s0ð2317Þ and

Ds1ð2460Þ, respectively. This is in disagreement with the
HQS prediction expecting a broad jl ¼ 1=2 doublet with
JP ¼ 0þ; 1þ. A possible solution suggested by many au-
thors is that the strong S-wave coupling of theD�

sJ states to
the DKðD�KÞ decay channel and the proximity to the
thresholds could shift the respective masses [7–12]. Since

the standard c�s scenario is in disagreement with experi-
mental observations, alternative structure interpretations
have been made. For instance a four-quark picture could
be more likely [7], where the strong S-wave coupling to
PP and PV might be the key to the unusual properties of
the new light DsJ mesons.
In [13] two different models are used to study coupled

channels of pseudoscalar mesons. In the first approach the
PP interaction is set up by a chiral Lagrangian while the
second method is provided by a phenomenological model
based on a SUð4Þ symmetric Lagrangian. Subsequently,
the symmetry is broken down to SUð3Þ by identifying the
suppressed currents where heavy vector mesons are ex-
changed. Both models, the chiral Lagrangian and the phe-
nomenological model, lead to very similar results. The
unitarization in the coupled channel formalism generates
dynamically the Ds0ð2317Þ as a bound state from the DK
and Ds� channels essentially. Here, the chiral symmetry
can be restored by setting these new SUð4Þ symmetry
breaking parameters to zero and using a unique f� parame-
ter [14]. The results of [13] are comparable to those ob-
tained in [15] where an effective Lagrangian approach is
used assuming a pure DK molecular structure for the
Ds0ð2317Þ. In addition, similar results are obtained in
[16,17] omitting the exchange of heavy vector mesons.
In a later work, the coupled channel analysis of [13] was
extended by a phenomenological model for the PV inter-
action [18]. As a conclusion, the Ds1ð2460Þ and the
Ds1ð2536Þ are obtained in this work as very narrow peaks
from the KD�ð�D�

sÞ and DK�ðDs!ð�ÞÞ channels, respec-
tively. We emphasize that in this work very few parameters
are used in comparison with the large amount of informa-
tion obtained. Similarly, in [19,20] the Ds1ð2460Þ is also
considered as a hadronic bound state of a K and a D�
meson. The work of [21] used a chiral Lagrangian based
on heavy quark symmetry for the open charm sector which
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neglects exchanges of heavy vector mesons in the implicit
Weinberg-Tomozawa term.

The success of the PP and PV coupled channels in the
charm-strange sector motivates the extension to VV inter-
action. The vector meson interaction can be included in the
chiral Lagrangian by means of the hidden-gauge formal-
ism. In the present paper we extend the two-meson mo-
lecular idea to two vector mesons. We concentrate on
dynamically generated resonances with charm-strange
(C ¼ 1, S ¼ 1) quantum numbers and exotic sectors which
have not been addressed before from this point of view.

In [22] the authors used the hidden-gauge Lagrangian,
together with a unitary approach, to study the �� interac-
tion. The potential was strong enough to bind the ��
system and two states around 1270 and 1500 MeV were
obtained as poles in the �� scattering amplitude. They
were identified with the f2ð1270Þ and f0ð1375Þ, respec-
tively. The decay of these resonances was provided by
means of box diagrams with two or four pions in the
intermediate state. This mechanism provided a width of
the order of 110 and 200 MeV, respectively, for these
states, which is comparable to the data in the PDG [23].
Actually, there are strong experimental arguments which
support the �� molecule interpretation of the f0ð1370Þ
[24,25]. In [26] the authors extended the model to SUð3Þ,
resulting in 11 poles in the scattering matrix, bound states,
or resonances. Five of them can be identified with states
quoted in the PDG: f0ð1370Þ, f0ð1710Þ, f2ð1270Þ,
f02ð1535Þ, and K�

2ð1430Þ (see Table IVof [26]). The analy-

sis of processes involving these states further supports their
interpretation as dynamically generated states. In this di-
rection, the radiative decay of the f0ð1370Þ and f2ð1270Þ
mesons into �� was calculated in [27], where the authors
found a good agreement with the experimental data.
Similarly the J=c decay into �ð!Þ and one of the
f2ð1270Þ, f02ð1525Þ, f0ð1710Þ resonances as well as the

process J=c ! K�K�
2ð1430Þ was also found to be consis-

tent with experiment [28]. In the same line, the J=c
radiative decay into � and one of these nonstrange reso-
nances was also able to reproduce experimental data [29].
Recently, the �� and �-vector meson decays of the 11
dynamically generated resonances of [26] have been
studied in [30] and the decay widths are in good agreement
with data where these are available.

The model applied in [22,26] was in later works ex-
tended to channels with a charmed meson involved
[31,32]. The authors proceeded in a similar way as in the
case of the inclusion of D and D� mesons in the PP or as
PV channels [13,18]. A SUð4Þ-symmetric Lagrangian for
the three- and four-vector interaction is constructed and,
once one builds the vector-exchange diagrams, the sym-
metry is broken by suppressing those terms where a heavy
vector meson is exchanged. In [31] the attraction between
the �ð!Þ meson and the D� is strong enough to bind the
�ð!ÞD� system and three states are obtained for I ¼ 1=2

and JP ¼ 0þ; 1þ; 2þ, respectively: the D0ð2600Þ,
D�ð2640Þ, and D�

2ð2460Þ. The first one, with a width
around 61 MeV, is a prediction of the model and the third
state appears naturally in the scheme. The D�ð2640Þ is
obtained with a small width of 3–4 MeV since the decay
to two pseudoscalar mesons (�D) by means of a box
diagram is forbidden for the quantum numbers JP ¼ 1þ.
In particular, this small width is the main reason to asso-
ciate the D�ð2640Þ to the JP ¼ 1þ quantum numbers.
Therefore, one finds a reasonable explanation on why the
D�ð2640Þ is a very narrow state in comparison with the
D�

2ð2460Þ, even though the first one has a larger mass. In
[32] the authors study the region of 4000 MeV with a set of
16 channels for C ¼ 0, S ¼ 0, and I ¼ 0 or 1. They
obtained five poles in the scattering matrix, three of which
could be identified by the proximity of the mass, width,
and quantum numbers with the Y(3940), Z(3930), and
X(4160), corresponding to hadronic molecules made of
D� �D�, D�

s
�D�
s . The radiative decay of these resonances in

PV� was studied in [33]. The strong hidden-charm decay
mode J=c! and the two-photon decay of the Yð3940Þ
within aD� �D� bound state interpretation are also discussed
in [34].
In the present work we follow the same approach as in

[31,32] in order to study VV coupled channels in the
hidden-charm (C ¼ 0; S ¼ 1) and charm-strange sector
(C ¼ 1; S ¼ �1). Further on we also extend our formal-
ism to ‘‘flavor-exotic’’ channels as, for instance, C ¼ 1;
S ¼ 1, C ¼ 1; S ¼ 2, C ¼ 2; S ¼ 0, C ¼ 2; S ¼ 1 and
C ¼ 2; S ¼ 2.

II. FORMALISM

The hidden-gauge formalism is applied in order to de-
scribe the interaction between vector mesons and vector
mesons with pseudoscalars and photons [35–38]. The
hidden-gauge Lagrangian, which is consistent with chiral
symmetry, provides this former interaction from the fol-
lowing terms:

L ¼ �1
4h �V��

�V��i þ 1
2M

2
vh½V� � ði=gÞ���2i; (1)

where

�V �� ¼ @�V� � @�V� � ig½V�; V��; (2)

�� ¼ 1
2fuy½@� � iðv� þ a�Þ�uþ u½@� � iðv� � a�Þ�uyg;

(3)

and h i stands for the trace in the SUð3Þ flavor space. V�

represents the vector nonet:

V� ¼
!þ�0ffiffi

2
p �þ K�þ

�� !��0ffiffi
2

p K�0

K�� �K�0 �

0
BB@

1
CCA

�

; (4)
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where u2 ¼ U ¼ expði
ffiffi
2

p
�

f Þ and � is the octet of the pseu-

doscalars:

� ¼
�ffiffi
6

p þ �0ffiffi
2

p �þ Kþ

�� �ffiffi
6

p � �0ffiffi
2

p K0

K� �K0 �
ffiffi
2
3

q
�

0
BBB@

1
CCCA: (5)

The use of the value of the coupling constant g of the
Lagrangian [Eq. (1)] is given by

g ¼ MV

2f
; (6)

with the pion decay constant f ¼ 93 MeV. The use of the
value of g of Eq. (6) provides one way to account for the
Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin relation
[39], which is tied to the vector meson dominance formal-
ism [40]. In order to incorporate the charmed mesons, we
do a straightforward extension of the V� matrix to SUð4Þ,
as it was done in [13,18,31,32]:

