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We investigate a linear sigma model with global chiral Uð2ÞR �Uð2ÞL symmetry. The mesonic degrees

of freedom are the standard scalar and pseudoscalar mesons and the vector and axial-vector mesons. The

baryonic degrees of freedom are the nucleon, N, and its chiral partner, N�, which is usually identified with
Nð1535Þ. The chiral partner is incorporated in the so-called mirror assignment, where the nucleon mass is

not solely generated by the chiral condensate but also by a chirally invariant mass term, m0. The presence

of (axial-) vector fields modifies the expressions for the axial-coupling constants of the nucleon, gNA , and

its partner, gN
�

A . Using experimental data for the decays N� ! N� and a1 ! ��, as well as lattice results

for gN
�

A we infer that in our model m0 � 500 MeV, i.e., an appreciable amount of the nucleon mass

originates from sources other than the chiral condensate. We test our model by evaluating the decay N� !
N� and the s-wave nucleon-pion scattering lengths að�Þ

0 .
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I. INTRODUCTION

The theory of the strong interaction, quantum chromo-
dynamics (QCD), has a global chiral UðNfÞR �UðNfÞL
symmetry, for Nf flavors of massless quarks. This symme-

try is spontaneously broken in the vacuum, which has
important consequences for hadron phenomenology.
Because of confinement of color charges, all low-energy
hadronic properties, such as masses, decay widths, scatter-
ing lengths, etc. cannot be inferred from perturbative QCD
calculations. Therefore, effective chiral models are widely
used in order to study the vacuum properties of hadrons.
Viable candidates should obey a well-defined set of low-
energy theorems [1–3], but they may still differ in some
interesting aspects such as the generation of the nucleon
mass and the behavior at nonzero temperature T and
chemical potential �.

A nucleon mass term �mN
��� explicitly breaks the

chiral UðNfÞR �UðNfÞL symmetry and thus should not

occur in a chiral linear sigma model. Therefore, in the
standard linear sigma model of Refs. [2,4], the nucleon
mass is (mostly) generated by the chiral condensate, h �qqi.
(A small contribution also arises from the explicit breaking
of chiral symmetry due to the nonzero current quark
masses.) Similarly, in the framework of QCD sum rules
Ioffe [5] formulated a connection between the quark con-
densate and the nucleon mass, now called Ioffe formula:
mN ��4�2��2

B h �qqi, where �B ’ 1 GeV.
However, also other condensates exist, e.g. a gluon

condensate, and it is not yet known to what extent they

contribute to the nucleon mass [6]. This problem can be
studied in a chiral model via the so-called mirror assign-
ment for the chiral partner of the nucleon, which was first
discussed in Ref. [4] and extensively analyzed in
Refs. [7,8]. In this assignment, there exists a chirally
invariant mass term �m0 which does not originate from
the quark condensate. The mirror assignment has been
subsequently used in Ref. [9] to study the properties of
cold and dense nuclear matter.
In this work we consider a linear sigma model with

global chiral Uð2ÞR �Uð2ÞL symmetry which includes
scalar and pseudoscalar mesons as well as vector and
axial-vector mesons [10]. We extend this model by includ-
ing the nucleon and its chiral partner in the mirror assign-
ment. The most natural candidate for the chiral partner of
the nucleon is the resonance Nð1535Þ which is the lightest
state with the correct quantum numbers (JP ¼ 1

2
�) listed in

the PDG [11]. We also investigate two other possibilities:
the well-identified resonance Nð1650Þ and a speculative,
very broad, and not yet discovered resonance with mass
about 1.2 GeV, which has been proposed in Ref. [9].
We first study their axial charges which have been the

focus of interest in recent studies of hadron phenomenol-
ogy [see Ref. [12] and refs. therein]. We show that, in the
present model, including (axial-) vector mesons drastically
changes the relations of the original model [7]. Without
(axial-) vector mesons, N and N� have opposite axial

charge, gNA ¼ �gN
�

A � 1. (We remind the reader that, in

the so-called ‘‘naive assignment,’’ where the nucleon part-

ner transforms just as the nucleon, one has gNA ¼ gN
�

A ¼ 1
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[8]). With (axial-) vector mesons, this is no longer true and
we are free to adjust the two axial charges independently,
employing experimental knowledge about gNA and recent

lattice QCD data for gN
�

A [13].
Using the decays N� ! N� and a1 ! �� to determine

the other parameters of the model, the mass parameter
turns out to be m0 � 500 MeV. This value is between the
one derived in Ref. [7] and the one from Ref. [9].

We then test our model studying the decay N� ! N�
and pion-nucleon scattering. For Nð1535Þ as chiral partner
of the nucleon, the decay width N� ! N� comes out too
small, while for Nð1650Þ, it agrees well with experimental
data. Pion-nucleon scattering has been studied in a large
variety of approaches [see Refs. [14–17] and refs. therein].
Here, we evaluate the scattering lengths in the framework
of the mirror assignment. We find that the isospin-odd

s-wave scattering length að�Þ
0 is in good agreement with

experimental data, while the isospin-even scattering length

aðþÞ
0 strongly depends on the value for the mass of the

sigma meson.
Finally, we discuss two possible extensions of our work.

The first is an enlarged mixing scenario. A second pair of
chiral partners is added, e.g. Nð1440Þ and Nð1650Þ, which
also mix with Nð939Þ and Nð1535Þ. The second is the
generalization of the chirally invariant mass term �m0 to
a dilatation-invariant mass term. In this case, we argue that
m0 is a sum of two contributions, arising from the tetra-
quark and the gluon condensates, respectively. The
dilatation-invariant mass term also couples a tetraquark
state to the nucleon. We discuss possible implications for
nuclear physics and the behavior of the nucleon mass at
nonzero temperature.

This paper is organized as follows. In Sec. II we present
the Lagrangian of our model and the expressions for the
axial charges, the decay widths N� ! N� and N� ! N�,
and the s-wave scattering lengths. Section III contains our
results. In Sec. IV, we present a short summary of our work
and discuss the two possible extensions mentioned above,
i.e., the enlarged mixing scenario and the dilatation-
invariant mass term. Details of our calculations are rele-
gated to the appendices.

Our units are @ ¼ c ¼ 1, the metric tensor is g�� ¼
diagðþ;�;�;�Þ.

II. THE MODEL AND ITS IMPLICATIONS

A. The Lagrangian

In this section we present the chirally symmetric linear
sigma model considered in this work. It contains scalar,

pseudoscalar, vector, and axial-vector fields, as well as
nucleons and their chiral partners including all globally
symmetric terms up to fourth order, see Refs. [10,18].
While higher-order terms are in principle possible, we do
not consider them here. In fact, one can argue that they
should be absent in dilation-invariant theories, cf. the dis-
cussion in Sec. IV.
The scalar and pseudoscalar fields are included in the

matrix

� ¼ X3
a¼0

�ata ¼ ð�þ i�NÞt0 þ ð ~a0 þ i ~�Þ � ~t; (1)

where ~t ¼ ~�=2, with the vector of Pauli matrices ~�, and
t0 ¼ 12=2. Under the global Uð2ÞR �Uð2ÞL chiral sym-

metry, � transforms as � ! UL�Uy
R. The vector and

axial-vector fields are represented by the matrices

V� ¼ X3
a¼0

V
�
a ta ¼ !�t0 þ ~	� � ~t; (2a)

A� ¼ X3
a¼0

A
�
a ta ¼ f

�
1 t

0 þ ~a
�
1 � ~t: (2b)

From these fields, we define right- and left-handed vector
fields R� � V� � A�, L� � V� þ A�. Under global
Uð2ÞR �Uð2ÞL transformations, these fields behave as

R� ! URR
�Uy

R, L
� ! ULL

�Uy
L.

