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The tribimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass

matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple

formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on the

structure of the neutrino mass matrix and on the underlying flavor symmetry. We show that possible

deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation

of the TBM-mass relations. As a result, the mass matrix may have an ‘‘anarchical’’ structure with random

values of elements or it may have some symmetry that differs from the TBM symmetry. Interesting

examples include matrices with texture zeros, matrices with certain ‘‘flavor alignment’’ as well as

hierarchical matrices with a two-component structure, where the dominant and subdominant contributions

have different symmetries. This opens up new approaches to understanding the lepton mixing.
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I. INTRODUCTION

The lepton mixing determined from the results of neu-
trino experiments can be well described by the so-called
tribimaximal mixing (TBM) matrix [1]1:
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In terms of the standard parameterization of the lepton
mixing matrix,

UPMNS ¼ U23ð�23Þ��U13ð�13Þ��
�U12ð�12Þ;

where �� � diagð1; 1; ei�Þ, the TBMmatrix corresponds to
the maximal 2–3 mixing, zero 1–3 mixing, and ‘‘demo-
cratic’’ 1–2 mixing:

sin 2�23 ¼ 1
2; sin�13 ¼ 0; sin2�12 ¼ 1

3: (2)

The Dirac CP phase is irrelevant.2

The result (1) and (2) is very suggestive of certain
underlying symmetry, and this has triggered enormous
activity in the model building [2]. It is assumed that
TBM is a consequence of some symmetry of the neutrino
mass matrix in certain (often flavor) basis. We will refer to
this as to the TBM symmetry.

For the Majorana neutrinos in the flavor basis
ð�e; ��; ��Þ, the mass matrix that leads to the TBM mixing

equals

mTBM ¼ UTBMm
diag
� UT

TBM; (3)

where m
diag
� � diagðm1; m2; m3Þ is the matrix of neutrino

mass eigenstates. In general, mi are complex, and we can
represent them as

m1 ¼ jm1j; m2 ¼ jm2jei2�2 ; m3 ¼ jm3jei2�3 :

Here �1 and �2 are the Majorana CP-violating phases.
Using (3) and (1), we find explicitly

mTBM ¼
a b b
. . . 1

2 ðaþ bþ cÞ 1
2 ðaþ b� cÞ

. . . . . . 1
2 ðaþ bþ cÞ

0
B@

1
CA; (4)

where the parameters a, b, c are determined by the neu-
trino masses as

a ¼ 1
3ð2m1 þm2Þ; b ¼ 1

3ð�m1 þm2Þ; c ¼ m3:

(5)

Elements of the �� block of the mass matrix (4) equal

aþ bþ c ¼ 1
3m1 þ 2

3m2 þm3;

aþ b� c ¼ 1
3m1 þ 2

3m2 �m3:

According to (4), the elements of matrix, jjm��jj, �,
� ¼ e, �, �, which leads to the TBM mixing, satisfy the
following three conditions:

me� ¼ me�; (6)

m�� ¼ m��; (7)

mee þme� ¼ m�� þm��: (8)

*mabbas@ictp.it
†smirnov@ictp.it
1There is an ambiguity in the form of the mixing matrix related

to the sign of rotation.
2In (2) Uij � Uijð�ijÞ is the rotation in ij subspace on the

angle �ij.
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(The latter is equivalent to
P

�me� ¼ P
�m��.) Inversely,

the mass matrix, which satisfies these relations, leads to the
TBM mixing independently of values of neutrino masses.
The form of relation (8) changes under the field rephasing:
�e ! ��e, etc. Recall that in the case of the bimaximal
mixing instead of the condition (8) we would have mee ¼
m�� þm��.

In general, fixing any specific set of values of three
mixing angles would imply three relations between the
elements of the mass matrix. The point is that in the
TBM case, these relations are very simple: they are just
equalities of certain elements and equality of sums of
elements of columns, and therefore have a good chance
to follow from certain symmetry.