V� ¼

!þ�0ffiffi
2

p �þ K�þ �D�0

�� !��0ffiffi
2

p K�0 D��

K�� �K�0 � D��
s

D�0 D�þ D�þ
s J=c

0
BBBBB@

1
CCCCCA

�

: (7)

Subsequently, the symmetry is broken down by taking the
heavy masses of the charmed mesons into account, in
particular, suppressing the heavy-meson exchange terms.
The Lagrangian of Eq. (1) provides the four-vector and
three-vector contact terms

L VVVV ¼ 1
2g

2h½V�; V��V�V�i; (8)

L VVV ¼ ighð@�V� � @�V�ÞV�V�i
¼ ighV�@�V�V

� � @�V�V
�V�i

¼ ighðV�@�V� � @�V�V
�ÞV�Þi: (9)

The three-vector contact terms lead to the vector-exchange
diagrams of Figs. 1(c) and 1(d). In the approximation of
low momenta of the external vectors compared to the mass

of the vector mesons, ~k=MV � 0, the polarization vectors
of the external vector mesons reduce to the spatial compo-
nents. This implies that the vector field V� in Eq. (9)
corresponds necessarily to the exchanged vector meson.

Indeed, if it were an external vector meson, the � index
should be spatial as already mentioned. Then, the deriva-
tive @� would lead to a three-momentum of an external
vector or a difference of two of them, which are neglected
in the present approach. Equation (9) leads to the ampli-
tudes of the diagram of Fig. 1(c) [V1ðk1ÞV2ðk2Þ !
V3ðk3ÞV4ðk4Þ] which in the t channel reads as

ðk1 þ k3Þ � ðk2 þ k4Þ�1 � �3�2 � �4; (10)

whereas the amplitudes corresponding to u-channel dia-
grams are of the type

ðk1 þ k4Þ � ðk2 þ k3Þ�1 � �4�2 � �3: (11)

In general, the diagrams in the s channel [see Fig. 1(d)] are
also possible. However, according to [22] these amplitudes
lead to a repulsive p-wave interaction for equal masses of
the vectors and only to a minor s-wave component in the
case of different masses [26]. Therefore, we can neglect the
diagrams of Fig. 1(d) completely.
By neglecting the three-momenta of the external vector

mesons with respect to the mass, only the spatial compo-
nents of the polarization vectors remain, and one can easily
build the spin-projection operators [22], which are

P ð0Þ ¼ 1
3���

����
�

P ð1Þ ¼ 1
2ð�������� � �����

���Þ
P ð2Þ ¼ f12ð�������� þ �����

���Þ � 1
3���

����
�g:

(12)

Thus, the spin projections of the structures of Eqs. (10)
and (11) can be written as

ðk1 þ k3Þ � ðk2 þ k4Þ for J ¼ 0; 1; 2; (13)

and

ðk1 þ k4Þ � ðk2 þ k3Þ for J ¼ 0; 2;

�ðk1 þ k4Þ � ðk2 þ k3Þ for J ¼ 1;
(14)

respectively. The tree-level transition amplitudes from the
four-vector contact terms and vector-exchange terms are
listed in the Appendix. The value of g in these tables is set
to g ¼ M�=2f�. As one can observe from these tables, the

potential from the four-vector contact terms plus vector-
exchange diagrams lead to a strong attractive interaction
for the quantum numbers: C ¼ 1, S ¼ �1, I ¼ 0, J ¼
0; 1; 2; C ¼ 1, S ¼ 1, I ¼ 0; 1, J ¼ 0; 1; 2; C ¼ 2, S ¼ 0,
I ¼ 0, J ¼ 1 and C ¼ 2, S ¼ 1, I ¼ 1=2, J ¼ 1, whereas

a) b) c) d)

FIG. 1. Terms of theLIII Lagrangian: (a) four-vector contact term, Eq. (8); (b) three-vector interaction, Eq. (9); (c) t and u channels
from vector exchange; (d) s channel for vector exchange.
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we obtain repulsion or a very small contribution (� g2) in
the other sectors. This is in addition to the C ¼ 1, S ¼ 0,
I ¼ 1=2, J ¼ 0; 1; 2 cases studied in [31] and C ¼ 0, S ¼
0, I ¼ 0; 1, J ¼ 0; 1; 2 studied in [32].

In order to calculate the tðuÞ-channel vector meson
exchange diagrams, one must project the amplitudes in s
wave. This can be done by means of the following replace-
ments:

k1 � k2 ¼ s�M2
1 �M2

2

2

k1 � k3 ¼ k01k
0
3 � ~p � ~q ! ðsþM2

1 �M2
2ÞðsþM2

3 �M2
4Þ

4s
;

where ‘‘!’’ denotes the projection over s wave, and k1 ¼
ðk01; ~pÞ, k2 ¼ ðk02;� ~pÞ, k3 ¼ ðk03; ~qÞ, k4 ¼ ðk04;� ~qÞ andMi,

with i ¼ 1; 4, is the mass of each external particle.
After projecting the amplitudes in isospin, spin, and s

wave, they are inserted into the Bethe-Salpeter equation
with kernel V, which in the on-shell formalism [41,42] can
be expressed by

T ¼ ð1̂� VGÞ�1V: (15)

The kernel V is of matrix type where its elements are the
[V1ðk1ÞV2ðk2Þ ! V3ðk3ÞV4ðk4Þ] amplitudes in lowest order
in g2 evaluated above in the base of spin and isospin. In
Eq. (15), G is a diagonal matrix with the two-meson loop
functions Gi for each V1V2 channel:

Gi ¼ i
Z d4q

ð2�Þ4
1

q2 �M2
1 þ i�

1

ðP� qÞ2 �M2
2 þ i�

;

(16)

which upon using dimensional regularization can be writ-
ten as

Gi ¼ 1

16�2

�
	þ log

M2
1

�2
þM2

2 �M2
1 þ s

2s
log

M2
2

M2
1

þ pffiffiffi
s

p
�
log

s�M2
2 þM2

1 þ 2p
ffiffiffi
s

p
�sþM2

2 �M2
1 þ 2p

ffiffiffi
s

p

þ log
sþM2

2 �M2
1 þ 2p

ffiffiffi
s

p
�s�M2

2 þM2
1 þ 2p

ffiffiffi
s

p
��

; (17)

where P is the total four-momentum of the two mesons and
p is the three-momentum of the mesons in the center-of-
mass frame:

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� ðM1 þM2Þ2Þðs� ðM1 �M2Þ2Þ

p
2

ffiffiffi
s

p : (18)

Analogously, one can calculate the loop function by using
a cutoff

Gi ¼
Z qmax

0

q2dq

ð2�Þ2
!1 þ!2

!1!2½ðP0Þ2 � ð!1 þ!2Þ2 þ i�� ;
(19)

where qmax stands for the cutoff in the three-momentum,

!i ¼ ð ~q2i þM2
i Þ1=2 and the square of center-of-mass en-

ergy ðP0Þ2 ¼ s. In the complex plane and for a general
ffiffiffi
s

p
,

the loop function in the second Riemann sheet can be
written as [43]

GII
i ð

ffiffiffi
s

p Þ ¼ GI
i ð

ffiffiffi
s

p Þ þ i
p

4�
ffiffiffi
s

p ImðpÞ> 0; (20)

where GII
i refers to the loop function on the second

Riemann sheet and GI
i is the loop function in the first

Riemann sheet given by Eqs. (17) and (19) for each chan-
nel i. Bound states appear as poles over the real axis and
below thresholds on the first Riemann sheet. In contrast,
resonances are identified by poles on the second Riemann
sheet above the thresholds of the channels which are open.
The channels that we consider are
(i) C ¼ 0; S ¼ 1; I ¼ 1=2 (hidden charm):

D�
s
�D�ð4121Þ; J=cK�ð3990Þ

(ii) C ¼ 1; S ¼ �1; I ¼ 0 and 1:

D� �K�ð2902Þ

(iii) C ¼ 1; S ¼ 1; I ¼ 0:

D�K�ð2902Þ; D�
s!ð2895Þ; D�

s�ð3132Þ

(iv) C ¼ 1; S ¼ 1; I ¼ 1:

D�K�ð2902Þ; D�
s�ð2888Þ

(v) C ¼ 1; S ¼ 2; I ¼ 1=2:

D�
sK

�ð3006Þ

(vi) C ¼ 2; S ¼ 0; I ¼ 0 and 1:

D�D�ð4017Þ

(vii) C ¼ 2; S ¼ 1; I ¼ 1=2:

D�
sD

�ð4121Þ

(viii) C ¼ 2; S ¼ 2; I ¼ 0:

D�
sD

�
sð4224Þ:

Here the quantities in parentheses correspond to the sum of
the masses of the two vector mesons.