The identification of mesons with particles listed in
Ref. [11] is straightforward in the pseudoscalar and
(axial-) vector sectors, as already indicated in Eqs. (1) and
(2): the fields ~� and �N correspond to the pion and the

SUð2Þ counterpart of the � meson, �N � ð �uuþ �ddÞ= ffiffiffi
2

p
,

with a mass of about 700 MeV. This value can be obtained
by ‘‘unmixing’’ the physical � and �0 mesons, which also
contain �ss contributions. The fields !� and ~	� represent
the!ð782Þ and 	ð770Þ vector mesons, respectively, and the
fields f

�
1 and ~a

�
1 represent the f1ð1285Þ and a1ð1260Þ

axial-vector mesons, respectively. (In principle, the physi-
cal ! and f1 states also contain �ss contributions, however
their admixture is negligible small.)
Unfortunately, the identification of the � and ~a0 fields is

controversial, the possibilities being the pairs
ff0ð600Þ; a0ð980Þg and ff0ð1370Þ; a0ð1450Þg. In Sec. IVB
a more detailed discussion of this problem is presented. In
the present work, the scalar assignment affects only the
isospin-even �N scattering length and we study its depen-
dence on the sigma mass. The Lagrangian describing the
meson fields reads

Lmes ¼ Tr½ðD��ÞyðD��Þ ��2�y�� 
2ð�y�Þ2	 � 
1ðTr½�y�	Þ2 þ cðdet�y þ det�Þ þ h0 Tr½ð�y þ�Þ	

� 1

4
Tr½ðL��Þ2 þ ðR��Þ2	 þm2

1

2
Tr½ðL�Þ2 þ ðR�Þ2	 þ h1

2
Tr½�y�	Tr½ðL�Þ2 þ ðR�Þ2	

þ h2 Tr½�yL�L
��þ�R�R

��y	 þ 2h3 Tr½�R��
yL�	 þL3 þL4; (3)
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where D�� ¼ @��þ ig1ð�R� � L��Þ, and R�� ¼
@�R� � @�R�, L�� ¼ @�L� � @�L� are the field-strength
tensors of the vector fields. The terms L3 and L4 describe
three- and four-particle interactions of the (axial-) vector
fields [10], which are not important for this work. We list
them in Appendix A. For c ¼ h0 ¼ 0, the LagrangianLmes

is invariant under global Uð2ÞR �Uð2ÞL transformations.
For c � 0, the Uð1ÞA symmetry, where A ¼ L� R, is
explicitly broken, thus parametrizing the Uð1ÞA anomaly
of QCD. For h0 � 0, the Uð2ÞR �Uð2ÞL symmetry is
explicitly broken to the vectorial subgroup Uð2ÞV , where
V ¼ Lþ R.

The chiral condensate ’ ¼ h0j�j0i ¼ Zf� emerges
upon spontaneous chiral symmetry breaking in the mes-
onic sector. The parameter f� ¼ 92:4 MeV is the pion
decay constant and Z is the wave function renormalization
constant of the pseudoscalar fields [10,19], also related to
�-a1 mixing, see Appendix B for more details.

We now turn to the baryon sector which involves the
baryon doublets �1 and �2, where �1 has positive parity
and �2 negative parity. In the mirror assignment they
transform as follows:

�1R ! UR�1R; �1L ! UL�1L;

�2R ! UL�2R; �2L ! UR�2L;
(4)

i.e., �2 transforms in a ‘‘mirror way’’ under chiral trans-
formations [4,7]. These field transformations allow to write
down a baryonic Lagrangian with a chirally invariant mass
term for the fermions, parametrized by m0:

Lbar ¼ ��1Li��D
�
1L�1L þ ��1Ri��D

�
1R�1R

þ ��2Li��D
�
2R�2L þ ��2Ri��D

�
2L�2R

� ĝ1ð ��1L��1R þ ��1R�
y�1LÞ

� ĝ2ð ��2L�
y�2R þ ��2R��2LÞ

�m0ð ��1L�2R � ��1R�2L � ��2L�1R þ ��2R�1LÞ;
(5)

where D
�
1R ¼ @� � ic1R

�, D
�
1L ¼ @� � ic1L

�, and

D
�
2R ¼ @� � ic2R

�, D
�
2L ¼ @� � ic2L

� are the covariant
derivatives for the nucleonic fields, with the coupling con-
stants c1 and c2. (Note that in the case of local chiral
symmetry one has c1 ¼ c2 ¼ g1). The interaction of the
baryonic fields with the scalar and pseudoscalar mesons is
parametrized by ĝ1 and ĝ2.

The term proportional tom0 generates a mixing between
the fields �1 and �2. The physical fields N and N�,
referring to the nucleon and its chiral partner, arise by
diagonalizing the corresponding mass matrix in the
Lagrangian (5):

N
N�

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosh�
p e�=2 �5e

��=2

�5e
��=2 �e�=2

 !
�1

�2

� �
: (6)

The masses of the nucleon and its partner are obtained as

mN;N� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ ½14ðĝ1 þ ĝ2Þ’	2
q

� 1
4ðĝ1 � ĝ2Þ’: (7)

The coupling constants ĝ1;2 are uniquely determined by the

values of mN , mN� , and the parameter m0,

ĝ 1;2 ¼ 1

’
½�ðmN �mN� Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmN þmN� Þ2 � 4m2

0

q
	: (8)

From Eq. (7) one observes that, in the chirally restored
phase where ’ ! 0, the masses of the nucleon and its
partner become degenerate, mN ¼ mN� ¼ m0. The mass
splitting is generated by breaking chiral symmetry, ’ � 0.
Note that the nucleon mass cannot be expressed as

mN ¼ m0 þ 
’, thus m0 should not be interpreted as a
linear contribution to the nucleon mass. Such a lineariza-
tion is only possible in the case when m0 dominates or the
chiral condensate dominates. As we shall see, this does not
happen and both quantities are sizable.
The parameter � in Eq. (6) is related to the masses and

the parameter m0 by the expression

cosh� ¼ mN þmN�

2m0

: (9)

When � ! 1, corresponding to m0 ! 0, there is no mix-
ing and N ¼ �1, N

� ¼ ��2. In this case, mN ¼ ĝ1’=2
and mN� ¼ ĝ2’=2, thus the nucleon mass is solely gener-
ated by the chiral condensate as in the standard linear
sigma model of Refs. [2,4] with the naive assignment for
the baryons.

B. Axial coupling constants

The expressions for the axial coupling constants of the
nucleon and the partner are derived in Appendix C. The
result is

gNA ¼ 1

2 cosh�
ðgð1ÞA e� þ gð2ÞA e��Þ;

gN
�

A ¼ 1

2 cosh�
ðgð1ÞA e�� þ gð2ÞA e�Þ;

(10)

where

gð1ÞA ¼ 1� c1
g1

�
1� 1

Z2

�
; gð2ÞA ¼ �1þ c2

g1

�
1� 1

Z2

�
(11)

are the axial coupling constants of the bare fields �1 and
�2. At this point, it should be emphasized that the inter-
action with the (axial-) vector mesons generates additional

contributions to gNA and gN
�

A , proportional to c1 and c2. We
now discuss several limiting cases, using the fact that Z is
required to be larger than 1, cf. Eq. (B7):
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(i) Local chiral symmetry: In this case, the coupling

constants c1 ¼ c2 ¼ g1. This implies gNA ¼ �gN
�

A ¼
Z�2 tanh� < 1, which is at odds with the experimen-
tal value gNA ¼ 1:267� 0:004 [11].

(ii) Decoupling of vector mesons: Here, Z ¼ 1 and
c1 ¼ c2 ¼ 0, and we obtain the results of Ref. [7]:

gNA ¼ �gN
�

A ¼ tanh�. In the limit � ! 1, this re-

duces to gNA ¼ 1 and gN
�

A ¼ �1. Also in this case

the experimental value for gNA cannot be obtained
for any choice of the parameters. Moreover, a posi-

tive value of gN
�

A , as found in the lattice simulation
of Ref. [13], is also impossible.

(iii) Decoupling of the chiral partner: This is achieved
in the limit � ! 1, where N ¼ �1 and N� ¼
��2. One has gNA ¼ gð1ÞA and gN

�
A ¼ gð2ÞA . Since

Z > 1, it is evident that the ratio c1=g1 must be
negative in order to obtain the experimental value
gNA ¼ 1:267� 0:004 [11].

