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We consider deeply virtual Compton scattering and deep inelastic scattering in presence of Regge

exchanges that are part of the nonperturbative quark-nucleon amplitude. In particular we discuss

contribution from the Pomeron exchange and demonstrate how it leads to Regge scaling of the

Compton amplitude. A new fit of the deeply virtual Compton scattering total cross section data in

HERA kinematics is proposed.
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I. INTRODUCTION

In the past two decades, notable theoretical activity has
been dedicated to the study of the generalized parton
distributions (GPDs) [1–6]. GPDs allow one to access the
nucleon structure in a more detailed manner than the
parton distribution functions (PDFs) studied within the
deep inelastic scattering (DIS) paradigm, and are a direct
generalization of the latter. To access GPDs, it was pro-
posed to study hard exclusive processes like deeply virtual
Compton scattering, (DVCS) eþ p ! eþ pþ � [7,8] or
meson electroproduction, eþ p ! eþ pþ �, !, at high
virtuality Q2 of the photon originating from the scattered
lepton, and low momentum transfer t between a recoiled
and target nucleon. At present, DVCS has been studied
experimentally at HERA [9–14] and Jefferson Lab [15,16].
Interpretability of hard exclusive processes in terms of the
GPDs that are universal objects for all such reaction is
empowered by the collinear factorization theorem [17,18]
that, similar to DIS, allows for a separation of the soft
hadronic amplitude from perturbative, QCD process with
the former leading to four GPDs. To the lowest order in the
QCD coupling, �s, the full amplitude then corresponds to
the handbag diagram depicted in Fig. 1. Paratactical appli-
cations, however, rest upon, the a priori unknown rate of
convergence of the perturbative expansion. At low
Bjorken-xB QCD corrections to the handbag diagram in-
volve large logarithms in both �s logQ

2 and �s log1=xB.
While significant progress has been made in devising
various resummation schemes [19–25], to date no first
principle solution for the scattering amplitude exists. It is
also accepted that the natural physical interpretation of the
low-xB DIS is quite different from that of the parton model
description of the valence region [26–32]. That many
orders in the �s expansion may been needed to describe
the low-xB region is consistent with the ample evidence
that in exclusive electroproduction nonperturbative phe-
nomena play an important role in the nominally perturba-
tive domain. The structure functions at low-xB have the
behavior characteristic to Pomeron and Regge phenomena,
while at fixed momentum transfer, exclusive photon or

meson electroproduction cross sections can be well fitted
in terms of simple functions of Q2 and the center-of-mass
energy W rather then Q2 and xB [33–35].
Recently we have proposed a model in which the dif-

fractive phenomena that are expected to govern the low-xB
DIS are incorporated at the parton-nucleon level [36,37].
As discussed above, at the QCD side, at low-xB resumma-
tion of gluon ladders leads to complicated evolutions equa-
tions. However, since at large center-of-mass energy,
hadronic amplitudes are known to have a universal
Regge scaling, we employ this phenomena to construct
an effective parton-nucleon amplitude. In terms of the
QCD description of [17,18], in the model an infinite class
of diagrams, i.e. those shown on the left panel in Fig. 2, is
absorbed into the definition of the parton-nucleon blob and
the resulting electroproduction amplitude is then computed
from the handbag diagram. The model originates from a
study of Regge phenomena at the parton level in the

FIG. 1. Handbag diagram representation of the Compton am-
plitude.

FIG. 2. Infinite class of perturbative gluon ladders (left) is
expected to lead to Regge phenomena and are absorbed into
the quark-nucleon amplitude (right).
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context of DIS [38,39]. Such effective parton-nucleon
amplitude gives the correct description of low-x structure
functions, surprisingly, however, we have found that in the
case of DVCS it breaks collinear factorization, i.e. Bjorken
scaling while it naturally leads to the Regge-type scaling
[36,37]. Upon closer examination, breaking of collinear
approximation is not unexpected since it rests upon the
assumption that parton-nucleon amplitude is a soft func-
tion of the invariant parton-nucleon energy, ŝ. This is not
the case if the amplitude has Regge-type, ŝ�, �> 0 de-
pendence on ŝ. Such Regge-type scaling of exclusive am-
plitudes at large Q2 and all xB as opposed to Bjorken-
scaling was in fact predicted by Bjorken and Kogut in [40].

In this paper we focus on applicability of the model to
DVCS in the HERA kinematics,Q2=W2 � 1. For descrip-
tion of HERA data on DVCS at low-x two competing
formalisms are used, Regge models that operate with the
soft and hard Pomeron trajectories, as, for example, in the
color dipole and similar models [26–29,33–35], and the
GPD-based models. To be applied phenomenologically,
the GPD-based models would include models for Regge-
like background, see e.g. [41–43]. In general, Regge back-
ground thus represents a systematic effect on the extraction
of GPDs. Since both kinds of models are more or less
successful in describing the HERA DVCS data, a question
arises on whether the extraction of the GPDs is model
independent. Moreover, if data allow for interpretation
without GPDs, as in the model we study or the color dipole
models, one may question the physical content of all these
models.

The paper is organized as follows. In the following
section we discuss the DVCS amplitude in the handbag
approximation and emerging properties of the parton-
nucleon amplitude based on Regge phenomenology.
Computation of the DIS an DVCS amplitudes is discussed
in Sec. III with more details included in the appendix.
Results and comparison with HERA data are presented in
Sec. IV and followed by summary and conclusions in
Sec. V.