A. Convolution due to the vector meson mass
distribution

In the channels i ¼ V1V2, where the width of one of the
vector mesons involved is quite large, the mass distribution
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of the vector meson has to be taken into account. We
demonstrate our technique by means of a broad V1 meson.
Its width is taken into account replacing the loop function

G in Eq. (15) by the convoluted ~G [44]:

~GðsÞ ¼ 1

N

Z ðM1þ2�1Þ2

ðM1�2�1Þ2
d ~m2

1

�
� 1

�

�
Im

1

~m2
1 �M2

1 þ i�ð ~mÞ ~m1

�Gðs; ~m2
1;M

2
2Þ; (21)

with

N ¼
Z ðM1þ2�1Þ2

ðM1�2�1Þ2
d ~m2

1

�
� 1

�

�
Im

1

~m2
1 �M2

1 þ i�ð ~mÞ ~m1

;

(22)

where M1 and �1 are the nominal mass and width of the
vector meson. �ð ~mÞ is given by

~�ð ~mÞ ¼ �0

q3off
q3on

�ð ~m�m1 �m2Þ (23)

with

qoff ¼ 
1=2ð ~m2; m2
1; m

2
2Þ

2 ~m
; qon ¼ 
1=2ðM2

1; m
2
1; m

2
2Þ

2M1

:

(24)

In Eq. (24), m1; m2 are the masses of the two pseudoscalar
mesons in the decay V1ðM1Þ ! p1ðm1Þp2ðm2Þ. We only
use Eq. (21) for the cases where a � or K�ð �K�Þ meson are
involved in a particular channel i. For the � meson, �1 ¼
146:2 MeV, and m1 ¼ m2 ¼ m� while for the K� meson
we have �1 ¼ 50:55 MeV and m1 ¼ mK, m2 ¼ m�.

The use of ~G in Eq. (15) provides larger widths of the
states than using only G [Eq. (16)].

B. Box diagrams

The box diagrams containing intermediate states of two
pseudoscalar mesons provide a mechanism to consider the
two pseudoscalar decay modes of the dynamically gener-
ated resonances. In fact, these box diagrams were consid-
ered in [22,26,31,32]. The real part was negligible
compared to the strong interaction obtained by means of
the four-vector contact term plus vector-exchange dia-
grams of Figs. 1(a) and 1(c). However, the imaginary
part of the box diagrams is relevant for the generation of
the width of the resonances. We will come back to this
issue later on.

In Fig. 3 we represent the box diagram and its momen-
tum variables. The vertices are provided by the same
hidden-gauge formalism used in Sec. II by means of the
Lagrangian

L V�� ¼ �ighV�½�; @���i: (25)

The generic structure of the diagram in Fig. 3 is

V � C
Z d4q

ð2�Þ4 �1 � ð2q� k1Þ�2 � ð2q� k3Þ�3
� ð2q� k3 � PÞ�4 � ð2q� k1 � PÞ
� 1

ðq� k1Þ2 �m2
1 þ i�

1

q2 �m2
2 þ i�

� 1

ðq� k3Þ2 �m2
3 þ i�

1

ðq� PÞ2 �m2
4 þ i�

; (26)

where C is the coupling of a certain transition. The ap-
proximation of neglecting the three-momenta of the exter-
nal particles leads to a simplified expression for V:

V � C1

Z d4q

ð2�Þ4 �
i
1�

j
2�

m
3 �

n
4q

iqjqmqn
1

ðq� k01Þ2 �m2
1 þ i�

� 1

q2 �m2
2 þ i�

1

ðq� k03Þ2 �m2
3 þ i�

� 1

ðq� P0Þ2 �m2
4 þ i�

¼ C1G; (27)

with C1 ¼ 16C. This integral is logarithmically divergent
and we regularize it with a cutoff in the three-momenta of
natural size. Thus, the integral in q0 is performed by means
of the residue theorem and then the integral in the three-
momenta is calculated with a cutoff of qmax ¼ 1:2 GeV
[22,31,32]. We include these diagrams in the sectors where
the interaction is strong enough to obtain bound states or
resonances. Looking at the Tables in the Appendix, these
sectors (and the channels involved) are
(i) C ¼ 1; S ¼ �1; I ¼ 0; J ¼ 0, 1 and 2:

D� �K�

(ii) C ¼ 1; S ¼ 1; I ¼ 0; J ¼ 0, 1 and 2:

D�K�; D�
s�;D�

s!

(iii) C ¼ 1; S ¼ 1; I ¼ 1; J ¼ 0, 1 and 2:

D�K�; D�
s�

(iv) C ¼ 2; S ¼ 0; I ¼ 0; J ¼ 1:

D�D�

(v) C ¼ 2; S ¼ 1; I ¼ 1=2; J ¼ 1:

D�
sD

�:

However, the box diagrams only have a contribution for the
quantum numbers JP ¼ 0þ and 2þ. The reason is the
following: the VV system has positive parity in s wave,
which forces the PP intermediate state to be in L ¼ 0; 2.
Since the two pseudoscalar mesons do not have a spin, the
only possibilities are JP ¼ 0þ and 2þ. Hence, we do not
consider it for the last two sectors where J ¼ 1. For the
other quantum numbers we consider the box diagrams in
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Fig. 2. We do not include any box diagram for the channel
D�

s� since � goes to �� and the vertex D�
s�Ds is equal to

zero. Of course there exist other box diagrams involving
the exchange in the t channel of two pseudoscalars differ-
ent from��,�K, orKK (the latter illustrated in Fig. 2) but
they are suppressed and can therefore be neglected.
Crossed box diagrams (with four pseudoscalar mesons in
the intermediate state) and box diagrams involving anoma-
lous couplings were also calculated in [22], but they were
found to be much smaller, especially in the case of the
anomalous coupling, than the contributions from the box
diagram of Fig. 3. The final formula for each of the
diagrams in Fig. 2 is given in the Appendix. One can see
in these formulas that the cuts plotted in the diagram in
Fig. 3 are clearly visible in the denominators.

Following the ideas of [31], we include two different
form factors in the integral of the box-diagram potential
(formulas of the Appendix). These are

(i) Model A: We multiply the vertices in the diagram of
Fig. 3 by

F1ðq2Þ ¼ �2
b �m2

1

�2
b � ðk01 � q0Þ2 þ j ~qj2 ; (28)

F3ðq2Þ ¼ �2
b �m2

3

�2
b � ðk03 � q0Þ2 þ j ~qj2 ; (29)

with q0 ¼ ðsþm2
2 �m2

4Þ=ð2
ffiffiffi
s

p Þ, ~q being the run-
ning variable, and �b ¼ 1:4; 1:5 GeV [22]. These
form factors were inspired by the empirical form
factors used in the decay of vector mesons [45,46].
Therefore, we add F1ðq2Þ2F3ðq2Þ2 to the integrand in
Eqs. (A1), (A4), and (A7) and we put g ¼ M�=2f�.

(ii) Model B: Here we use an exponential parametriza-
tion for an off-shell �ðKÞ evaluated using QCD sum
rules [47],

Fðq2Þ ¼ eððq0Þ2�j ~qj2Þ=�2
; (30)

with � ¼ 1; 1:2 GeV and q0 ¼ ðsþm2
2 �

m2
4Þ=ð2

ffiffiffi
s

p Þ. So we add Fðq2Þ4 to the integrand in
Eqs. (A1), (A4), and (A7). In this case we also
change the factor g4 in these equations by the
corresponding product of g’s, g ¼ M�=2f�, with

f� ¼ 93 MeV, gDs
¼ MD�

s
=2fDs

¼ 5:47 with

fDs
¼ 273=

ffiffiffi
2

p
MeV [23] and gD ¼ g

exp
D�D� ¼ 8:95

(experimental value) [48–50].
In Figs. 4 and 5 we compare the real parts of the box

diagrams with the contact terms plus vector-exchange
terms for the D�K� ! D�K� and D�K� ! D�

s� ampli-
tudes (the interaction is very attractive for these ampli-
tudes, see Table XIII). As one can see in this figure, the box
diagram has a small real part compared to the strong
potential provided by the four-vector contact terms plus
vector-exchange diagrams, particularly in the region of
energies corresponding to the states that we find.
Therefore, one can neglect the real part of the box diagrams
as it was done in [22,31,32]. In Fig. 6 we depict the
imaginary part of the box diagrams in Fig. 2 for the two
models. Here we set � ¼ 1400 MeV for model A, while
we put� ¼ 1200 MeVwhen using model B. As this figure
shows, model B with the form factor of Eq. (30) provides a

FIG. 2. Box diagrams included in the calculus.