Note that, in the case of local chiral symmetry, the axial
charge of the nucleon can be also correctly reproduced
when introducing dimension-6 terms in the Lagrangian
Lbar, cf. Refs. [1,2,17,20,21], because the coefficients of
these so-called Weinberg-Tomozawa (WT) terms [22,23]
can be adjusted accordingly. However, such WT terms
naturally arise when integrating out the axial-vector me-
sons from our Lagrangian, just as in chiral perturbation
theory [15]. In this sense, it would be double-counting to
simultaneously consider axial-vector mesons and WT

terms. Our generalization to a global chiral symmetry
allows a description of the axial charge without explicitly
introducing WT terms.

C. Decay widths

We now turn to the decays N� ! N� and N� ! N�.
The calculation of the tree-level decay width forN� ! N�
from the Lagrangian (5) is straightforward. However, the
decay N� ! N� cannot be directly evaluated because of
the absence of the s quark. In order to proceed, we have to
take into account that

� ¼ �N cos�P þ �S sin�P; (12)

where �N � ð �uuþ �ddÞ= ffiffiffi
2

p
, �S � �ss and�P lies between

�32
 and�45
 [24]. Then, the decay amplitudeAN�!N�

can be expressed as

A N�!N� ¼ AN�!N�N
cos�P þAN�!N�S

sin�P: (13)

In the following, we assume that the OZI-suppressed am-
plitude AN�!N�S

is small, so that to good approximation

the decay width �N�!N� ’ cos2�P�N�!N�N
. Note that the

physical � meson mass, m� ¼ 547 MeV, enters �N�!N�.

Therefore, also the decay width �N�!N�N
has to be eval-

uated for the physical mass m�, not for m�N
.

The expression for the decay width N� ! NP, where
P ¼ �, �, is (for details, see Appendix C)

�N�!NP ¼ 
P

kP
2�

mN

mN�

Z2

32cosh2�

�
w2ðc1 þ c2Þ2

�
ðm2

N� �m2
N �m2

PÞ
EP

mN

þm2
P

�
1� EN

mN

��
þ ðĝ1 � ĝ2Þ2

�
EN

mN

þ 1

�

þ 2wðĝ1 � ĝ2Þðc1 þ c2Þ
�
m2

N� �m2
N �m2

P

2mN

þ EP

��
: (14)

The coefficients 
� ¼ 3, 
� ¼ cos2�P, w � g1’=m
2
a1 ,

and the momentum of the pseudoscalar particle is given by

kP ¼ 1

2mN�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

N� �m2
N �m2

PÞ2 � 4m2
Nm

2
P

q
: (15)

The energies are EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2P þm2

P

q
and EN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2P þm2

N

q
,

because the momenta of the nucleon and the pseudoscalar
particles are equal in the rest frame of N�.

It is important to stress that, in the mirror assignment,
the only way to obtain a nonzero N�N� coupling is a
nonzero value of the parameter m0. In fact, the coupling
is proportional to cosh�1� / m0, i.e., when m0 increases,
also the decay width increases.

In the naive assignment, in which the field �2 trans-
forms just like the field�1, a term proportional tom0 is not
possible, because it would break chiral symmetry. In this

case, a mixing term of the form / ��2�
5��1 þ h:c: is

allowed. This leads to a term / ��2�
5ð�þ i�5 ~� � ~tÞ�1,

where the pion is coupled to �1 and �2 in a chirally
symmetric way. However, the very same term also gener-
ates a mixing of �2 and �1 due to the nonzero vacuum
expectation value of the field � ¼ �0. When performing
the diagonalization one obtains two physical fields N and
N�, to be identified with the nucleon and a negative-parity
state such as N�ð1535Þ. In terms of the physical fields N�
and N the coupling �N�i ~� � ~tN vanishes; for the explicit
calculation see Ref. [8]. Thus, in the naive assignment and
in the minimal framework with only one multiplet of scalar
and pseudoscalar fields the decay N� ! N� vanishes. One
could go beyond this minimal setup: a possibility is to
include the (axial-) vector mesons into the Lagrangian of
the naive assignment. In this way a nonzero derivative
coupling / �N���@� ~� � ~tN survives. A complete study of

this scenario, involving also the scattering lengths, is in
preparation.
Alternatively, the inclusion of a second (or more) mul-

tiplet(s) of (pseudo-)scalar mesons, see Refs. [25,26],
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coupled to the baryon fields also leads to a nonvanishing
coupling between N�, the nucleon, and the pion.

D. �N scattering lengths

The general form of the �N scattering amplitude is [16]

Tab ¼ ½AðþÞ þ 1
2ðq�1 þ q

�
2 Þ��B

ðþÞ	�ab

þ ½Að�Þ þ 1
2ðq�1 þ q

�
2 Þ��B

ð�Þ	i�bac�c; (16)

where the subscripts a and b refer to the isospin of the
initial and final states and the superscripts (þ ) and (� )
denote the isospin-even and isospin-odd amplitudes, re-

spectively. The �N scattering amplitudes, Að�Þ and Bð�Þ,
evaluated from the Lagrangian (5) at tree level, involve

exchange of � and 	 mesons in the t-channel and inter-
mediateN andN� states in the s- and u-channels, cf. Fig. 1.
The s-wave scattering lengths, að�Þ

0 , are given by

að�Þ
0 ¼ 1

4�ð1þm�=mNÞ ðA
ð�Þ
0 þm�B

ð�Þ
0 Þ; (17)

where the subscript 0 at the amplitudes Að�Þ, Bð�Þ indicates
that they are taken at threshold, i.e., for the following
values of the Mandelstam variables s, t, u: s ¼
ðmN þm�Þ2, t ¼ 0, u ¼ ðmN �m�Þ2.
The explicit expression for the isospin-even scattering

length can be obtained from Eq. (17) by applying the
Feynman rules resulting from the Lagrangians (3) and (5)
to the diagrams shown in Fig. 1. The result is

aðþÞ
0 ¼ 1

4�ð1þ m�

mN
Þ
�

Z

2 cosh�

�
2
�
� 1

2

�
ĝ1 � ĝ2 þ Zf�

2
wðc1 þ c2Þðĝ2 � ĝ1Þ

�
2 ðmN þmN� Þðm2

N þm2
� �m2

N� Þ
ðm2

N þm2
� �m2

N� Þ2 � 4m2
Nm

2
�

� wðc1 þ c2Þðĝ1 � ĝ2Þ þ Zf�
4

ðĝ1 � ĝ2Þw2ðc1 þ c2Þ2 � wðc1e� � c2e
��Þðĝ1e� þ ĝ2e

��Þ

þ w2mNðc1e� � c2e
��Þ2 þ ðĝ1e� � ĝ2e

��Þ cosh�
Zf�

�
1þm2

�

m2
�

1

Z4

�
Z2 � 2þ 2ðZ2 � 1Þ

�
1� Z2m2

1

m2
a1

���

þm�

��
ĝ1 � ĝ2 þ Zf�

2
wðc1 þ c2Þðĝ2 � ĝ1Þ

�
2 mNm�

ðm2
N þm2

� �m2
N� Þ2 � 4m2

Nm
2
�

þ ½ĝ1e� þ ĝ2e
�� � 2mNwðc1e� � c2e

��Þ	2 mN

m�

1

m2
� � 4m2

N

��
: (18)

Similarly, the expression for the isospin-odd scattering length is given by

að�Þ
0 ¼ 1

4�ð1þ m�

mN
Þ
�

Z

2 cosh�

�
2
��

ĝ1 � ĝ2 þ Zf�
2

wðc1 þ c2Þðĝ2 � ĝ1Þ
�
2 ðmN þmN� ÞmNm�

ðm2
N þm2

� �m2
N� Þ2 � 4m2

Nm
2
�

þm�

2

��
ĝ1 � ĝ2 þ Zf�

2
wðc1 þ c2Þðĝ2 � ĝ1Þ

�
2 m2

N þm2
� �m2

N�

ðm2
N þm2

� �m2
N� Þ2 � 4m2

Nm
2
�

� ½ĝ1e� þ ĝ2e
�� � 2mNwðc1e� � c2e

��Þ	2 1

m2
� � 4m2

N

� w2½ðc1 þ c2Þ2 � ðc1e� � c2e
��Þ2	

þ g1
m2

	

4 cosh�

Z2
ðc1e� � c2e

��Þ
��
: (19)

FIG. 1. Tree-level diagrams contributing to �N scattering. Dashed lines represent the pion, the bold dashed line the � meson, the
wavy line the 	 meson, full lines the nucleon, and double full lines the N�, respectively.
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Although it is not obvious from these expressions, one can
show that the s-wave scattering lengths að�Þ

0 vanish in the
chiral limit, as required by low-energy theorems for theo-
ries with spontaneously broken chiral symmetry.