II. COMPTON AMPLITUDE IN THE HANDBAG
APPROXIMATION

The hadronic Compton tensor is given by the matrix
element of the time-ordered product of two electromag-
netic currents,

T�� ¼ i
Z

d4zeiððqþq0Þ=2ÞzhNjT½J�ðz=2ÞJ�ð�z=2Þ�jNi;
(1)

where qðq0Þ is the four momentum of the incoming (out-
going) photon. We will consider both the DIS process that
corresponds to the forward virtual Compton scattering with
both photons spacelike, q ¼ q0, q2 ¼ q02 � �Q2 < 0, and
DVCS with q2 < 0, q02 ¼ 0 and � ¼ q� q0 � 0. The
currents are given by J�ðzÞ ¼ P

qeqJ
�
q ðzÞ, J�q ðzÞ ¼

�c qðzÞ��c qðzÞ with c q the quark field operator and eq
the quark charge. Using the leading order operator product
expansion, we replace the product of the two currents by
the product of two quark field operators and a free quark
propagator between the photon interaction points z=2 and
�z=2, see Fig. 1 In this (handbag) approximation the
hadronic Compton amplitude is then given by a convolu-
tion

T�� ¼ i
Z d4K

ð2�Þ4 t
��
��ðK; q; �ÞA��ðK;�; p; 	; 	0Þ (2)

of the quark Compton tensor

t
��
��ðK; q; �Þ ¼ �e2q

�
��ð 6K þ 6qþ6q0

2 Þ��

ðK þ qþq0
2 Þ2 þ i


þ ��ð6k� 6qþ6q0
2 Þ��

ðK � qþq0
2 Þ2 þ i


�
��

; (3)

�, � being the Dirac indices, and the untruncated, with
respect to the parton legs, parton-nucleon amplitude,

A��ðK;�; p; 	; 	0Þ
¼ �i

Z
d4ze�iKzhp0	0jT½ �c �ðz=2Þc �ð�z=2Þjp	i:

(4)

Following [36,39], we represent this amplitude as

A��ðK;�; p; 	; 	0Þ ¼
Z d�2

ðk02 ��2 þ i
Þðk2 ��2 þ i
Þ
�X

i

½ð6k0 þ�Þ�q
i ð6kþ�Þ���

� �uðp0Þ�N
i uðpÞ (5)

where �q;N
i;j are constructed from Dirac �-matrices and the

available four-vectors p, �, k. The amplitude in Eq. (5)
gives the correct result in perturbation theory, e.g. for
pointlike quark-nucleon interaction. For partons bound in-
side the nucleon, however, A is expected to be suppressed
at large-k2 or k02. This is achieved [36,39], by applying to A
a generic operator [39] In ¼ ð�2Þnð d

d�2Þn, so that in Eq. (5),
1

ðk02 ��2 þ i
Þðk2 ��2 þ i
Þ
! In

1

ðk02 ��2 þ i
Þðk2 ��2 þ i
Þ : (6)

This method of softening the UV behavior guarantees
current conservation. This would not be the case, for
example, if the two propagators were absorbed into a soft
quark-nucleon wave function. Furthermore, differentiating
the product of two propagators instead of differentiating
each one separately ensures that the amplitude contains
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simple poles that enable us to interpolate between the off-
and on-shell quark-nucleon amplitudes.

Quark-nucleon amplitude with Regge behavior

We proceed by constructing the basis for the scattering
processNðpÞ þ qð�kÞ ! Nðp0Þ þ qð�k0Þ shown in Fig. 3.
We account for all possible Dirac-Lorentz structures that
can appear in four fermion operators. Furthermore, we
shall only consider those amplitudes which conserve the
quark helicity since helicity-flip amplitudes are suppressed
when integrated over in the handbag diagram by a power of
�=W. The structures of interest thus involve ���, ���5

on the quark side only. Based on P, CP, and CPT invari-
ance, the quark-nucleon scattering amplitude can be de-
composed in the basis of six independent tensors each then
multiplied by a Lorentz scalar function, ai, i ¼ 1; . . . 6,

AqN ¼ �q��q �N

�
a1�� þ a2

i����
�

2M

�
N

þ a3 �q�
��5q �N���5N þ �q

6K
M

q �N

�
a4 þ a5

6K
M

�
N

þ �q
��5

2M
q �N

��5

2M
Na6; (7)

where the new four-vectors are defined by, K ¼
ðkþ k0Þ=2, P ¼ ðpþ p0Þ=2, and � ¼ k0 � k ¼ p0 � p.
The amplitudes ai are analytic functions of invariants ŝ ¼
ðp� kÞ2 ¼ ðP� KÞ2, û ¼ ðp0 þ k0Þ2 ¼ ðPþ KÞ2 and t ¼
�2, fixed by the condition ŝþ ûþ t ¼ 2M2 þ 2�2 where
� is the mass of the effective quarks [cf. Eq. (5)] and we
have explicitly put the quarks on the mass shell. The above
basis is equivalent to the form used in [44] for elastic
electron-proton scattering. In particular, the amplitude
multiplying a3 is chosen to be an axial vector but can be
expressed in terms of �q 6Pq �N 6KN used in [44]. Moreover,
��5=2M in front of a6 becomes proportional to �5 for on-
shell particles, whereas 6K=M multiplying a4 and a5 re-
duces to �=M.