FIG. 3. Box diagram containing four pseudoscalar mesons.
The cuts in the diagram provide the sources of the imaginary
part of the potential.
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larger imaginary part compared to model A which results
in a larger width of the resonance.

III. RESULTS

In this section we will present the results for each sector
as follows: First, we apply the Bethe-Salpeter equa-
tion (15), by taking the potential V from the Tables in the
Appendix (contact terms plus vector-exchange diagrams).
Here, we use the following parameters: g ¼ M�=2f�, we

fix � ¼ 1500 MeV for all the sectors and set the subtrac-
tion constant 	 ¼ �1:6 (value very close the one used in
[18], �1:55, and [31], �1:74) in the sectors C ¼ 1; S ¼
�1, C ¼ 1; S ¼ 1 and C ¼ 1; S ¼ 2. Note that � and 	

are not independent, which justifies the determination of�
and then adjusting 	 to the data. In the other sectors, C ¼
0; S ¼ 1 (hidden charm), C ¼ 2; S ¼ 0, C ¼ 2; S ¼ 1 and
C ¼ 2; S ¼ 2, we put 	 ¼ �1:4. The reason is that we use
a different set of the parameters� and	H in comparison to
the earlier study of the dynamically generated D�

ðsÞ �D
�
ðsÞ

resonances in [32] with � ¼ 1000 MeV and 	H ¼
�2:07. In the present approach we set � ¼ 1500 MeV
as in [13,18,31] and have to adapt 	H accordingly in order
to be able to reproduce the XYZ states in [32]. Then, we
evaluate the pole positions in the sectors where we find
attractive interaction and calculate the couplings to each
channel from the residue of the amplitudes, since, close to
a pole, the amplitudes from Eq. (15) look like
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FIG. 5. Comparison of the real part of the box diagram with the contact term plus vector-exchange term for the D�K� ! D�
s�

amplitude and I ¼ 0, J ¼ 0, and J ¼ 2, respectively.
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Tij �
gigj
s� sp

: (31)

Therefore, the constants gi (i ¼ VV channel), which pro-
vide the couplings of the resonance to the particular chan-
nels, can be calculated by means of the residues of the
amplitudes. The pole positions and couplings are given in
Tables I, II, III, IV, and V. Then we replace the expression

for G of Eq. (17) by the convoluted ~G of Eq. (21) and
additionally include the box diagrams in Fig. 2. These
modifications do not practically change the positions of
the poles and the couplings are barely affected. However,
the convolution of the mass distribution and the considera-
tion of the pseudoscalar decay channels in terms of box
diagrams leads to a larger width of the respective reso-
nances. The reevaluation of the Bethe-Salpeter equation,

Eq. (15), leads to the squared transition amplitudes pic-
tured in Figs. 7–11. The corresponding masses and widths
are given in Tables VI, VII, and VIII.

A. C ¼ 0; S ¼ 1; I ¼ 1=2 (hidden charm)

The amplitudes from the four-vector contact terms plus
vector-exchange diagrams can be found in Table X in the
Appendix. We can see from the tables that the potential is
small and repulsive except for the D�

s
�D� ! J=cK� and

D�
s
�D� ! D�

s
�D� amplitudes for J ¼ 1 and 2, respectively.

However, the attraction is too small to bind the system and
therefore we do not get poles or possible states from the T
matrix.

TABLE I. C ¼ 1; S ¼ �1; I ¼ 0. Quantum numbers, pole
positions, and couplings gi in units of MeV. Here, 	 ¼ �1:6.

I½JP� ffiffiffi
s

p
pole (MeV) gD� �K�Þ

0½0þ� 2848 12 227

0½1þ� 2839 13 184

0½2þ� 2733 17 379

TABLE II. C ¼ 1; S ¼ 1; I ¼ 0. Quantum numbers, pole po-
sitions, and couplings gi in units of MeV for I ¼ 0. Here 	 ¼
�1:6.

I½JP� ffiffiffi
s

p
pole (MeV) gD�K� gD�

s! gD�
s�

0½0þ� 2683 15 635 �4035 6074

0½1þ� 2707 14 902 �5047 4788

0½2þ� 2572 18 252 �7597 7257

TABLE III. C ¼ 1; S ¼ 1; I ¼ 1. Quantum numbers, pole
positions, and couplings gi in units of MeV. Here 	 ¼ �1:6.

IG½JPC� ffiffiffi
s

p
pole (MeV) gD�K� gD�

s�

1½2þ� 2786 11 041 11 092

TABLE IV. C ¼ 2; S ¼ 0; I ¼ 0. Quantum numbers, pole
positions, and couplings gi in units of MeV. Here 	 ¼ �1:4.

I½JP� ffiffiffi
s

p
pole (MeV) gD�D�

0½1þ� 3969 16 825

TABLE V. C ¼ 2; S ¼ 1; I ¼ 1=2. Quantum numbers, pole
positions, and couplings gi in units of MeV. Here, 	 ¼ �1:4.

I½JP� ffiffiffi
s

p
pole (MeV) gD�

sD
�

1=2½1þ� 4101 13 429

TABLE VI. C ¼ 1; S ¼ �1; I ¼ 0. Mass and width for the
states with J ¼ 0 and 2.

I½JP� ffiffiffi
s

p
pole (MeV) Model � (MeV)

0½0þ� 2848 A, � ¼ 1400 MeV 23

A, � ¼ 1500 MeV 30

B, � ¼ 1000 MeV 25

B, � ¼ 1200 MeV 59

0½1þ� 2839 Convolution 3

0½2þ� 2733 A, � ¼ 1400 MeV 11

A, � ¼ 1500 MeV 14

B, � ¼ 1000 MeV 22

B, � ¼ 1200 MeV 36

TABLE VII. C ¼ 1; S ¼ 1; I ¼ 0. Mass and width for the
states with J ¼ 0 and 2.

I½JP�
ffiffiffi
s

p
pole

(MeV) Model

�theo

(MeV)

�exp

(MeV)

0½0þ� 2683 A, � ¼ 1400 MeV 20 � � �
A, � ¼ 1500 MeV 25

B, � ¼ 1000 MeV 44

B, � ¼ 1200 MeV 71

0½1þ� 2707 Convolution 4� 10�3 � � �
0½2þ� 2572 A, � ¼ 1400 MeV 7 20� 5 [23]

A, � ¼ 1500 MeV 8

B, � ¼ 1000 MeV 18
B, � ¼ 1200 MeV 23

TABLE VIII. C ¼ 1; S ¼ 1; I ¼ 1. Mass and width for the
state with J ¼ 1 and 2.

I½JP� ffiffiffi
s

p
pole (MeV) Model � (MeV)

1½2þ� 2786 A, � ¼ 1400 MeV 8

A, � ¼ 1500 MeV 9

B, � ¼ 1000 MeV 9

B, � ¼ 1200 MeV 11
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B. C ¼ 1; S ¼ �1; I ¼ 0

In contrast to the above sector, the potential in the case
of C ¼ 1 and S ¼ �1 is very attractive as indicated in
Table XI. For I ¼ 0 and J ¼ 0; 1 the potential is around

�10g2, whereas it is about�16g2 for J ¼ 2. In this sector
the strong interaction from the potential leads to bound
states. We obtain one resonance for each spin, J ¼ 0, 1,
and 2, where the corresponding pole positions and cou-
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plings are given in Table I. The convolution of the G
function due to the �K� width leads to a minor shift in the
pole positions (only 3 MeV for J ¼ 2) and around 3 MeV
in the widths for the three states. This is a minor effect
compared to the contribution of the box diagrams.
Therefore we neglect the K� width in the final jTj2 analy-
sis. jTj2 is depicted in Figs. 7 and 8 for J ¼ 0 and 2 and for
the two models A and B after the inclusion of the corre-
sponding box diagrams of Fig. 2. Here, the two models lead
to similar results except for model B with� ¼ 1200 MeV.
In Table VI we show the values of the masses and final
widths of the states. Since these states have exotic flavor
quantum numbers there is no possible q �q counterpart.

C. C ¼ 1; S ¼ �1; I ¼ 1

In this sector, which also has exotic quantum numbers,
we can see from Table XII that the interaction is very
repulsive in contrast to the previous case of I ¼ 0.
Therefore, no bound states or resonances are found in
this sector.