III. RESULTS AND DISCUSSION

In this section we present our results. We first discuss the
case where the resonance Nð1535Þ is interpreted as the
chiral partner of the nucleon. This is the most natural
assignment because this resonance is the lightest with the
correct quantum numbers. We then consider some impor-
tant limiting cases. Finally, we also discuss two different
assignments: the resonance Nð1650Þ, which is the next
heavier state with the correct quantum numbers listed in
Ref. [11], and a speculative candidateNð1200Þwith a mass
MN� � 1200 MeV and a very large width �N�!N� *
800 MeV, such as to have avoided experimental detection
up to now [9].

A. Nð1535Þ as partner
The resonance Nð1535Þ has a mass mN� ¼ ð1535�

10Þ MeV [11]. The theoretical expressions for gNA , g
N�
A ,

�N�!N�, �a1!�� depend on the four parameters c1, c2, Z,

and m0. Here, Z is the only parameter entering from the
meson sector, see Appendix B.

We determine the parameters c1, c2, Z, and m0 by using
the experimental results [11] for the decay width
�exp
N�!N� ¼ ð67:5� 23:6Þ MeV, the radiative decay of the

a1ð1260Þmeson, �
exp
a1!�� ¼ ð0:640� 0:246Þ MeV, and the

axial coupling constant gN;exp
A ¼ 1:267� 0:004, as well as

the lattice result gN
�;latt

A ¼ 0:2� 0:3 [13]. With the help of

a standard 2 procedure it is also possible to determine the
errors for the obtained parameters:

c1 ¼ �3:0� 0:6; c2 ¼ 11:6� 3:6;

Z ¼ 1:67� 0:2;
(20)

and

m0 ¼ ð460� 136Þ MeV: (21)

The coupling constants ĝ1 and ĝ2 can be deduced from
Eq. (8),

ĝ 1 ¼ 11:0� 1:5; ĝ2 ¼ 18:8� 2:4: (22)

The value obtained for m0 is larger than the one originally
found in Ref. [7] and points to a sizable contribution of
other condensates to the nucleon mass. However, because
of the nonlinear relation (7) between the nucleon mass,m0,
and the chiral condensate, when switching off m0 the
nucleon mass is not simply by an amount m0 smaller
than the physical value, rather mN ¼ ĝ1’=2 ’ 850 MeV,
and thus only slightly smaller than 939 MeV. The Ioffe
formula is thus still approximately justified also in this
context. On the other hand, when varying ’ from 0 to the

physical value Zf�, the nucleon mass goes from m0 ¼
460 MeV to 939 MeV. Interestingly, the coupling constant
c2 which parametrizes the interaction of the nucleon’s
partner with the (axial-) vector mesons is larger than the
constant c1 which parametrizes the interaction of the nu-
cleon with the (axial-) vector mesons. Nevertheless, when
compared with the coupling g1 � 6 (similar in all models
with vector mesons and pions) the constants c1 and c2 are
jc1j � g1=2, c2 � 2g1 i.e., they are related to g1 by some
numerical factor of order one. The direct comparison of c1
and c2 leads to jc1j � c2=4.
We now test the validity of our model by considering the

�N scattering lengths (some preliminary results were al-

ready presented in Ref. [27]). The quantity að�Þ
0 depends on

c1, c2, Z, and m0, and in addition on m	 and g1. The latter

is a function of Z and ma1 , cf. Eq. (B7). The values of m	

and ma1 are known to reasonably good precision [11], and

thus our uncertainty in determining að�Þ
0 is small. (This will

be different for aðþÞ
0 which also depends on the poorly

known value of the � meson mass, m�.) We obtain

að�Þ
0 ¼ ð6:04� 0:63Þ � 10�4 MeV�1; (23)

in agreement with the experimental value measured by the
ETH Zürich-Neuchatel-PSI collaboration in pionic hydro-
gen and deuterium X-ray experiments [28]:

að�Þ
0;exp ¼ ð6:4� 0:1Þ � 10�4 MeV�1: (24)

An even better agreement is expected when including the
� resonance [17].

The scattering length aðþÞ
0 depends also on c1, c2, Z, and

m0, but in addition onm1 andm�. The former parametrizes
the contribution to the 	 mass which does not originate

from the chiral condensate:m2
	 ¼ m2

1 þ �2

2 ðh1 þ h2 þ h3Þ.
Notice that in the present theoretical framework with
global chiral symmetry the KSFR relation [29] is obtained
for m1 ¼ 0, h1 þ h2 þ h3 ¼ g21=Z

2. A physically reason-
able range of values for m1 is between 0 and m	. For the

lower boundary, the mass of the 	 meson is exclusively
generated by chiral symmetry breaking, thus it becomes
massless when ’ ! 0. This is similar to Georgi’s vector
limit [30] or Brown-Rho scaling [31]. In principle, the
mass of the � meson varies over a wide range of values;
we could choose m� � 0:4 GeV or 1.37 GeV, according to
the assignment f0ð600Þ and f0ð1370Þ.
Since the allowed range of values form1 andm� is large,

we choose to plot the scattering length aðþÞ
0 as function of

m1 for different choices ofm�; the result is shown in Fig. 2.
The experimental result [28]

aðþÞ
0;exp ¼ ð�8:8� 7:2Þ � 10�6 MeV�1 (25)

is shown as grey (yellow) band. One observes that for small
values of m� one requires a large value for m1 in order to
reproduce experimental data. For increasing m�, the re-
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quired values for m1 decrease. For m� * 1:37 GeV, aðþÞ
0;exp

cannot be reproduced for any value of m1. This, however,
does not exclude a heavy � meson, rather, it indicates that
an additional light scalar-isoscalar resonance needs to be
included as discussed in Sec. IVB.

For the decay N� ! N�, we obtain with Eq. (14) the
result

�N�!N� ¼ ð10:9� 3:8Þ MeV; (26)

where the error also takes into account the uncertainty in
the pseudoscalar mixing angle �P ¼ �38:7
 � 6
. We
observe that �N�!N� is about a factor 7 smaller than

�N�!N�, which is in reasonable agreement with the naive
expectation based on the relation 
�=
� ¼ cos2�P=3 ’
0:097. However, it is clearly smaller than the experimental
value �

exp
N�!N� ¼ ð78:7� 24:3Þ MeV [11]. The agreement

could be improved if one generalizes our discussion to the
SUð3Þ case and includes a large OZI-violating contribu-
tion, or if one considers an enlarged mixing scenario as
discussed in Sec. IVA.

B. Limiting cases

We now consider three important limiting cases. In all of
these Nð1535Þ is taken as chiral partner of the nucleon.

(i) Local chiral symmetry: This case is obtained by
setting g1 ¼ c1 ¼ c2 and h1 ¼ h2 ¼ h3 ¼ 0. As a
consequence, m	 ¼ m1, m

2
a1 ¼ m2

	 þ ðg1’Þ2, Z ¼
ma1=m	. Using the experimental values for

�N�!N� and �a1!�� one obtains

m0 ¼ ð730� 229Þ MeV: (27)

As a consequence, gNA ¼ �gN
�

A � Z�2 tanh� ¼
0:33� 0:02, both at odds with experimental and

lattice data. The scattering length að�Þ
0 is in the range

of the experimental data, að�Þ
0 ¼ ð4:9� 1:7Þ �

10�4 MeV�1. Since m1 ¼ m	 is fixed, the isospin-

even scattering length only depends on m�. Thus,
for a given value of m�, we obtain a single value

with theoretical errors: aðþÞ
0 ¼ ð7:06� 3:12Þ �

10�6 MeV�1 for m� ¼ 1:37 GeV and aðþÞ
0 ¼

ð4:46� 0:11Þ � 10�5 MeV�1 for m� ¼ 0:44 GeV,
which is outside the range of the experimental error
band. As already argued in Refs. [10,21] we con-
clude that the case of local chiral symmetry (in the
present model without higher-order terms) is not
capable of properly reproducing low-energy
phenomenology.