The scalar amplitudes ai have unitarity cuts in ŝ and û
and at fixed-t can be represented through a dispersion
representation,

aiðŝ; û; t; �2Þ ¼ ð2�Þ4
Z

ds

�
�s
i ðs; t; �2Þ

s� ŝ� i

þ �u

i ðs; t; �2Þ
s� û� i


�

þ subtractions (8)

with the spectral function �s;u
i being nonzero above some

threshold values s0ðu0Þ in the respective channel. Next, we
consider the phenomenological consequences of Regge
exchanges on the asymptotics of the spectral functions at
high sðuÞ. For fixed t, we assume that the on-shell quark-
nucleon helicity amplitudes follow Regge asymptotics, i.e.

they are proportional to ŝ�ðtÞ or û�ðtÞ for large ŝ or û,
respectively, �ðtÞ being a Regge trajectory. Evaluating
the asymptotic behavior of the amplitudes in Eq. (7) and
comparing with the expected behavior in the Regge limit
we find the asymptotic behavior of the spectral functions,

�u;s
1 � s�1�1 �u;s

2 � s�2 �u;s
3 � s�3�1

�u;s
4 � s�4 �u;s

5 � s�5�1 �u;s
6 � s�6 :

(9)

Note that in the pure collinear kinematics �� ¼
ð�þ; 0; 0?Þ (thus for �2 ¼ 0), and for massless quarks
and proton, the matrix elements at a2;4;6 vanish identically.
Therefore, they generally have to be proportional to masses
M, � or momentum transfer �2 that is kept constant in
Regge limit, and the above relations follow.
An additional constraint on the behavior of the spectral

functions comes from the Pomeranchuk theorem which
implies that asymptotically s and u channel amplitudes
become equal. The ŝ� û crossing is implemented on the
level of the quark-nucleon amplitudes according to

K ! �K � ! � �� ! C��Cy ¼ ���

���5 ! C���5Cy ¼ þ���5;
(10)

with C denoting the charge transformation. For the spectral
functions in Eq. (7) Pomeranchuk’s theorem then implies,

�u
i ðs ! 1Þ ¼ þ�s

i ðs ! 1Þ for i ¼ 3; 4; 6;

�u
i ðs ! 1Þ ¼ ��s

i ðs ! 1Þ for i ¼ 1; 2; 5:
(11)

We next introduce the C-even and C-odd combinations
��
i � ð�s

i � �u
i Þ=2 which asymptotically behave as,

��
1 � s�1�1 �þ

1 � s�1�2;

��
2 � s�2 �þ

2 � s�2�1;

�þ
3 � s�3�1 ��

3 � s�3�2;

�þ
4 � s�4 ��

4 � s�4�1;

��
5 � s�5�1 �þ

5 � s�5�2;

�þ
6 � s�6 ��

6 � s�6�1:

(12)

We notice that ��
i and �þ

i correspond to singlet (valenceþ
sea) and nonsinglet (valence) GPDs. It is instructive to
observe that according to Eq. (12), only singlet combina-
tions may grow with s in the high energy regime, while the
nonsinglet ones necessarily vanish at high s. This fact,
trivial in itself since it simply incorporates the symmetry
of the interaction of the nucleon with highly energetic
quark and antiquark, has important consequence for col-
linear factorization.

FIG. 3. Direct and crossed contributions to the quark-nucleon-
scattering amplitude.
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In Eq. (8), convergence of the dispersion integral at high
energies is governed by asymptotic energy dependence of
�þ
i =s and ��

i =s
2. Combining Eqs. (12) and (8), it follows

that one can at most expect three subtraction constants, for
a2, a4, and a6 [45]. The appearance of a finite subtraction
constant that is energy-independent and thus has no ex-
ponential t-dependence would necessarily imply an ap-
pearance of fixed poles with very mild t-dependence in
nucleon-nucleon and hadron-nucleon scattering. As it was
noticed long ago [39,46], the experimental data do not
support such possibility and we will assume in the follow-
ing that these subtraction constants are zero.

The Pomeron can only contribute to the amplitude a1.
The amplitude a3 has quantum numbers of an axial vector

a1-meson exchange which has the intercept �a1ð0Þ � 0:5

and needs no subtraction. The amplitude a5 is crossing-odd
and needs no subtraction.

III. REGGE EXCHANGE CONTRIBUTION TO DIS
AND DVCS

In this section, we will employ handbag formalism and
relate the quark-nucleon spectral functions ��

i to singlet
and nonsinglet GPD’s. We combine Eqs. (2), (3), (5), and
(8) to obtain the representation for the hadronic Compton
amplitude

T�� ¼ i
Z

d�2ds
Z

d4K
X
i

�uðp0Þ�N
i uðpÞ

�
�s
i

s� ðP� KÞ2 þ i

þ �u

i

s� ðPþ KÞ2 þ i


�

� In
Tr½ð 6K þ �

2 þ�Þt��ð 6K � �
2 þ�Þ�q

i �
½ðK þ�=2Þ2 ��2 þ i
�½ðK � �=2Þ2 ��2 þ i
� (13)

Next, we will evaluate the contribution to the hadronic Compton amplitude from quark-nucleon amplitude proportional to
a1, i.e. use �uðp0Þ�N

i uðpÞ�q
i ¼ �uðp0Þ��uðpÞ�� (i ¼ 1). This amplitude corresponds to Pomeron (and vector meson)

exchange, so it should give the dominant contribution for DVCS at high energies where DVCS data from H1 and
ZEUS are available, We choose the kinematics [47] as p� ¼ ðpþ; 0; 0?Þ and q� ¼ ð0; Q2=ð2xBpþÞ; Q?Þ, with the usual
Bjorken variable xB ¼ Q2=2pq. The trace in Eq. (13) can be evaluated using the collinear approximation

Trð6k0 þ�Þt��ð6kþ�Þ�� ! �4g��
? ðk2? þ�2Þ Q2

2xBP
þ g�þ

�
1

ðK þ qþq0
2 Þ2 þ i


� 1

ðK � qþq0
2 Þ2 þ i


�
; (14)

Note that the above trace calculation in collinear kinematics is the same for forward (DIS) and nonforward (DVCS) case.
Before we proceed, we notice that the trace in Eq. (14) is antisymmetric under exchangingK ! �K. This implies that only
�� spectral density contributes leading to

T
��
a1 ¼ �4ig

��
?