D. C ¼ 1; S ¼ 1; I ¼ 0

The strong interaction coming from the contact terms
plus vector-exchange diagrams leads to a potential of the
order of�18g2 to�26g2, see Table XIII in the Appendix,
which is enough to bind the D� and K� mesons. In this
sector we obtain three poles with massesM ¼ 2683, 2707,
and 2573 MeV for J ¼ 0, 1, and 2, respectively. The
potentials in Table XIII provide the kernel V of Eq. (15)
which results in the pole positions and couplings summa-
rized in Table II. The state with J ¼ 2 is more bound than
the other poles for J ¼ 0 and 1 which can be identified with
the D�

2ð2573Þ resonance in the PDG. Here, the D�K�
channel is dominant for the three different spins.
Nevertheless the other channels, D�

s! and D�
s�, are not

negligible.
When considering the K� width, which is equivalent to

replacing G by the convoluted ~G, neither the mass changes
significantly (in fact only 2 MeV) nor the width is affected
by this modification. Therefore, the effect of the convolu-
tion is so small that it does not need to be considered. Only
the consideration of the box diagrams has some influence
on the width. In Figs. 9 and 10, jTj2 is plotted after the

inclusion of the box diagrams of Fig. 2 for the two models
A and B. We observe that these diagrams provide some
width for the states with J ¼ 0 and 2 (possible quantum
numbers of the box diagrams), although the width provided
by model B is much bigger than that from model A. The
values of the masses and widths are given in Table VII.
Model B with � ¼ 1000, 1200 MeV provides a width for
the state appearing around 2572 MeVof 18–23 MeV.
We associate this state with the D�

s2ð2573Þ of the PDG

[23] since the quantum numbers, position, and width agree
with those of the PDG. We should note that this is the case
where we found the largest attraction, of the order of
�26g2, which is even bigger than what was found for I ¼
0, J ¼ 2 in the �� interaction ( ’ �20g2) which lead to
the production of the f2ð1270Þ [22,26].

E. C ¼ 1; S ¼ 1; I ¼ 1

In this sector the potential is attractive for the D�K� !
D�

s� reaction. For J ¼ 0 and 1 this potential is around
�7g2 whereas it is by a factor of 2 bigger �13g2 for J ¼
2 (see Table XIV). In fact, we only obtain a pole for J ¼ 2.
For J ¼ 0 and 1 we only observe a cusp in the D�

s�
threshold. In Table III we show the pole position and
couplings to the different channels. Both channels, D�K�
andD�

s�, are equally important as one can deduce from the
corresponding couplings. The broad width of the � meson
has to be taken into account by means of Eq. (21) which
results in a width of 8MeV. In this case the box diagrams in
Fig. 2 for theD�K� channel only make a small contribution
to the width of the resonance (see Fig. 11). In contrast to
the previous situations, the width of the resonance is
mainly generated by the convolution of the � mass while
the box diagrams play a minor role. In Table VIII we give
the exact values of the width in the two models which give
very similar results. No experimental counterpart is found
for this state in the PDG.

F. C ¼ 1; S ¼ 2; I ¼ 1=2

This sector is exotic since a double-strange state is not
reached in q �q. As we can see from Table XV in the
Appendix, the potential is repulsive for all possible spins.
Therefore we do not get any bound state or resonance in
this sector.

2760 2780 2800 2820
0

5. 106

1. 107

1.5 107

2. 107

2.5 107

s MeV

T
2

I 1; J 2

1500 MeV

1400 MeV

2760 2780 2800 2820
0

5. 106

1. 107

1.5 107

2. 107

s MeV

T
2

I 1; J 2

1200 MeV

1000 MeV

FIG. 11. Squared amplitude in the D�K� channel for I ¼ 1 and J ¼ 2. Left: model A; right: model B.
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G. C ¼ 2; S ¼ 0; I ¼ 0

In this case we study double charmed states by coupled
D�D� channels. The amplitudes are given in Table XVI,
where the potential is zero for J ¼ 0 and 2. This can be
explained by the fact that the D�D� state is antisymmetric
for I ¼ 0. Therefore, the only possibility to obtain a fully
symmetric wave function is provided by J ¼ 1 which is

equivalent to the rule Lþ ~Sþ I ¼ odd, since L ¼ 0 for s

wave (~S, spin 	 J for L ¼ 0). For J ¼ 1 the interaction is
strongly attractive and we obtain a pole in the scattering
matrix. The pole position and coupling to the D�D� chan-
nel is given in Table IV. The width of the D� meson is very
small (� 100 keV or less in the case of the neutral
charmed meson); hence, we do not perform the convolu-
tion of theG function. Since we deal with a J ¼ 1 state, the
inclusion of the box diagrams can be ruled out. Therefore
we obtain a state with zero width or a very narrow width
when considering the convolution. This sector with C ¼ 2
is exotic and so far there are no experimental observations.

H. C ¼ 2; S ¼ 0; I ¼ 1

Here we deal with the reversed situation as in the pre-
vious I ¼ 0 sector. The isospin combination for I ¼ 1 of
the D�D� channel is symmetric and therefore J ¼ 1 is

forbidden (Lþ ~Sþ I ¼ even). However, the potential is
very repulsive for J ¼ 0 and J ¼ 2 (see Table XVII) and,
consequently, we do not obtain any pole in the scattering
matrix.

I. C ¼ 2; S ¼ 1; I ¼ 1=2

This sector is also exotic. The amplitudes from the four-
vector contact terms plus vector-exchange diagrams lead to
a repulsive potential for J ¼ 0 and 2 and is attractive for
J ¼ 1 as indicated in Table XVIII. We get a pole almost at
the D�

sD
� threshold (4121 MeV), where the pole position

and the coupling is given in Table V. This state comes with
zero width since the box diagrams are not possible for J ¼
1 and any possible convolution of the G function would
lead to a very small width. This state is also a prediction of
the model and needs to be confirmed by experiment.

J. C ¼ 2; S ¼ 2; I ¼ 0

The D�
sD

�
s channel allows us to study double-charm

double-strange objects. Since we deal with two identical
particles with isospin zero, the isospin D�

sD
�
s state is sym-

metric and, hence, we get interaction for J ¼ 0 and 2 while
the potential zero for J ¼ 1 (see Table XIX). Since the
potential is strongly repulsive we do not obtain any state in
this sector.
In Table IX we give a summary of the states obtained

together with the only experimental counterpart observed
so far.

IV. CONCLUSIONS

We studied dynamically generated resonances from
vector-vector interaction in the charm-strange and
hidden-charm sectors and extended for the first time the
formalism to flavor-exotic sectors. The hidden-gauge
Lagrangians provide a consistent method to include vector
meson interaction in the coupled channel unitarity formal-
ism. Our analysis of the T matrix resulted in nine bound
states. At the beginning these states appear with zero width
(poles on the real axis). There are two effects which are
relevant for the generation of the width of the resonance.
First, the widths of the vector mesons involved need to be
considered by the convolution of the two-meson loop
function. This effect is, in particular, important for the
D�

s� channel. Second, the PP decay modes of the vector
mesons play an important role. In the present coupled
channel approach, this issue is taken into account by the
insertion of box diagrams with pseudoscalar mesons in the
intermediate state. These modifications lead to appreciable
widths of the states which are close to the experimental
observations if available. In the present work we can assign
one resonance to an experimental counterpart, which is the
D�

2ð2573Þ. For C ¼ 1, S ¼ 1 we obtain three states with

massesM ¼ 2683, 2707, and 2572MeV for I ¼ 0 and J ¼
0; 1; 2, respectively. The widths lie around 44, 0, and
18 MeV correspondingly (model B with � ¼
1000 MeV). We associate the state for J ¼ 2 with the
D�

2ð2573Þ giving a novel interpretation for this resonance

TABLE IX. Summary of the nine states obtained. The width is given for models A, �A, and B, �B. All the quantities here are in MeV.

C, S I½JP� ffiffiffi
s

p
�Að� ¼ 1400Þ �Bð� ¼ 1000Þ State

ffiffiffi
s

p
exp �exp

1;�1 0½0þ� 2848 23 25

0½1þ� 2839 3 3

0½2þ� 2733 11 22

1,1 0½0þ� 2683 20 44

0½1þ� 2707 4� 10�3 4� 10�3

0½2þ� 2572 7 18 Ds2ð2573Þ 2572:6� 0:9 20� 5
1½2þ� 2786 8 9

2,0 0½1þ� 3969 0 0

2,1 1=2½1þ� 4101 0 0
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as a vector-vector molecular state. The assumption of this
structure is consistent with the DK nature assumed for the
D�ð2317Þ, the D�K molecular structure of the D�ð2460Þ or
the X(3872) (D �D�). The other two states around 2700MeV
are predictions of the model without experimental evi-
dence for these masses and quantum numbers up to now.
For I ¼ 1we find only one state, of non exotic nature, a 2þ
state around 2786 MeV.