(ii) Decoupling of vector mesons: This corresponds to
g1 ¼ c1 ¼ c2 ¼ h1 ¼ h2 ¼ h3 ¼ 0, and thus Z ¼
1 and w ¼ 0. Using the decay width �N�!N� ¼
ð67:5� 23:6Þ MeV one obtains

m0 ¼ ð262� 46Þ MeV; (28)

in agreement with Ref. [7]. As a result gNA ¼
�gN

�
A ¼ 0:97� 0:01, in disagreement with both

experimental and lattice data. The description of
the scattering lengths also becomes worse; the

isospin-odd scattering length að�Þ
0 ¼ ð5:7� 0:47Þ �

10�4 MeV�1, which is just outside the experimental
error band. Also in this case, the isospin-even scat-
tering length assumes a single value (with theoreti-

cal errors) for given m�: aðþÞ
0 ¼ ð1:08� 0:05Þ �

10�4 MeV�1 for m� ¼ 1:37 GeV and aðþÞ
0 ¼

ð�7:55� 0:19Þ � 10�4 MeV�1 for m� ¼
0:44 GeV, i.e., 2 orders of magnitude away from
the experimental value. We thus conclude that vec-

FIG. 2 (color online). The isospin-even scattering length aðþÞ
0 as a function of m1 for fixed values of m�, for the assignment N� ¼

Nð1535Þ (left panel) and N� ¼ Nð1650Þ (right panel). The experimental range is shown by the grey (yellow) band.
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tor mesons cannot be omitted for a correct descrip-
tion of pion-nucleon scattering lengths.

(iii) Decoupling of the chiral partner: This is obtained
by sending m0 ! 0 or � ! 1. The partner decou-
ples and we are left with a linear � model with
vector and axial-vector mesons. The decay �N�!N�

vanishes in this case and is obviously at odds with
the experiment. Using the experimental values for
gNA and �a1!�� to fix the parameters c1 and Z (c2
and ĝ2 play no role here because of the decoupling
of the partner), we obtain

c1 ¼ �2:59� 0:51; Z ¼ 1:66� 0:2: (29)

The scattering lengths are

að�Þ
0 ¼ ð5:99� 0:66Þ � 10�4 MeV�1; (30)

and aðþÞ
0 shows a similar behavior as shown in

Fig. 2. We conclude that the role of the partner is
marginal in improving the scattering lengths. It
could be omitted, unless one wants to consider, in
the framework of the mirror assignment, its decay
into nucleon and pseudoscalar particles.

C. Other candidates

In this subsection, we discuss two more exotic possibil-
ities for the chiral partner of the nucleon.

(i) Nð1650Þ as partner. The resonance Nð1650Þ has a
mass mN� ¼ ð1655� 15Þ MeV and a decay width
�exp
N�!N� ¼ ð128� 44Þ MeV [11]. The axial cou-

pling constant measured in the lattice simulation of

Ref. [13] reads gN
�;latt

A ¼ 0:55� 0:2. By following

the previous steps we obtain

c1 ¼ �3:3� 0:7; c2 ¼ 14:8� 3:4;

Z ¼ 1:67� 0:2;
(31)

and

m0 ¼ ð709� 157Þ MeV: (32)

This leads to the coupling constants

ĝ 1 ¼ 9:45� 1:81; ĝ2 ¼ 18:68� 2:68: (33)

In this case m0 is even larger than before. However,
as in the case of Nð1535Þ, the quantity ĝ1’=2 ’
730 MeV is still sizable and similar tom0. The result
for the isospin-odd scattering length

að�Þ
0 ¼ ð5:90� 0:46Þ � 10�4 MeV�1 (34)

is similar to the case of Nð1535Þ. The isospin-even
scattering lengths behave similarly as before,
cf. Fig. 2, however, slightly smaller values for m�

are required in order to reproduce the experimental
data.

The decay width into N� is �N�!N� ¼ ð18:3�
8:5Þ MeV, which should be compared to �exp

N�!N� ¼
ð10:7� 6:7Þ MeV. Thus, in this case the decay
width is in agreement with the experimental value.
However, we then face the problem of how to de-
scribe the Nð1535Þ resonance, cf. the discussion in
Sec. IVA.

(ii) Speculative candidate Nð1200Þ as partner. We con-
sider a speculative candidate Nð1200Þ with a mass
mN� � 1200 MeV and a very large width �N�!N� *
800 MeV, such as to have avoided experimental
detection up to now. The reason for its introduction
was motivated by properties of nuclear matter [9]
and further on investigated in Ref. [32] in the con-
text of asymmetric nuclear matter present in a neu-
tron star. Regardless of the precise value of the axial
coupling constant of the partner (which is unknown
for this hypothetical resonance) one obtains m0 >
1 GeV. This, in turn, implies a large interaction ofN
and N�. As a consequence, both scattering lengths
turn out to be off by two order of magnitudes:

að�Þ
0 � 10�2 MeV�1 and aðþÞ

0 � 10�4 MeV�1.

Thus, we are led to discard the possibility that a
hypothetical, not yet discovered Nð1200Þ exists.

IV. SUMMARYAND OUTLOOK

In this paper, we investigated a linear sigma model with
global chiralUð2ÞR �Uð2ÞL symmetry, where the mesonic
degrees of freedom are the standard scalar and pseudosca-
lar mesons and the vector and axial-vector mesons. In
addition to the mesons, we included baryonic degrees of
freedom, namely, the nucleon and its chiral partner, which
is incorporated in the model in the so-called mirror
assignment.
We used this model to study the origin of the mass of the

nucleon, the assignment and decay properties of its chiral
partner and the pion-nucleon scattering lengths. The mass
of the nucleon results as an interplay of the chiral conden-
sate and a chirally invariant baryonic mass term, propor-
tional to the parameter m0. When the chiral partner of the
nucleon is identified with the resonance N� � Nð1535Þ,
the parameter m0 ’ 500 MeV is obtained as a result of a
fitting procedure which involves the three experimentally
measured quantities N� ! N�, a1 ! ��, gNA , and the

quantity gN
�

A evaluated on the lattice. The isospin-odd

scattering length að�Þ
0 is then fixed and found to be in

good agreement with experimental data. The isospin-
even scattering length depends, in addition, strongly on
the mass of the � meson, see Fig. 2 and the discussion in
Sec. IVB. The decay width N� ! N� turns out to be a
factor of 8 smaller than the experimental value.
The obtained value m0 ’ 500 MeV implies that a siz-

able amount of the nucleon mass does not originate from
the chiral condensate. As this result is subject to the
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assumptions and the validity of the employed chiral model,
most notably due to the identification of the chiral partner
with Nð1535Þ and to the mathematical properties of the
mirror assignment, future studies of other scenarios, incor-
porating new results both from the experiment and the
lattice, are necessary to further clarify this important issue
of hadron physics.

It should also be noted that the results presented in this
work are based on a tree-level calculation. The inclusion of
loops represents a task for the future. Nevertheless, we
expect that the results will not change qualitatively: On
the one hand, while the dimensionless couplings of the
model g1, c1, c2, ĝ1, ĝ2 are large, the contribution of loops
is suppressed according to large–Nc arguments [33]. On
the other hand, in our model we have included from the
very beginning the relevant resonances which contribute as
virtual states to processes, thus reducing the effects of
loops in the model. To clarify the latter point, consider
the 	 meson exchange in �N scattering. In an approach in
which the 	meson is not directly included, its contribution
could only be obtained after a corresponding loop resum-
mation, while in our approach it is taken directly into
account by a tree-level exchange diagram.