Q2

xB

1

2Pþ �uðp0Þ�þuðpÞ
Z

d�2ds
Z

d4KIn
k2? þ�2

½ðK þ�=2Þ2 ��2 þ i
�½ðK � �=2Þ2 ��2 þ i
��
�
1 ðs; t; �2Þ

�
�

1

s� ðP� KÞ2 þ i

� 1

s� ðPþ KÞ2 þ i


��
1

ðK þ qþq0
2 Þ2 þ i


� 1

ðK � qþq0
2 Þ2 þ i


�
: (15)

The fact that the above Compton amplitude depends on the
singlet spectral function ��

1 only, is independent of the
collinear approximation: the positive C-parity of the
Compton amplitude requires the C-even singlet combina-
tion ��

1 . On the contrary, the form factor, possessing the
odd C-parity only depends on the C-odd nonsinglet com-
bination �þ

1 .

A. DIS (�	p ! �	p)
We next evaluate the amplitude of Eq. (15) in the for-

ward kinematics � ¼ 0, q2 ¼ q02 ¼ �Q2.

T
��
a1 ð�¼ 0Þ ¼ �4ig

��
?

Q2

xB

1

2pþ �uðp0Þ�þuðpÞ
Z

d�2ds

�
Z

d4kIn
k2? þ�2

ðk2 ��2 þ i
Þ2�
�
1 ðs;0;�2Þ

�
�

1

s� ðp� kÞ2 þ i

� 1

s� ðpþ kÞ2 þ i


�

�
�

1

ðkþ qÞ2 þ i

� 1

ðk� qÞ2 þ i


�
: (16)

We make the collinear approximation in the hard quark
propagators,
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1

ðkþ qÞ2 þ i

� 1

�Q2 þ Q2

xBp
þ kþ þ i


¼ xB=Q
2

kþ
pþ � xB þ i


;

1

ðk� qÞ2 þ i

� 1

�Q2 � Q2

xBp
þ kþ þ i


¼ �xB=Q
2

kþ
pþ xB � i


;

(17)

and obtain (we refer to Appendix A for more details),

T��ð� ¼ 0Þ ¼ �4�2g
��
?

1

2pþ �uðp0Þ�þuðpÞ�ðnÞ

�
Z 1

0
dxð1� xÞnþ1

�
Z

d�2ð�2Þnds��
1 ðs; 0; �2Þ

� ðnþ 1� xÞ�2 þ xs

½�ð1� xÞ�2 � xs�nþ1

Z
dkþ

�
�

1
kþ
pþ � xB þ i


þ 1
kþ
pþ þ xB � i


�

� ½�ðkþ � xpþÞ � �ðkþ þ xpþÞ�: (18)

To make a connection to the PDFs, we consider the imagi-
nary part of this amplitude. Recalling that the imaginary
part of forward Compton tensor proportional to �g��

gives �W1 ! � 1
2

P
qe

2
q½qðxÞ � �qð�xÞ�, we identify the

parton densities with integrals over the �� or explicitly s
and u spectral functions as,

xB½qðxBÞ � �qð�xBÞ�
¼ �8�2�ðnÞð�1Þnþ1ð1� xBÞnþ1

Z
d�2d�ð�2Þn

�
�
�s
1

�
�

xB
; 0; �2

�
� �u

1

�
� �

xB
; 0; �2

��

� �þ ðnþ 1� xBÞ�2

ð�þ ð1� xBÞ�2Þnþ1
: (19)

In the above, we changed the integration variable s to � ¼
xBs. Using the high energy asymptotics [cf. Eq. (9)]
�s;u
1 ðsÞ � s�P�1, with �P ¼ 1þ 
 being the Pomeron tra-

jectory, and pull the xB dependence out of the �-integral we

obtain the experimentally observed asymptotics F2ðxBÞ �
x1��P

B � x�

B . This is the result for the singlet PDF. The

nonsinglet combination will depend on a similar integral
with the nonsinglet spectral function, which at high energy
behaves as �þðsÞ � s�P�2, and correspondingly gives

xB½qðxBÞ þ �qð�xBÞ� � x2��P

B � xB, as expected. Evalu-
ating the real part of the forward Compton amplitude we
obtain the familiar result for DIS,

T��ð�¼ 0Þ ¼ g
��
?

1

2pþ �uðp0Þ�þuðpÞ

�
Z 1

0
dx

2x

x2 � x2B þ i

½qðxÞ � �qð�xÞ�: (20)

While the singlet PDF’s at low x rise as x��P , the singu-
larity at x ! 0 is canceled by one power of x in the
numerator of Eq. (20) which makes both the imaginary
and real part of the integral finite [36].

B. DVCS (�	p ! �p): Collinear approximation

Next we evaluate Eq. (15) in the DVCS kinematics,
p� ¼ ðpþ; 0; 0?Þ, q� ¼ ð0; Q2=ð2xBpþÞ; Q?Þ, �� ¼
ð�xBp

þ; 0; 0?Þ, and choose now asymmetric integration

variable k, rather than K ¼ kþk0
2 ,

T
��
a1 ¼�4ig

��
?