In the flavor-exotic sectors which have not been studied
before, we obtain interesting predictions for new states. In
the sector C ¼ 1; S ¼ �1; I ¼ 0 we obtain three new
exotic states with masses M ¼ 2848, 2839, and
2733 MeV and widths around � ¼ 25, 3, and 22 MeV,
for the quantum numbers I½JP� ¼ 0½0þ�, 0½1þ�, and 0½2þ�,
respectively. In the case of the double-charm sectors C ¼
2; S ¼ 0; I ¼ 0 and C ¼ 2; S ¼ 1; I ¼ 1=2 the potential
leads to a bound system for J ¼ 1 only. That is, we deal
with two very narrow states with masses aroundM ¼ 3969
and 4101 MeV close to the thresholds of D�D� and D�

sD
�,

respectively. In summary, all states are relatively narrow.
For the quantum numbers JP ¼ 0þ, 2þ the widths are
lower than 71 MeV (depending on the model) while all
states with JP ¼ 1þ come with practically no width since
the box diagrams do not contribute. There is no experi-
mental counterpart for all exotic structures which can be

considered as D�K�, D� �K�, D�D�, and D�
sD

� molecular
states. Our findings might be useful to get further insight in
the flavor-exotic sectors and can encourage the search for
flavor-exotic mesons with e.g. double charm or double
charm strangeness in future experiments.
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APPENDIX

1. Tree-level transition amplitudes of the four-vector
contact diagrams and of the tðuÞ-channel vector-

exchange diagrams for the different channels (Tables X,
XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, and XIX)

TABLE X. Amplitudes for C ¼ 0, S ¼ 1, and I ¼ 1=2.

J Amplitude Contact V exchange �Total

0 D�
s
�D� ! D�

s
�D� 2g2 � g2ðp1þp3Þ:ðp2þp4Þ

m2
J=c

0:23g2

0 D�
s
�D� ! J=cK� �4g2 g2ðp1þp4Þ:ðp2þp3Þ

m2
D�

þ g2ðp1þp3Þ:ðp2þp4Þ
m2

D�
s

3:6g2

0 J=cK� ! J=cK� 0 0 0

1 D�
s
�D� ! D�

s
�D� 3g2 � g2ðp1þp3Þ:ðp2þp4Þ

m2
J=c

1:2g2

1 D�
s
�D� ! J=cK� 0 � g2ðp1þp4Þ:ðp2þp3Þ

m2
D�

þ g2ðp1þp3Þ:ðp2þp4Þ
m2

D�
s

�0:43g2

1 J=cK� ! J=cK� 0 0 0

2 D�
s
�D� ! D�

s
�D� �g2 � g2ðp1þp3Þ:ðp2þp4Þ

m2
J=c

�2:8g2

2 D�
s
�D� ! J=cK� 2g2 g2ðp1þp4Þ:ðp2þp3Þ

m2
D�

þ g2ðp1þp3Þ:ðp2þp4Þ
m2

D�
s

9:6g2

2 J=cK� ! J=cK� 0 0 0

TABLE XI. Amplitudes for C ¼ 1, S ¼ �1 and I ¼ 0.

J Amplitude Contact V exchange �Total

0 D� �K� ! D� �K� 4g2 � g2ðp1þp4Þ:ðp2þp3Þ
m2

D�
s

þ 1
2g

2ð 1
m2

!
� 3

m2
�
Þðp1 þ p3Þ:ðp2 þ p4Þ �9:9g2

1 D� �K� ! D� �K� 0 g2ðp1þp4Þ:ðp2þp3Þ
m2

D�
s

þ 1
2g

2ð 1
m2

!
� 3

m2
�
Þðp1 þ p3Þ:ðp2 þ p4Þ �10:2g2

2 D� �K� ! D� �K� �2g2 � g2ðp1þp4Þ:ðp2þp3Þ
m2

D�
s

þ 1
2g

2ð 1
m2

!
� 3

m2
�
Þðp1 þ p3Þ:ðp2 þ p4Þ �15:9g2
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TABLE XII. Amplitudes for C ¼ 1, S ¼ �1 and I ¼ 1.

J Amplitude Contact V exchange �Total

0 D� �K� ! D� �K� �4g2 g2ðp1þp4Þ:ðp2þp3Þ
m2

D�
s

þ g2

2 ð 1
m2

!
þ 1

m2
�
Þðp1 þ p3Þ:ðp2 þ p4Þ 9:7g2

1 D� �K� ! D� �K� 0 � g2ðp1þp4Þ:ðp2þp3Þ
m2

D�
s

þ g2

2 ð 1
m2

!
þ 1

m2
�
Þðp1 þ p3Þ:ðp2 þ p4Þ 9:9g2

2 D� �K� ! D� �K� 2g2 g2ðp1þp4Þ:ðp2þp3Þ
m2

D�
s

þ g2

2 ð 1
m2

!
þ 1

m2
�
Þðp1 þ p3Þ:ðp2 þ p4Þ 15:7g2

TABLE XIII. Amplitudes for C ¼ 1, S ¼ 1 and I ¼ 0.

J Amplitude Contact V exchange �Total

0 D�K� ! D�K� 4g2 � g2

2 ð 3
m2

�
þ 1

m2
!
Þðp1 þ p3Þ:ðp2 þ p4Þ �19:8g2

0 D�K� ! D�
s! �4g2 g2ðp1þp4Þ:ðp2þp3Þ

m2
D�
s

þ g2ðp1þp3Þ:ðp2þp4Þ
m2

K�
6:8g2

0 D�K� ! D�
s� 2

ffiffiffi
2

p
g2 �

ffiffi
2

p
g2ðp1þp3Þ:ðp2þp4Þ

m2
K�

�9:2g2

0 D�
s! ! D�

s! 0 0 0

0 D�
s! ! D�

s� 0 0 0

0 D�
s� ! D�

s� �2g2 g2ðp1þp4Þ:ðp2þp3Þ
m2

D�
s

0:20g2

1 D�K� ! D�K� 6g2 � g2

2 ð 3
m2

�
þ 1

m2
!
Þðp1 þ p3Þ:ðp2 þ p4Þ �17:7g2

1 D�K� ! D�
s! 0 � g2ðp1þp4Þ:ðp2þp3Þ

m2
D�
s

þ g2ðp1þp3Þ:ðp2þp4Þ
m2

K�
6:6g2

1 D�K� ! D�
s� 3

ffiffiffi
2

p
g2 �

ffiffi
2

p
g2ðp1þp3Þ:ðp2þp4Þ

m2
K�

�7:8g2

1 D�
s! ! D�

s! 0 0 0

1 D�
s! ! D�

s� 0 0 0

1 D�
s� ! D�

s� 3g2 � g2ðp1þp4Þ:ðp2þp3Þ
m2

D�
s

0:8g2

2 D�K� ! D�K� �2g2 � g2

2 ð 3
m2

�
þ 1

m2
!
Þðp1 þ p3Þ:ðp2 þ p4Þ �25:8g2

2 D�K� ! D�
s! 2g2 g2ðp1þp4Þ:ðp2þp3Þ

m2
D�
s

þ g2ðp1þp3Þ:ðp2þp4Þ
m2

K�
12:8g2

2 D�K� ! D�
s� � ffiffiffi

2
p

g2 �
ffiffi
2

p
g2ðp1þp3Þ:ðp2þp4Þ

m2
K�

�13:5g2

2 D�
s! ! D�

s! 0 0 0

2 D�
s! ! D�

s� 0 0 0

2 D�
s� ! D�

s� g2 g2ðp1þp4Þ:ðp2þp3Þ
m2

D�
s

3:2g2

TABLE XIV. Amplitudes for C ¼ 1, S ¼ 1, and I ¼ 1.