We studied three important limiting cases: (i) In the
framework of local chiral symmetry it is not possible to
correctly reproduce low-energy phenomenology. (ii) It is
not admissible to neglect (axial-) vector mesons. They are
crucial in order to obtain a correct description of the axial
coupling constants and�N scattering lengths. (iii) The role
of the partner N� has only a marginal influence on the
scattering lengths.

We have also tested other assignments for the partner of
the nucleon: a broad, not-yet discovered partner with a
mass of about 1.2 GeV must be excluded on the basis of
scattering data. The well-established resonance Nð1650Þ
provides qualitatively similar results as Nð1535Þ and, in
this case, the theoretical value of the decay width
Nð1650Þ ! N� is in agreement with the experimental
one. However, in this scenario it is not clear how
Nð1535Þ fits into the baryonic resonance spectrum. This
issue is discussed in Sec. IVA presented below. In
Sec. IVB we discuss the origin ofm0 in terms of tetraquark
and gluon condensates and the implications for future
studies.

A. Outlook 1: Enlarged mixing scenario

In this section we briefly describe open problems of the
previous results and present a possible outlook to improve
the theoretical description.

A simultaneous description of both resonances Nð1525Þ
and Nð1650Þ requires an extension of the model. In the
framework of the mirror assignment, instead of only two
bare nucleon fields �1 and �2 one should include two
additional bare fields�3 and�4 with positive and negative
parity, respectively. The latter two are assumed to trans-

form like �1 and�2 in Eq. (4). The interesting part of the
enlarged Lagrangian are the bilinear chirally invariant
mass terms:

Lmass ¼ mð1;2Þ
0 ð ��2�

5�1 � ��1�
5�2Þ

þmð3;4Þ
0 ð ��4�

5�3 � ��3�
5�4Þ

þmð1;4Þ
0 ð ��4�

5�1 � ��1�
5�4Þ

þmð2;3Þ
0 ð ��2�

5�3 � ��3�
5�2Þ: (35)

In the limit mð1;4Þ
0 ¼ mð2;3Þ

0 ¼ 0 the bare fields �1 and �2

do not mix with the fields�3 and�4. The fields�1 and�2

generate the states Nð939Þ and Nð1535Þ, just as described
in this paper with mð1;2Þ

0 ¼ m0, while the fields �3 and �4

generate the states Nð1440Þ and Nð1650Þ, which are re-

garded as chiral partners. The term proportional to mð3;4Þ
0

induces a decay of the form Nð1650Þ ! Nð1440Þ� (or �),
but still Nð1650Þ and Nð1440Þ do not decay into N�ð�Þ.
When in addition the coefficients mð1;4Þ

0 and mð2;3Þ
0 are

nonzero, a more complicated mixing scenario involving
four bare fields arises. As a consequence, it is possible to
account for the decay of both resonances Nð1550Þ and
Nð1650Þ into N�ð�Þ. Moreover, it is well conceivable
that the anomalously small value of the decay width
Nð1550Þ ! N� arises because of destructive interference.
Interestingly, a mixing of bare configurations generating
Nð1535Þ and Nð1650Þ is necessary also at the level of the
quark model [34]. Note that in the framework of the
generalized mixing scenario, the fields Nð1535Þ and
Nð1650Þ are chiral partners of Nð939Þ and Nð1440Þ.
Because of mixing phenomena, it is not possible to isolate
the chiral partner of the nucleon, which is present in both
resonances Nð1535Þ and Nð1650Þ. However, also in this
case the nonzero decay widths of both fields Nð1535Þ and
Nð1650Þ are obtained as a result of nonvanishing m0-like
parameters.
The mixing scenario outlined above may look at first

sight not very useful, because it involves too many new
parameters. However, a quick counting shows that this is

not the case. In addition to the four mass parameters mði;jÞ
0 ,

we have the already discussed parameters c1, c2, ĝ1, and
ĝ2, plus similar parameters c3, c4, ĝ3, and ĝ4 which de-
scribe the interactions of �3;4 with mesons. These 12

parameters can be used to describe the following 14 quan-
tities: the masses of the states N � Nð939Þ, Nð1535Þ,
Nð1440Þ, Nð1650Þ, the decay widths Nð1535Þ ! N�,
Nð1535Þ ! N�, Nð1650Þ ! N�, Nð1650Þ ! N�,
Nð1440Þ ! N�, Nð1440Þ ! N� (the latter by taking
into account the nonzero width of the Nð1440Þ resonance),
and the four axial coupling constants gNA , g

Nð1535Þ
A , gNð1440Þ

A ,

and gNð1650Þ
A . A detailed study of this enlarged scenario, in

which the four lightest JP ¼ 1
2
� baryonic resonances are

simultaneously included, will be performed in the future.
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B. Outlook 2: Origin of m0

The scattering length aðþÞ
0 shows a strong dependence on

the mass of the �meson. A similar situation occurs for ��
scattering at low energies [10]. While a light � is favored
by the scattering data, many other studies show that the �
meson—as the chiral partner of the pion in the linear sigma
model—should be placed above 1 GeVand identified with
the resonance f0ð1370Þ rather than the light f0ð600Þ [see
Refs. [35,36] and refs. therein]. Indeed, also in the frame-
work of the linear sigma model used in this paper, the
decay width f0ð600Þ ! �� turns out to be too small when
the latter is identified with the chiral partner of the pion
[10].

When identifying � with f0ð1370Þ, two possibilities are
left for f0ð600Þ: (i) It is a dynamically generated state
arising from the pion-pion interaction. The remaining sca-
lar states below 1 GeV, f0ð980Þ, a0ð980Þ, and K�

0ð800Þ can
be interpreted similarly. (ii) The state f0ð600Þ is predomi-
nantly composed of a diquark ½u; d	 (in the flavor and color
antitriplet representation) and an antidiquark ½ �u; �d	, i.e.,
f0ð600Þ ’ ½ �u; �d	½u; d	. In this case the light scalar states
f0ð600Þ, f0ð980Þ, a0ð980Þ, and K�

0ð800Þ form an additional

tetraquark nonet [37–41]. Note that in both cases the
resonance f0ð600Þ—which is needed to explain �� and
�N scattering experiments and also to understand the
nucleon-nucleon interaction potential—is not the chiral
partner of the pion. In the following we concentrate on
the implications of scenario (ii) at a qualitative level,
leaving a more detailed study for the future. First, a short
digression on the dilaton field is necessary.

Dilatation invariance of the QCD Lagrangian in the
chiral limit is broken by quantum effects. This situation
can be taken into account in the framework of a chiral
model by introducing the dilaton field G [42]. The corre-
sponding dilaton potential reflects the trace anomaly of
QCD as underlying theory and has the form VðGÞ /
G4ðlog G

�G
� 1

4Þ, where �G ��QCD is the only dimensional

quantity which appears in the full effective Lagrangian in
the chiral limit. Because of the nonzero expectation value
of G, a shift G ! G0 þG is necessary: the fluctuations
around the minimum correspond to the scalar glueball,
whose mass is placed at MG � 1:7 GeV by lattice QCD
calculations [43] and by various phenomenological studies
[44]. [Beyond the chiral limit, also the parameter h0 in
Eq. (3), which describes explicit symmetry breaking due to
the nonzero valence quark masses, appears as an additional
dimensionful quantity.]