Q2

xB

1

2pþ �uðp0Þ�þuðpÞ
Z
d�2ds

Z
d4kðk2?þ�2Þ

�In
1

½k2��2þi
�½ðkþ�Þ2��2þi
��
�
1 ðs;0;�2Þ

�
�

1

s�ðp�kÞ2þi

� 1

s�ðpþkþ�Þ2þi


�

�
�

1

ðkþqÞ2þi

� 1

ðk�q0Þ2þi


�
; (21)

Using the collinear approximation for the quark propagator
exchanged between the two photons interaction points we
obtain in the case of DVCS,

1

ðkþ qÞ2 þ i

� 1

�Q2 þ Q2

xBp
þ kþ þ i


¼ xB=Q
2

kþ
pþ � xB þ i


;

1

ðk� q0Þ2 þ i

� 1

� Q2

xBp
þ kþ þ i


¼ xB=Q
2

� kþ
pþ þ i


: (22)

The DVCS amplitude in the collinear approximation is
then given by,

T��
a1 ¼ g��

?
1

2Pþ �uðp0Þ�þuðpÞ

�
Z 1

0
dx

�
1

x� xB þ i

þ 1

x� i


�
Hþðx; xBÞ; (23)

and we refer the reader to Appendix B for the details of the
calculation. We identify the singlet GPD Hðx; xBÞ with

Hþðx; xBÞ ¼ ð1� xB=2Þ
Z 1

0
dy

Z 1

0
dz½qðzÞ � �qð�zÞ�

� �ðx� z� yxBð1� zÞÞ (24)

which satisfies the familiar normalization condition,

Z 1

0
dxHþðx; xBÞ ¼ ð1� xB=2Þ

Z 1

0
dx½qðxÞ � �qð�xÞ�:

(25)

The factor ð1� xB=2Þ in the definition of the GPD results
from the prefactor 1=2Pþ in the DVCS amplitude. Unlike
DIS, in the presence of Regge asymptotics, the real part of
the integral in Eq. (23) is divergent. This can be seen by
first integrating the �-function over x, and then performing
the integral over y. In the limit z ! 0 the real part of the
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integral

Z 1

0
dy

�
1

z� xB þ yxBð1� zÞ þ i


þ 1

zþ yxBð1� zÞ � i


�
(26)

is finite, and equal to lnð1� xBÞ=xB Then, given the Regge
asymptotics of the PDF, ½qðzÞ � �qð�zÞ� � z��P the inte-
gral over z diverges. In the case of the DIS amplitude the
quark propagator exchanged between the two photons in
the sum of direct and crossed handbag diagram (cf. Fig. 1)
leads to the factor of x in the numerator of Eq. (20). This
does not happen in DVCS when one photon is soft and the
sum of the two collinear propagators in the DVCS ampli-
tude of Eq. (23) does not vanish when x ! 0 and cannot

compensate for the rise of the GPD at low x. We also note
that in the case of the nonsinglet GPD, the integral over x
instead reduces to �dxx1��P and is therefore convergent.
Thus conclude that for valence GPDs where Regge con-
tributions are suppressed the collinear approximation is
adequate and that part of the full DVCS amplitude would
obey Bjorken scaling. As we show in the following section,
inclusion of Regge contributions into singlet GPDs leads to
Regge scaling.

C. DVCS beyond the collinear approximation

We will use the collinear approximation in the numera-
tor only. We combine all four propagators together using
Feynman parameters to obtain

T��¼�8ig��
?

Q2

xB

1

2pþ �u�þu
Z
d�2In

Z
ds��

1 ðs;0;�2Þ�ð4Þ
Z 1

0
dxdydzð1�xÞð1�zÞ2

�
Z
d4k

�
k2?þ�2

ð½kþzq�ð1�zÞxpþyð1�xÞð1�zÞ��2�zð1�zÞQ2ð1�x=xB�yð1�xÞÞ�ð1�zÞ½xsþð1�xÞ�2�Þ4

� k2?þ�2

ð½k�zq0 �ð1�zÞxpþyð1�xÞð1�zÞ��2�zð1�zÞQ2ðx=xBþyð1�xÞÞ�ð1�zÞ½xsþð1�xÞ�2�Þ4
�

(27)

We report all the details of the algebra in Appendix C, and quote here the final result,

T�� ¼ 8�2g
��
?

ðQ2Þ��1

x�B

1

2pþ �u�þu
Z

d�2�4In�2

Z
d����1

Z Q2=xB

0

d!

!��1

�
1� xB

Q2
!

�
2
��

1

�
Q2�

xB!
;�2

�

�
�
� �þ 3�2

½�þ�2�3
1

!
ln

�j�þ�2 �!ð1� xBÞj
�þ�2 þ!

�þ�2 þQ2 þ!ð1� xBÞ
j�þ�2 þQ2 �!j

�

þ 2�2

½�þ ð1� xÞ�2�2
�

2� xB
½�þ�2 �!ð1� xBÞ�½�þ�2 þ!� �

2� xB
½�þ�2 þQ2 þ!ð1� xBÞ�½�þ�2 þQ2 �!�

�

þ 2
�2 þQ2

�þ�2

� ð2� xBÞð�þ�2 þ!xB=2Þ
½�þ�2 �!ð1� xBÞ�2½�þ�2 þ!�2 �

ð2� xBÞð�þ�2 þQ2 �!xB=2Þ
½�þ�2 þQ2 þ!ð1� xBÞ�2½�þ�2 þQ2 �!�2

��
;

(28)

where we changed variables from s to � ¼ xs, from x to
! ¼ Q2x=xB, and factored out the Regge asymptotics of

the spectral function as ��
1 ðs; 0; �2Þ ¼ s��1��

1 ðs; �2Þ
with � ! const for s ! 1. Analyzing the above formula,
we notice that integrals now converge. Importantly, large
values of ! do not contribute to the integral because of the
explicit suppression factor ð1� xB!=Q2Þ2 and because of
powers of ! in the denominator inside the bracket. The
price to pay for this convergence is the appearance of the
explicit scale dependence��2 in the expressions, as com-
pared to the scale-independent results obtained within the
collinear approximation. This scale dependence is of no
surprise since Regge behavior does introduce a scale. In the
limit Q2=�2 
 1 it can be shown that the leading contri-
bution of the Pomeron, � ¼ �P to this integral is propor-
tional to

TDVCS � 1

Q2

�
Q2

xB

�
�P �W2�P

Q2
: (29)

The above asymptotic expression was derived in the
limit t ¼ �2 ! 0. Regge phenomenology, however, also
provides a general insight into the t-dependence of the
DVCS amplitude. We can expect that the t-dependence

of the quark-nucleon amplitude originates from BðtÞs�ðtÞ,
where �ðtÞ ¼ �ð0Þ þ �0t is the approximate linear Regge
trajectory, and the residue BðtÞ has an exponential fall off.
This would result in a similar expression for the DVCS
cross section, i.e.

d�

dt
¼ d�

dt t¼tmin

eðbþ2�0 logðsÞÞt; (30)

which is consistent with the experimental data.