J Amplitude Contact V exchange �Total

0 D�K� ! D�K� 0 g2

2 ð 1
m2

�
� 1

m2
!
Þðp1 þ p3Þ:ðp2 þ p4Þ 0:11g2

0 D�K� ! D�
s� 4g2 � g2ðp1þp4Þðp2þp3Þ

m2
D�

� g2ðp1þp3Þ:ðp2þp4Þ
m2

K�
�6:8g2

0 D�
s� ! D�

s� 0 0 0

1 D�K� ! D�K� 0 g2

2 ð 1
m2

�
� 1

m2
!
Þðp1 þ p3Þ:ðp2 þ p4Þ 0:11g2

1 D�K� ! D�
s� 0 g2ðp1þp4Þðp2þp3Þ

m2
D�

� g2ðp1þp3Þ:ðp2þp4Þ
m2

K�
�6:6g2

1 D�
s� ! D�

s� 0 0 0

2 D�K� ! D�K� 0 g2

2 ð 1
m2

�
� 1

m2
!
Þðp1 þ p3Þ:ðp2 þ p4Þ 0:11g2

2 D�K� ! D�
s� �2g2 � g2ðp1þp4Þðp2þp3Þ

m2
D�

� g2ðp1þp3Þ:ðp2þp4Þ
m2

K�
�12:8g2

2 D�
s� ! D�

s� 0 0 0
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2. Box diagrams

a. D�K� ! D�K� box diagram with m1 ¼ �, m2 ¼ D, m3 ¼ �, and m4 ¼ K

VD�K� ðsÞ ¼
Z qmax

0
dq

q6

!3!K!D

1

ð�k03 þ!þ!D � i�Þ2
1

ð� ffiffiffi
s

p þ!D þ!K � i�Þ
1

ð�k04 þ!þ!K � i�Þ2

� 1

ðk03 þ!þ!DÞ2
1

ð ffiffiffi
s

p þ!D þ!KÞ
1

ðk04 þ!þ!KÞ2
g4

15�2
PðsÞ; (A1)

with

TABLE XV. Amplitudes for C ¼ 1, S ¼ 2, and I ¼ 1=2.

J Amplitude Contact V exchange �Total

0 D�
sK

� ! D�
sK

� �4g2 g2ðp1þp4Þðp2þp3Þ
m2

D�
þ g2ðp1þp3Þ:ðp2þp4Þ

m2
�

5:5g2

1 D�
sK

� ! D�
sK

� 0 � g2ðp1þp4Þðp2þp3Þ
m2

D�
þ g2ðp1þp3Þ:ðp2þp4Þ

m2
�

5:0g2

2 D�
sK

� ! D�
sK

� 2g2 g2ðp1þp4Þðp2þp3Þ
m2

D�
þ g2ðp1þp3Þ:ðp2þp4Þ

m2
�

11:5g2

TABLE XVI. Amplitudes for C ¼ 2, S ¼ 0, and I ¼ 0.

J Amplitude Contact V exchange �Total

0 D�D� ! D�D� 0 0 0

1 D�D� ! D�D� 0 1
4g

2ð 2
m2

J=c

þ 1
m2

!
� 3

m2
�
Þfðp1 þ p4Þ:ðp2 þ p3Þ þ ðp1 þ p3Þ:ðp2 þ p4Þg �25:4g2

2 D�D� ! D�D� 0 0 0

TABLE XVII. Amplitudes for C ¼ 2, S ¼ 0, and I ¼ 1.

J Amplitude Contact V exchange �Total

0 D�D� ! D�D� �4g2 1
4 g

2ð 2
m2

J=c

þ 1
m2

!
þ 1

m2
�
Þfðp1 þ p4Þ:ðp2 þ p3Þ þ ðp1 þ p3Þ:ðp2 þ p4Þg 24:3g2

1 D�D� ! D�D� 0 0 0

2 D�D� ! D�D� 2g2 1
4 g

2ð 2
m2

J=c

þ 1
m2

!
þ 1

m2
�
Þfðp1 þ p4Þ:ðp2 þ p3Þ þ ðp1 þ p3Þ:ðp2 þ p4Þg 30:3g2

TABLE XVIII. Amplitudes for C ¼ 2, S ¼ 1, and I ¼ 1=2.

J Amplitude Contact V exchange �Total

0 D�
sD

� ! D�
sD

� �4g2 g2ðp1þp4Þ:ðp2þp3Þ
m2

K�
þ g2ðp1þp3Þ:ðp2þp4Þ

m
J=c 2

19:0g2

1 D�
sD

� ! D�
sD

� 0 � g2ðp1þp4Þ:ðp2þp3Þ
m2

K�
þ g2ðp1þp3Þ:ðp2þp4Þ

m
J=c 2

�19:5g2

2 D�
sD

� ! D�
sD

� 2g2 g2ðp1þp4Þ:ðp2þp3Þ
m2

K�
þ g2ðp1þp3Þ:ðp2þp4Þ

m
J=c 2

25:0g2

TABLE XIX. Amplitudes for C ¼ 2, S ¼ 2, and I ¼ 0.

J Amplitude Contact V exchange �Total

0 D�
sD

�
s ! D�

sD
�
s �4g2 g2

2 ð 1
m2

J=c

þ 1
m2

�

Þfðp1 þ p4Þ:ðp2 þ p3Þ þ ðp1 þ p3Þ:ðp2 þ p4Þg 15:0g2

1 D�
sD

�
s ! D�

sD
�
s 0 0 0

2 D�
sD

�
s ! D�

sD
�
s 2g2 g2

2 ð 1
m2

J=c

þ 1
m2

�

Þfðp1 þ p4Þ:ðp2 þ p3Þ þ ðp1 þ p3Þ:ðp2 þ p4Þg 21:0g2
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PðsÞ ¼ �2ð2k03
ffiffiffi
s

p ð!þ!DÞ!Kð4!4 � sð4!2 þ 3!!D þ!2
DÞ þ 4!2ð!D þ!KÞ2 þ 3!!Dð!D þ!KÞ2

þ!2
Dð!D þ!KÞ2 þ 4!3ð!D þ 2!KÞÞ þ 2ðk03Þ3

ffiffiffi
s

p
!Kð�4!3 �!Dð�sþ ð!D þ!KÞ2ÞÞ

þ ðk03Þ4ð2!3ð!D þ!KÞ þ!D!Kð�sþ ð!D þ!KÞ2ÞÞ � ðk03Þ2ð4!5ð!D þ!KÞ þ 8!4ð!D þ!KÞ2
þ 4!3ð!3

D � 3s!K þ 6!2
D!K þ 6!D!

2
K þ!3

KÞ þ 14!2!D!Kð�sþ ð!D þ!KÞ2Þ
þ 4!!D!Kð!D þ!KÞð�sþ ð!D þ!KÞ2Þ þ!D!Kðs2 þ ð!D þ!KÞ2ð!2

D þ!2
KÞ � 2sð!2

D þ!D!K þ!2
KÞÞÞ

þ ð!þ!DÞ2ð2!5ð!D þ!KÞ þ 4!4ð!2
D þ 3!D!K þ 2!2

KÞ þ 2!3ð!3
D � 2s!K þ 7!2

D!K þ 12!D!
2
K þ 6!3

KÞ
þ!D!Kðs�!2

KÞðs� ð!D þ!KÞ2Þ þ!2!Kð5!D þ 8!KÞð�sþ ð!D þ!KÞ2Þ
þ 2!!Kðs2 þ!Kð!D þ!KÞ2ð2!D þ!KÞ � sð!2

D þ 4!D!K þ 2!2
KÞÞÞÞ; (A2)

where ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

�

p
, !D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

D

q
, !K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

K

q
, k03 ¼ ðsþm2

D� �m2
K� Þ=ð2 ffiffiffi

s
p Þ and k04 ¼ðsþm2

K� �m2
D� Þ=ð2 ffiffiffi

s
p Þ. After projecting in spin and isospin, the potential is

VI¼0;J¼0
D�K� ðsÞ ¼ 9

45VD�K� ðsÞ VI¼0;J¼2
D�K� ðsÞ ¼ 9

42VD�K� ðsÞ VI¼1;J¼0
D�K� ðsÞ ¼ 1

45VD�K� ðsÞ VI¼1;J¼2
D�K� ðsÞ ¼ 1

42VD�K� ðsÞ: (A3)

b. D�K� ! D�
s� box diagram with m1 ¼ �, m2 ¼ D, m3 ¼ K, and m4 ¼ K

VD�K�!D�
s�ðsÞ ¼

Z qmax

0
dq

q6

!!D!
2
K

1

ð�k01 þ!þ!D � i�Þ
1

ðk01 � k03 þ!þ!K � i�Þ
1

ð�k01 þ k03 þ!þ!K � i�Þ
� 1

ð�k02 þ!þ!K � i�Þ
1

ð�k03 þ!D þ!K � i�Þ
1

ð�k04 þ 2!K � i�Þ
1

ð� ffiffiffi
s

p þ!D þ!K � i�Þ

� 1

ðk01 þ!þ!DÞ
1

ðk03 þ!D þ!KÞ
1

ðk02 þ!þ!KÞ
1

ð ffiffiffi
s

p þ!D þ!kÞ
1

ðk04 þ 2!kÞ
4g4

15�2
PðsÞ; (A4)

with

PðsÞ ¼�!Kð2ðk01Þ3!ð�ðk03Þ2
ffiffiffi
s

p
!K þðk03Þ3ð!D þ!KÞþ

ffiffiffi
s

p ð!D þ!KÞðs�!2
D � 3!D!K � 4!2

KÞ
� k03ð!3

D þ s!K þ 4!2
D!K þ 7!D!