We assume that, in the chiral limit, the full interaction
potential Vð�; L�; R�;�1;�2; G; Þ is dilatation invariant
up to the term / log G

�G
and that it is finite for any finite

value of the fields, i.e., only terms of the kindG2 Tr½�y�	,
Tr½�y�	2; . . . are retained. By performing the shift G !
G0 þG, the term G2 Tr½�y�	 becomes G2

0 Tr½�y�	 þ
. . . , where the dots refer to glueball-meson interactions.

Identifying �2 �G2
0, a term G2

0 Tr½�y�	 is already

present in our Lagrangian (3), but the glueball-hadron
interactions are neglected. Note that a term of the kind
G�4 Tr½@��y@��	2 is not allowed because of our as-

sumption that the potential is finite. Following this line
of arguments, our Lagrangian (3) cannot contain operators
of order higher than four [36], because such operators must
be generated from terms with inverse powers of G. E.g.,
upon shiftingG, the above mentioned term would generate
an order-eight operator of the kind G�4

0 Tr½@��y@��	2.
Let us now turn to the mass term �m0 in Eq. (5),

m0ð ��1L�2R � ��1R�2L � ��2L�1R þ ��2R�1LÞ: (36)

The parameter m0 has the dimension of mass and is the
only term in the baryon sector, which is not dilatation
invariant. In order to render it dilatation invariant while
simultaneously preserving chiral symmetry, we can couple
it to the chirally invariant dilaton field G. Moreover, in the
framework of Uð2ÞR �Uð2ÞL chiral symmetry also the
above mentioned tetraquark field, denoted as  � 1

2 �½ �u; �d	½u; d	, is invariant under chiral transformations. We
then write the following dilatation-invariant interaction
term:

ðaþ bGÞð ��1L�2R � ��1R�2L � ��2L�1R þ ��2R�1LÞ;
(37)

where a and b are dimensionless coupling constants.
When shifting both fields around their vacuum expecta-

tion values  ! 0 þ  and G ! G0 þG we recover the
term (36) of our Lagrangian by identifying

m0 ¼ a0 þ bG0; (38)

where 0 andG0 are the tetraquark and gluon condensates,
respectively.
Note that the present discussion holds true also in the

highly excited part of the baryon sector: as described in
Refs. [12,25], the heavier the baryons, the less important
becomes the quark condensate ’: For two heavy chiral
partners B and B�, one expects a mass degeneracy of the
form mB ’ mB� ’ m0. We expect the gluon condensate G0

to be the dominant term in this sector, m0 ’ bG0. In fact,
the tetraquark condensate is also related to the chiral
condensate in the vacuum [40,45] and—while potentially
important for low-lying states like the nucleon and its
partner—its role should also diminish when considering
very heavy baryons.
We now return to the nucleon and its partner and con-

centrate on their interaction with the tetraquark field .
From the point of low-energy phenomenology, the tetra-
quark field  is very interesting because the corresponding
excitation is expected to be lighter than the gluonium and
the scalar quarkonium states, for instancem �Mf0ð600Þ �
0:6 GeV. A nucleon-tetraquark interaction of the kind

að ��1L�2R � ��1R�2L � ��2L�1R þ ��2R�1LÞ arising
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from Eq. (37) would then contribute to pion-pion and
nucleon-pion scattering and possibly improve the agree-
ment with experimental data.

Moreover, there is also another interesting consequence:
in virtue of Eq. (37) the state  appears as intermediate
state in nucleon-nucleon interactions and, due to its small
mass, is likely to play an important role in the one-meson
exchange picture for the nucleon-nucleon potential. This
raises the interesting question whether a tetraquark is the
scalar state which mediates the middle-range attraction
among nucleons, in contrast to the standard picture where
this task is performed by a quark-antiquark state. Let us
further elucidate this picture by a simple and intuitive
example. Let us consider the nucleon as a quark-diquark
bound state. The standard picture of one-boson exchange
in the nucleon-nucleon interaction consists of exchanging
the two quarks between the nucleons. However, one could
well imagine that instead of the quarks one exchanges the
two diquarks between the nucleons. Note that these di-
quarks are in the correct color and flavor antitriplet repre-
sentations in order to form a tetraquark of the type
suggested by Jaffe [37], such as the meson  discussed
here. A full analysis must include a detailed study of
mixing between all scalar states.

As a last subject we discuss how the nucleon mass might
evolve at nonzero temperature and density. In particular, in
the high-density region of the so-called ‘‘quarkyonic
phase’’ [46] hadrons are confined but chiral symmetry is
(almost) restored, i.e., the chiral condensate (approxi-
mately) vanishes. What are the properties of the nucleon
in this phase? In the framework of the Lagrangian (5),
when’ ! 0, the masses of both the nucleon and its partner
approach a constant value m0. Then, the first naive answer
is that we expect a nucleon mass of about 500 MeV in this
phase. The situation is, however, more complicated than
this. In fact, as discussed in this section the term m0 is not
simply a constant but is related to other condensates. The
behavior of these condensates at nonzero T and � is then
crucial for the determination of the nucleon mass.
Interestingly, in Ref. [45] it is shown that the tetraquark
condensate does not vanish but rather increases for increas-
ing T. A future study at nonzero T and�must include both
the tetraquark and the gluon condensate in the same
framework.
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APPENDIX A: VECTOR-MESON
SELF-INTERACTIONS

In this appendix, we present the terms L3 and L4 of
Eq. (3):

L3 ¼ �2ig2ðTrfL��½L�; L�	g þ TrfR��½R�; R�	gÞ
� 2g3ðTr½ð@�L� þ @�L�ÞfL�; L�g	
þ Tr½ð@�R� þ @�R�ÞfR�; R�g	Þ; (A1)

and

L4 ¼ g4fTr½L�L�L�L�	 þ Tr½R�R�R�R�	g
þ g5fTr½L�L�L

�L�	 þ Tr½R�R�R
�R�	g

þ g6Tr½R�R�	Tr½L�L�	 þ g7fTr½L�L�	Tr½L�L�	
þ Tr½R�R�	Tr½R�R�	g: (A2)

The coupling constants gk with k ¼ 2; . . . ; 7 are not rele-
vant for the present work.

APPENDIX B: MESON SECTOR

In the mesonic Lagrangian (3), there are ten parameters:

1, 
2, c, h0, h1, h2, h3, �

2, g1, and m1. In the following,
we describe how to relate them to the physical meson
masses and the pion decay constant.
If chiral symmetry is spontaneously broken, the scalar-

isoscalar field � develops a nonvanishing vacuum expec-
tation value (v.e.v.), h�i � ’, the so-called chiral conden-
sate. In order to proceed, we have to shift � by its v.e.v.,
� ! ’þ �. The chiral condensate is identified with the
minimum of the potential energy density Vð’Þ, cf. Eq. (3):

Vð’Þ ¼ 1

2
ð�2 � cÞ’2 þ 1

4

�

1 þ 
2

2

�
’4 � h0’; (B1)

0 ¼ dV

d’
¼
�
�2 � cþ

�

1 þ 
2

2

�
’2

�
’� h0: (B2)

After the shift � ! ’þ � a mixing term between axial-
vector and pseudoscalar mesons arises; for instance be-
tween a1-meson and pion it is of the form �g1 ~a

�
1 � @� ~�.

The standard way to treat this term is to eliminate it by a
shift of the axial-vector fields. Then, in order to recover the
canonical normalization of the pseudoscalar fields, one has
to introduce a corresponding wave function renormaliza-
tion factor. For a1-meson and pion this operation has the
form

~a
�
1 ! ~a

�
1 þ Zw@� ~�; ~� ! Z ~�; where w ¼ g1’

m2
a1

;

Z2 ¼ m2
a1

m2
a1 � ðg1’Þ2

: (B3)

The meson masses are then given by
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m2
� ¼ �2 � cþ 3

�

1 þ 
2

2

�
’2;

m2
a0 ¼ �2 þ cþ

�

1 þ 3


2

2

�
’2;

(B4)

m2
�N

¼ Z2

�
�2 þ cþ

�

1 þ 
2

2

�
’2

�
;

m2
� ¼ Z2

�
�2 � cþ

�

1 þ 
2

2

�
’2

�
¼ Z2h0

’
;

(B5)

m2
! ¼ m2

	 ¼ m2
1 þ

’2

2
ðh1 þ h2 þ h3Þ;

m2
f1
¼ m2

a1 ¼ m2
1 þ ðg1’Þ2 þ ’2

2
ðh1 þ h2 � h3Þ:

(B6)

Note that only the linear combination h1 þ h2 enters these
equations, so only nine out of the original ten parameters
are determined by the meson masses. However, in the
following considerations, only the sum h1 þ h2 will enter,
so we do not need to determine h1 and h2 independently.
We therefore have six physical meson masses in order to
determine nine parameters. A seventh physical quantity is
the pion decay constant, f�, which we determine from the
axial current, JaA� ¼ ’

Z @��
a þ . . . � f�@��

a þ . . . , i.e.,

’ ¼ Zf�.
This leaves us with two independent parameters, which

turn out to be g1 and m1. The latter only enters the isospin-
even pion-nucleon scattering length. We shall leave it as a

free parameter to study the dependence of aðþÞ
0 on m1.