M. GORCHTEIN AND A. P. SZCZEPANIAK PHYSICAL REVIEW D 82, 014006 (2010)

014006-6



IV. RESULTS AND COMPARISON WITH HERA
DATA

The result of the previous section for TDVCS was ob-
tained in the limit Q2 ! 1. At finite Q2, the amplitude is
finite but would require knowledge of the spectral decom-
position of the quark-nucleon amplitude at finite energies
to perform the integration. When comparing to the experi-
mental data at finite Q2 we thus replace 1=Q2 by a
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FIG. 4. DVCS cross section as a function of photon virtuality,
Q2 for various c.m. energies W (in GeV). In the upper panel, we
confront the combined fit to the H1 and ZEUS data. Solid lines a
result of a fit to the combined ZEUS and H1 data including both
Q2 andW dependence. The middle panel displays a similar fit to
H1 data alone, whereas the fits to ZEUS data alone are shown in
the lower panel.
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FIG. 5. W-dependence of the DVCS cross section for different
values of Q2. The upper panel displays the comparison of the H1
data to the combined fit to both data sets, whereas the second
panel from top shows the ZEUS data vs the same fit. The two
lower panels confront individual fits to H1 (second lowest panel)
and ZEUS (lowest panel) to the corresponding data sets.
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�1=ð1þQ2=Q2
0Þ with some characteristic scale Q2

0 that

we will determine from a fit. This is in accord with the
experimental observation [9]

�DVCS ¼ �0ðW2Þ2��2ðQ2Þ� (31)

with � � �1:5 rather than �2. It is also this form that is
used to describe data within phenomenological Regge (or
color dipole picture-motivated) models [33,35]. We will fit
the HERA data using the following parametrization for the
cross section

��	p!�p ¼ �0

��
W

W0

�
��1

�
1

1þQ2=Q2
0

��
2

(32)

with W0 ¼ 20 GeV. It is worth noting that using the
Reggized parton-nucleon amplitude in the handbag model
we have effectively ‘‘derived’’ the parametrization pro-
posed in [33].

We perform two fits. One is a combined fit to both H1
[9,10] and ZEUS [11,12] data. It gives �0 ¼ 28� 4 nb,
Q0 ¼ 1:51� 0:05 GeV and �� 1 ¼ 0:43� 0:03 and is
shown in Figs. 4 and 5, with 
2=d:o:f: ¼ 2:01. The other, is
an independent fit to H1 and ZEUS data. For the fit to the
H1 data alone we obtain �0 ¼ 17� 3 nb, Q0 ¼ 1:83�
0:1 GeV and �� 1 ¼ 0:34� 0:05 and it is shown in
Figs. 4 and 5, with 
2=d:o:f: ¼ 1:2. For an independent
fit to the ZEUS data alone we find �0 ¼ 41� 7 nb, Q0 ¼
1:49� 0:06 GeV and �� 1 ¼ 0:34� 0:03 and it is
shown in Figs. 4 and 5, with 
2=d:o:f: ¼ 1:1. We observe
that both data sets are fitted well with the Regge form of
Eq. (32), as it was found previously in color dipole or
Regge based studies [33]. However, the two data sets
exhibit different normalization (the values of �0). As a
result, performing a combined analysis we obtain a higher
intercept.

V. SUMMARY

We presented an analysis of quark-nucleon scattering
amplitudes. We considered a basis of six independent
Dirac-Lorentz structures and discussed their Regge behav-

ior. In particular we have shown that the C-odd combina-
tions of the direct and crossed channels (referred to as
nonsinglet combinations) follow different Regge asymp-
totics, as compared to the C-even (singlet) ones. Once
embedded into the handbag diagram to describe the
DVCS amplitude in hard kinematics, we show that only
singlet combinations contribute, whereas the valence com-
binations do not appear and require no a priori unknown
subtractions.
We focused on the contribution of a single Pomeron

trajectory that dominates at high energies, and have dem-
onstrate that while for DIS the handbag formalism leads to
the known result, F2ðxBÞ � x��P

B , in the case of DVCS, the
mismatch between quark propagators leads to divergent
integrals in the collinear approximation. If collinear ap-
proximation is not used, the model naturally leads to

Regge-scaling for DVCS [40] with TDVCS �
Qð2�P�2Þ=x�P

B , with �P ¼ 1þ 
 being the Pomeron trajec-
tory. Thus we have reproduce the form that phenomeno-
logical Regge models use to describe DVCS, and we have
illustrated its applicability by fitting the data from HERA.
In he future we plan to extend our phenomenological
analysis to larger values of Bjorken xB, where DVCS was
measured at Jefferson Lab [15,16] and at HERA [13].
Since the JLab data is taken at much lower energies,
however, the Pomeron trajectory alone is not expected to
be sufficient and other trajectories will have to be studied.
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APPENDIX A: DIS IN COLLINEAR
APPROXIMATION

Here we evaluate the forward Compton amplitude of
Eq. (16),

T��
a1 ð� ¼ 0Þ ¼ �4ig��

?
Q2

xB

1

2pþ �uðp0Þ�þuðpÞ
Z

d�2ds
Z

d4kIn
k2? þ�2

ðk2 ��2 þ i
Þ2 �
�
1 ðs; 0; �2Þ

�
�

1

s� ðp� kÞ2 þ i

� 1

s� ðpþ kÞ2 þ i


��
1

ðkþ qÞ2 þ i

� 1

ðk� qÞ2 þ i


�
: (A1)

Using the collinear quark propagators from Eq. (17) and introducing the Feynman parameter x, we obtain
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T��
a1 ¼ 4ig��

?
1

2pþ �uðpÞ�þuðpÞ
Z

d�2ds��
1 ðs;0;�2Þ

Z
dkþdk�d2k?