2
K þ 4!3

KÞÞ� ðk01Þ4!ð�2k03
ffiffiffi
s

p
!K þðk03Þ2ð!D þ!KÞ

þ ð!D þ!KÞðs� 2ð!2
D þ 3!D!K þ 2!2

KÞÞÞþ 2k01ðk03 þ
ffiffiffi
s

p Þ!ððk03Þ3
ffiffiffi
s

p
!K �ðk03Þ2ð!3

D þ 2s!K þ 2!2
D!K

þ 2!D!
2
K þ!3

K þ!2ð!D þ!KÞþ 2!ð!D þ!KÞ2Þþ k03
ffiffiffi
s

p ð!3
D þ s!K þ 4!2

D!K þ 4!D!
2
K � 2!3

K

þ!2ð!D þ 2!KÞþ 2!ð!2
D þ 4!D!K þ 2!2

KÞÞþ ð!D þ!KÞð!4
D þ 3!3

D!K þ 4!2
D!

2
K þ 4!D!

3
K þ 4!4

K

þ!2ð!2
D þ 3!D!K þ 4!2

KÞþ 2!ð!3
D þ 3!2

D!K þ 4!D!
2
K þ 4!3

KÞ� sð!2 þ!2
D þ!D!K þ!2

K

þ 2!ð!D þ!KÞÞÞÞ� ðk01Þ2!ð2ðk03Þ3
ffiffiffi
s

p
!K þðk03Þ4ð!D þ!KÞ� 2ðk03Þ2ð!3

D þ!2
D!K þ 3!D!

2
K

þ!2ð!D þ!KÞþ 3!Kðsþ!2
KÞþ!ð!2

D þ 3!D!K þ 2!2
KÞÞþ 2k03

ffiffiffi
s

p
!Kðsþ 2ð!2 �!2

D � 4!D!K � 3!2
K

þ!ð!D þ 2!KÞÞÞþ ð!D þ!KÞðs2 � 2sð!2 þ!2
D þ 3!2

K þ!ð!D þ 2!KÞÞþ 2ð!D þ!KÞð!3
D þ 2!2

D!K

þ 5!D!
2
K þ 4!3

K þ 2!2ð!D þ 2!KÞþ 2!ð!D þ 2!KÞ2ÞÞÞþ ð!þ!DÞð2ðk03Þ3
ffiffiffi
s

p
!Kðs�!2 �ð!D þ!KÞ2

�!ð!D þ 2!KÞÞþ ðk03Þ4ð!2ð!D þ!KÞþ!ð!2
D þ 3!D!K þ 2!2

KÞþ!Kð�sþð!D þ!KÞ2ÞÞ
þ 2k03

ffiffiffi
s

p
!Kð!4 þð!D þ!KÞ4 þ!3ð!D þ 4!KÞþ!2ð!2

D þ 4!D!K þ 6!2
KÞþ!ð!3

D þ 4!2
D!K þ 6!D!

2
K

þ 4!3
KÞ� sð!2 þð!D þ!KÞ2 þ!ð!D þ 2!KÞÞÞ� ðk03Þ2ð!4ð!D þ!KÞþ!3ð!2

D þ 5!D!K þ 4!2
KÞ

þ!2ð!3
D � 2s!K þ 9!2

D!K þ 18!D!
2
K þ 10!3

KÞþ!ð!4
D þ 2s!D!K þ 5!3

D!K � 4s!2
K þ 18!2

D!
2
K

þ 26!D!
3
K þ 12!4

KÞþ!Kðs2 � 2sð!2
D þ 2!D!K þ 3!2

KÞþ ð!Dþ!KÞ2ð!2
D þ 2!D!K þ 5!2

KÞÞÞ
þ ð!þ!KÞð!D þ!KÞðs2ð!þ!D þ!KÞþ 2ð!þ!KÞð!D þ!KÞð2!Kð!D þ!KÞ2 þ!2ð!D þ 2!KÞ
þ!ð!D þ 2!KÞ2Þ� sð!3 þ!3

D þ 3!2
D!K þ 7!D!

2
K þ 5!3

K þ!2ð!D þ 3!KÞþ!ð!2
D þ 7!D!K þ 7!2

KÞÞÞÞÞ;
(A5)
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where ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

�

p
, !D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

D

q
, !K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

K

q
, k01 ¼ ðsþm2

D� �m2
K� Þ=ð2 ffiffiffi

s
p Þ, k02 ¼ ðsþm2

K� �
m2

D� Þ=ð2 ffiffiffi
s

p Þ and k03 ¼ ðsþm2
D�

s
�m2

�Þ=ð2
ffiffiffi
s

p Þ, and its spin-isospin projection is

VI¼0;J¼0
D�K�!D�

s�
ðsÞ ¼ 3ffiffiffi

2
p 5VD�K�!D�

s�ðsÞ VI¼0;J¼2
D�K�!D�

s�
ðsÞ ¼ 3ffiffiffi

2
p 2VD�K�!D�

s�ðsÞ: (A6)

c. D�
s� ! D�

s� box diagram with m1 ¼ K, m2 ¼ D, m3 ¼ K, and m4 ¼ K

VD�
s�ðsÞ ¼

Z qmax

0
dq

q6

!D!
3
K

1

ð�k03 þ!D þ!K � i�Þ2
1

ð� ffiffiffi
s

p þ!D þ!K � i�Þ
1

ð�k04 þ 2!K � i�Þ2
1

ð ffiffiffi
s

p þ!D þ!KÞ

� 1

ðk04 þ 2!KÞ2
1

ðk03 þ!D þ!KÞ2
g4

15�2
PðsÞ; (A7)

with

PðsÞ ¼ 2ððk03Þ4ðs!D �!3
D � 2!2

D!K � 3!D!
2
K � 2!3

KÞ þ 2ðk03Þ3
ffiffiffi
s

p ð�s!D þ!3
D þ 2!2

D!K þ!D!
2
K þ 4!3

KÞ
� 2k03

ffiffiffi
s

p ð!D þ!KÞð!4
D þ 5!3

D!K þ 11!2
D!

2
K þ 15!D!

3
K þ 16!4

K � sð!2
D þ 3!D!K þ 4!2

KÞÞ
þ ðk03Þ2ðs2!D þ!5

D þ 6!4
D!K þ 32!3

D!
2
K þ 74!2

D!
3
K þ 63!D!

4
K þ 16!5

K � 2sð!3
D þ 3!2

D!K þ 10!D!
2
K

þ 6!3
KÞÞ � ð!D þ!KÞ2ðs2ð!D þ 2!KÞ þ 4!2

Kð3!3
D þ 12!2

D!K þ 17!D!
2
K þ 8!3

KÞ
� sð!3

D þ 4!2
D!K þ 15!D!

2
K þ 16!3

KÞÞÞ; (A8)

where ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

�

p
, !D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

D

q
, !K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

K

q
, k03 ¼ ðsþm2

D�
s
�m2

�Þ=ð2
ffiffiffi
s

p Þ, k04 ¼ ðsþm2
� �m2

D�
s
Þ=ð2 ffiffiffi

s
p Þ

and � ¼ 1 MeV. Finally, we project it in spin and isospin

VI¼0;J¼0
D�

s�
ðsÞ ¼ 2� 5VD�

s�ðsÞVI¼0;J¼2
D�

s�
ðsÞ ¼ 2� 2VD�

s�ðsÞ: (A9)

d. D� �K� ! D� �K� box diagram with m1 ¼ �, m2 ¼ D, m3 ¼ �, and m4 ¼ �K

The potential is the same than that given by Eq. (A1) with:

VI¼0;J¼0
D� �K� ðsÞ ¼ 9

45VD�K� ðsÞ VI¼0;J¼2
D� �K� ðsÞ ¼ 9

42VD�K� ðsÞ VI¼1;J¼0
D� �K� ðsÞ ¼ 1

45VD�K� ðsÞ VI¼1;J¼2
D� �K� ðsÞ ¼ 1

42VD�K� ðsÞ:
(A10)
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