For the sake of convenience, we shall replace the cou-
pling constant g1 by the pseudoscalar wave function re-
normalization factor Z. This is achieved with the help of
the relation (B3),

g1ðZÞ ¼
ma1

Zf�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

Z2

s
: (B7)

In this work we fix ma1 ¼ 1:23 GeV which is the central

value quoted in Ref. [11]. In fact, it is technically easier to
use Z than g1 as independent parameter: while g1 is a
unique function of Z, the function Zðg1Þ would be
multivalued.

It remains to determine Z. For this purpose we use the
decay width a1 ! ��. The experimental value quoted by
the PDG is �exp

a1!�� ¼ ð640� 246Þ keV [11]. The theoreti-
cal expression is obtained by minimal coupling of the
photon in the meson sector and only depends on Z:

�a1!�� ¼ �

24
ma1ðZ2 � 1Þ

�
1� m2

�

m2
a1

�
3
; (B8)

where � ¼ 1=137. Using the experimental value quoted
above we derive Z ¼ 1:67� 0:19. The quantitiesm1 and Z
are the only independent parameters from the mesonic
sector, which enter the determination of the axial coupling

constants of the nucleon and its chiral partner, the decay
widths for N� ! NP, and the N� scattering lengths.
Because of the large uncertainty, we shall employ
Eq. (B8) together with the constraints from the baryon
sector, cf. Sec. III, to perform a simultaneous fit of all
relevant parameters in the baryonic sector, i.e., c1, c2, Z,
and m0.
It should be noted that the inclusion of the axial-vector

degrees of freedom is the ultimate reason which allows for
a correct determination of the axial-coupling constants gNA
and gN�

A . We can easily convince ourselves of this fact by

assuming the contrary, i.e., studying the case where the
axial-vector mesons are absent. This can be achieved
either by setting g1 to zero, or by sending the a1 mass to

infinity. In both cases, Z ¼ ½1� ðg1’=ma1Þ2	�1=2 ! 1þ
O½ðg1’=ma1Þ2	. Then, from Eq. (11), we obtain gð1ÞA ¼
�gð2ÞA ¼ 1, and the physical axial coupling constants are

gðNÞ
A ¼ �gðN

�Þ
A ¼ tanh� � 1, in contradiction to the ex-

perimental values.
The next question is, whether the experimental value of

the a1 mass is not too large compared to the ‘‘natural
scale’’ of the problem, so that the correct description of
the axial-coupling constants is impossible. The natural
scale is given by the scale of chiral symmetry breaking,
i.e., by the value of ’, possibly multiplied by a constant of
order one. If we take the natural scale to be g1’� g1f� ’
600 MeV, then indeed g1’=ma1 � 1, i.e., the a1 mass is

not too large compared to the natural scale of the problem.
This can also be seen from the fact that the a1 ! �� decay
requires Z ’ 1:67> 1, i.e., g1’ must be of order ma1 . If

ma1 were large, a fit of g
ðN�Þ
A to the lattice data would lead to

an unnaturally large c2. But this problem does not emerge
because ma1 is not large when compared to the natural

scale of the model.

APPENDIX C: DETAILS OF THE CALCULATIONS

1. Axial coupling constants

From the baryonic Lagrangian (5) we select the terms
which are relevant for the derivation of the baryonic axial
coupling constants:

L ax ¼ i ��1�
�@��1 þ i ��2�

�@��2 � c1 ��1�
��5 ~t

� ~a1��1 þ c2 ��2�
��5 ~t � ~a1��2;

in which the interactions of �1 and �2 with the a1-meson
are retained. After performing the shift of the axial field
~a
�
1 ! ~a

�
1 þ Zw@� ~� we obtain:

Lax ¼ i ��1�
�@��1 þ i ��2�

�@��2 � Zwc1 ��1�
��5 ~t

� @� ~��1 þ Zwc2 ��2�
��5 ~t � @� ~��2 þ . . . : (C1)

The axial current is calculated as

GALLAS, GIACOSA, AND RISCHKE PHYSICAL REVIEW D 82, 014004 (2010)

014004-12



J i
A� ¼ @L

@ð@��1Þ ð��1Þi þ @L
@ð@��2Þ ð��2Þi

þ @L
@ð@��jÞ ð��

jÞi; (C2)

where ð��1Þi ¼ i�5ti�1, ð��2Þi ¼ �i�5ti�2, ð��jÞi ¼
�ijð�þ ’Þ=Z.

We obtain:

J i
A� ¼ gð1ÞA

��1���
5ti�1 þ gð2ÞA

��2���
5ti�2 þ . . . ;

(C3)

where, taking into account that w ¼ ð1� Z�2Þ=ðg1’Þ:

gð1ÞA ¼ 1� ’wc1 ¼ 1� c1
g1

�
1� 1

Z2

�
;

gð2ÞA ¼ �1þ c2
g1

�
1� 1

Z2

�
;

(C4)

which are Eqs. (11).
In order to obtain the axial coupling constants of the

physical fields, we make use of Eq. (6):

J i
A� ¼ gNA

�N���
5tiNe� þ gN

�
A

�N����
5tiN�e�� þ . . .

(C5)

where

gNA ¼ 1

2 cosh�
ðe�gð1ÞA þ e��gð2ÞA Þ;

gN
�

A ¼ 1

2 cosh�
ðe��gð1ÞA þ e�gð2ÞA Þ;

(C6)

which are Eqs. (10).

2. Decay widths

After the field transformation � ! ’þ � and (B3)
discussed in Appendix B have been performed, we isolate
the terms relevant for the decay N� ! NP. In the follow-
ing, we only discuss P ¼ �0, �N , the other isospin com-
ponents can be obtained similarly:

L NN�P ¼ iA �N�NPþ B �N���N@�P� iA �NN�P

þ B �N��N�@�P: (C7)

where

A ¼ �Zðĝ1 � ĝ2Þ
4 cosh�

; B ¼ �Zwðc1 þ c2Þ
4 cosh�

: (C8)

The decay amplitude for the process N� ! NP reads

� iM�� ¼ i �uN�ð ~k1ÞCuN�
� ð ~k ¼ 0Þ; (C9)

where C ¼ �iAþ iB�	k
	
2 . Averaging over initial states

and summing over final states, we obtain the following
squared amplitude:

j � iMN�!NPj2 ¼ 1

2

X
�;�

j � iM��j2 ¼ 1

2

X
�;�

½ �uN�ð ~k1ÞCuN�
� ð ~k ¼ 0Þ	½ �uN�

� ð ~k ¼ 0ÞC0uN�ð ~k1Þ	; (C10)

with C0 ¼ iA� iB�	k
	
2 ¼ �C. Using the well-known properties of the traces of � matrices leads to the result

j � iMj2 ¼ 1

2

X
�;�

j � iM��j2 ¼ 1

2
Tr

�
C
��k� þmN�

2mN�
C0 �

�k1;� þmN

2mN

�

¼ A2

2
Tr

�
��k� þmN�

2mN�

��k1;� þmN

2mN

�
þ B2

2
Tr

�
�	k

	
2

��k� þmN�

2mN�
�	k

	
2

��k1;� þmN

2mN

�

� ABTr

�
��k� þmN�

2mN�
�	k

	
2

��k1;� þmN

2mN

�

¼ A2

2

�
EN

mN

þ 1

�
þ B2

2

�
ðm2

N� �m2
N �m2

PÞ
EP

mN

þm2
P

�
1� EN

mN

��
� AB

�
m2

N� �m2
N �m2

P

2mN

þ EP

�
: (C11)

The full decay width is obtained including all isospin states for the pion and by replacing the unphysical state �N with the
physical � meson. The result is

�N�!NP ¼ 
P

kP
2�

mN

mN�
j � iMN�!NPj2; (C12)

which leads to Eq. (14).
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