�
1

kþ
pþ � xBþ i


þ 1
kþ
pþ þ xB� i


�

�ðk2?þ�2ÞIn 1

½k2��2þ i
�2
�

1

ðp� kÞ2� s� i

� 1

ðpþ kÞ2� s� i


�

¼ 4ig
��
?

1

2Pþ �uðp0Þ�þuðpÞ�ðnþ 3Þ
Z 1

0
dxð1� xÞnþ1

Z
d�2ð�2Þnds��

1 ðs;0;�2Þ
Z

dkþ
�

1
kþ
pþ � xBþ i


þ 1
kþ
pþ þ xB� i


�

�
Z

dk�d2k?
� ðk2?þ�2Þ
½ðk� ypÞ2� ys�ð1� yÞ�2�nþ3

� ðk2?þ�2Þ
½ðkþ ypÞ2� ys�ð1� yÞ�2�nþ3

�
: (A2)

Finally, Eq. (18) is obtained from Eq. (A2) after integrating over k�, k? using

Z
dk�d2k?

1

ðk2 þ a2Þ� ¼ i�2 �ð�� 2Þ
�ð�Þ

�ðkþÞ
ða2Þ��2

Z
dk�d2k?

k2?
ðk2 þ a2Þ� ¼ �i�2 �ð�� 3Þ

�ð�Þ
�ðkþÞ
ða2Þ��3

: (A3)

The expression in Eq. (18) follows from Eq. (A2) after integrating over kþ.

APPENDIX B: DVCS IN COLLINEAR APPROXIMATION

We evaluate Eq. (15) in the DVCS kinematics, p� ¼ ðpþ; 0; 0?Þ, q� ¼ ð0; Q2=ð2xBpþÞ; Q?Þ, �� ¼ ð�xBp
þ; 0; 0?Þ,

and use k as the integration variable instead of K ¼ ðkþ k0Þ=2,

T��
a1 ¼ �4ig��

?
Q2

xB

1

2pþ �uðp0Þ�þuðpÞ
Z

d�2ds
Z

d4kðk2? þ�2ÞIn 1

½k2 ��2 þ i
�½ðkþ �Þ2 ��2 þ i
��
�
1 ðs; 0; �2Þ

�
�

1

s� ðp� kÞ2 þ i

� 1

s� ðpþ kþ �Þ2 þ i


��
1

ðkþ qÞ2 þ i

� 1

ðk� q0Þ2 þ i


�
: (B1)

We use the collinear approximation of Eq. (22) and combine the two quark propagators from the untruncated, quark-
nucleon amplitude introducing an integral over a Feynman parameter,

1

½k2 ��2 þ i
�½ðkþ�Þ2 ��2 þ i
� ¼
Z 1

0
dy

1

½ðkþ y�Þ2 ��2 þ i
�2 ; (B2)

to obtain

T
��
a1 ¼ 4ig

��
?

1

2pþ �uðp0Þ�þuðpÞ
Z 1

0
dy

Z
d�2ds��

1 ðs; 0; �2Þ
Z

dkþdk�d2k?
�

1
kþ
pþ � xB þ i


� 1

� kþ
pþ þ i


�
ðk2? þ�2ÞIn

� 1

½ðkþ y�Þ2 ��2 þ i
�2
�

1

ðp� kÞ2 � s� i

� 1

ðpþ kþ�Þ2 � s� i


�

¼ 4ig��
?

1

2pþ �uðp0Þ�þuðpÞ
Z 1

0
dy�ðnþ 3Þ

Z 1

0
dxð1� xÞnþ1

Z
d�2ð�2Þnds��

1 ðs; 0; �2Þ

�
Z

dkþ
�

1
kþ
pþ � xB þ i


� 1

� kþ
pþ þ i


�Z
dk�d2k?

� ðk2? þ�2Þ
½ðk� xpþ yð1� xÞ�Þ2 � xs� ð1� xÞ�2�nþ3

� ðk2? þ�2Þ
½ðkþ xp0 þ yð1� xÞ�Þ2 � xs� ð1� xÞ�2�nþ3

�
(B3)

Integrating over k�, k? results in
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T
��
a1 ¼ �4�2g

��
?

1

2pþ �uðp0Þ�þuðpÞ
Z 1

0
dy�ðnÞ

Z 1

0
dxð1� xÞnþ1

Z
d�2ð�2Þnds��

1 ðs; 0; �2Þ ðnþ 1� xÞ�2 þ xs

½�ð1� xÞ�2 � xsþ i
�nþ1

�
Z

dkþ
�

1
kþ
pþ � xB þ i


� 1

� kþ
pþ þ i


�
½�ðkþ � ðxþ yxBð1� xÞÞpþÞ � �ðkþ þ ðxð1� xBÞ � yxBð1� xÞÞpþÞ�:

(B4)

The argument of the second �-function can be brought to the same form of the first �-function by changing integration
variables y ! 1� y and kþ ! �kþ þ xBp

þ. Finally, the result reads

T
��
a1 ¼ �4�2g

��
?

1

2pþ �uðp0Þ�þuðpÞ
Z 1

0
dy�ðnÞ

Z 1

0
dxð1� xÞnþ1

Z
d�2ð�2Þnds��

1 ðs; 0; �2Þ

� ðnþ 1� xÞ�2 þ xs

½�ð1� xÞ�2 � xsþ i
�nþ1
2

�
1

x� xB þ yxBð1� xÞ þ i

þ 1

xþ yxBð1� yÞ � i


�
(B5)

which corresponds to Eq. (23) with H defined in Eq. (24).

APPENDIX C: DVCS BEYOND THE COLLINEAR APPROXIMATION

We use the collinear approximation in numerator of Eq. (13) and combine all four propagators using Feynman
parameters,

T��¼�8ig
��
?

Q2

xB

1

2pþ �u�þu
Z
d�2In

Z
ds��

1 ðs;0;�2:Þ�ð4Þ
Z 1

0
dxdydzð1�xÞð1�zÞ2

�
Z
d4k

�
k2?þ�2

ð½kþzq�ð1�zÞxpþyð1�xÞð1�zÞ��2�zð1�zÞQ2ð1�x=xB�yð1�xÞÞ�ð1�zÞ½xsþð1�xÞ�2�Þ4

� k2?þ�2

ð½k�zq0 �ð1�zÞxpþyð1�xÞð1�zÞ��2�zð1�zÞQ2ðx=xBþyð1�xÞÞ�ð1�zÞ½xsþð1�xÞ�2�Þ4
�

(C1)

Integration over d4k results in

T�� ¼ 8�2g��
?

Q2

xB

1

2pþ �u�þu
Z

d�2�4In�2

Z
ds��

1 ðs; 0; �2Þ�ð3Þ
Z 1

0
dxdydzð1� xÞ3

�
�

1� z

½xsþ ð1� xÞ�2 þ zQ2ð1� x=xB � yð1� xÞÞ�3 �
1� z

½xsþ ð1� xÞ�2 þ zQ2ðx=xB þ yð1� xÞÞ�3

þ 3ð�2 þ z2Q2Þ
½xsþ ð1� xÞ�2 þ zQ2ð1� x=xB � yð1� xÞÞ�3 �

3ð�2 þ z2Q2Þ
½xsþ ð1� xÞ�2 þ zQ2ðx=xB þ yð1� xÞÞ�3

�
: (C2)

Next the y integral can be done to obtain
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T�� ¼ 8�2g��
?

1

xB

1

2pþ �u�þu
Z

d�2�4In�2

Z
ds��

1 ðs; 0; �2Þ�ð3Þ
Z 1

0
dxð1� xÞ2 dz

z

�
ð1� zÞ

�
�

1

½xsþ ð1� xÞ�2 þ zQ2ðx� x=xBÞ�2
� 1

½xsþ ð1� xÞ�2 þ zQ2ð1� x=xBÞ�2

þ 1

½xsþ ð1� xÞ�2 þ zQ2ð1� xþ x=xBÞ�2
� 1

½xsþ ð1� xÞ�2 þ zQ2x=xB�2
�
þ 2ð�2 þ z2Q2Þ

�
�

1

½xsþ ð1� xÞ�2 þ zQ2ðx� x=xBÞ�3
� 1

½xsþ ð1� xÞ�2 þ zQ2ð1� x=xBÞ�3

þ 1

½xsþ ð1� xÞ�2 þ zQ2ð1� xþ x=xBÞ�3
� 1

½xsþ ð1� xÞ�2 þ zQ2x=xB�3
��

(C3)

and finally, the z integral yields

T�� ¼ 8�2g��
?

1

xB

1

2pþ �u�þu
Z

d�2�4In�2

Z
d����1��

1

�
�

x
;�2

�Z 1

0

dx

x�
ð1� xÞ2

�
� �þ ð3� xÞ�2

½�þ ð1� xÞ�2�3

� ln

�
�þ ð1� xÞ�2 þQ2ðx� x=xBÞ

�þ ð1� xÞ�2 þQ2x=xB

�þ ð1� xÞ�2 þQ2ð1� xþ x=xBÞ
�þ ð1� xÞ�2 þQ2ð1� x=xBÞ

�

þ 2�2

½�þ ð1� xÞ�2�2
�

1

�þ ð1� xÞ�2 þQ2ðx� x=xBÞ
� 1

�þ ð1� xÞ�2 þQ2ð1� x=xBÞ
þ 1

�þ ð1� xÞ�2 þQ2ð1� xþ x=xBÞ
� 1

�þ ð1� xÞ�2 þQ2x=xB

�

þ �2 þQ2

�þ ð1� xÞ�2

�
1

½�þ ð1� xÞ�2 þQ2ðx� x=xBÞ�2
� 1

½�þ ð1� xÞ�2 þQ2ð1� x=xBÞ�2

þ 1

½�þ ð1� xÞ�2 þQ2ð1� xþ x=xBÞ�2
� 1

½�þ ð1� xÞ�2 þQ2x=xB�2
��
; (C4)

where we changed variables from s to � ¼ xs and factored
out the Regge asymptotics of the spectral function as
��
1 ðs; 0; �2Þ ¼ s��1��

1 ðs; �2Þ with � ! const for s !
1. To proceed, we observe that the integral over � is
convergent since ��

1 � ���1 and the expression in the
curly bracket drops at least as 1=�3. Instead, the x integral
is peaked at x ! 0, and we can therefore neglect x in terms
proportional to (1� x). The divergent behavior of this

integral obtained in collinear approximation for the propa-
gators can obtained the formal limit Q2 ! 1 Then, the
expression in the curly bracket becomes Q2-independent,
and proportional to � lnð1� xBÞ leading to a divergent
integral of the type

R
0 dxx

��. To ensure convergence, we
do not make this approximation. Changing finally the
integration variable x to ! ¼ Q2x=xB, we obtain Eq. (28).
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