The TBM symmetry can appear as a residual of the
flavor symmetry of the Lagrangian. (In all the models the
underlying flavor symmetry for TBM is broken.) Indeed,
the TBM-mass matrix (4) is invariant under transforma-
tions [3,4]

VimTBMV
T
i ¼ mTBM;

where

V1 ¼ 1

3

�1 2 2
. . . �1 2
. . . . . . �1

0
@

1
A; V2 ¼

1 0 0
. . . 0 1
. . . . . . 0

0
@

1
A:
(9)

At the same time, the mass matrix of charged leptons can
be diagonal due to symmetry with respect to transforma-

tion V3 ¼ diagð1; !;!2Þ, where ! � ei2	=3. The transfor-
mations V1, v2, v3 are generators of the group S4.

Some recent developments have given rise to doubts that
the TBM is of fundamental character, i.e. follows from
certain approximate (broken) symmetry. The TBM mixing
can be accidental—just a numerical coincidence of pa-
rameters without underlying symmetry. The arguments
follow:

(1) Analysis of experimental data shows deviations
from the TBM mixing. According to two recent
global analyses [5,6], the best fit values as well as

the 1
 allowed ranges for the mixing angles deviate
from the TBM values (see Table I). Notice, however,
that the latest analysis of the atmospheric neutrino
data only [7] gives the best fit values (and the 90%
C.L. allowed regions) as sin�13 ¼ 0:00 (< 0:2) in
the case of normal mass hierarchy (NH) and
sin�13 ¼ 0:077 (< 0:3) for the inverted mass hier-
archy (IH). So, no significant deviation of the 1–3
mixing from zero is found, but the upper bound is in
agreement with the global fit results. For the 2–3
mixing, essentially no deviation from the maximal
value is obtained: sin2�23 ¼ 0:50 (NH) and
sin2�23 ¼ 0:53 (IH). At the same time, larger devia-
tions from the maximal mixing are allowed in com-
parison to the global fit: 0:407< sin�23 < 0:583
(90%) C.L. Comparing the results of Table I with
those in (2), we find that significant deviations from
the TBM values are allowed.

(2) No simple and convincing model for the TBM mix-
ing has been proposed so far, although the simplest
possibilities have been explored almost systemati-
cally. The proposed models have rather complicated
structure with a large number of assumptions, new
elements (fields), new parameters, ad hoc quantum
number assignments, and yet additional auxiliary
symmetries. Attempts to realize the proposal
‘‘TBM from symmetry’’ can be qualified as the
‘‘symmetry building’’ by introduction and tuning
of the complicated structure of models. The mixing
does not appear as an immediate consequence of
symmetry. On the other hand, if true, this means that
there is rich physics behind observed lepton mixing.
One should add, however, that from the simple
assumption of the existence of discrete symmetry,
which has irreducible triplet representation, one gets
structures that resemble the TBM mixing but often
with the wrong mass spectrum.

(3) In most proposed models there is no immediate
relation between the masses and mixing angles
and different physics should be introduced to ex-
plain the mass hierarchies. This is still a matter of
opinion, and some authors do not consider the lack
of the relations as a shortcoming in spite of the
existence of the Fritzsch or Gatto-Sartory-Tonin
type relations in the quark sector.

(4) The quark sector has small mixing and in the first
approximation it can be neglected so that the quark
mixing matrix is diagonal, as a consequence of
certain symmetry. This drastically differs from the
lepton mixing and therefore further complications
are required to include the quark sector into a model.
The grand unification puts further additional re-
quirements [8]. Of course, it is difficult to expect
that quark and lepton mixings are similar: values of
neutrino masses strongly differ from values of quark

TABLE I. The best fit values and 1
 intervals for the mixing
angles according to global oscillation analysis of different
groups. The analysis GM-I uses the solar neutrino spectrum
according to the solar model with high metallicity (GS98) and
a normal gallium cross section, whereas GM-II is based on the
high surface metallicity (AGSS09) and modified gallium cross
section; see [6] for details.

Bari group [5] GM-I [6] GM-II [6]

sin�13 0:126þ0:053
�0:049 0:127þ0:036

�0:055 0:118þ0:038
�0:048

sin2�23 0:466þ0:073
�0:058 0:463þ0:071

�0:048 0:463þ0:071
�0:048

sin2�12 0:312þ0:019
�0:018 0:319þ0:016

�0:016 0:321þ0:016
�0:016
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masses. And furthermore, the neutrino mass may
have a different nature being of the Majorana type.

(5) The quark-lepton complementarity [9] with differ-
ent underlying physics leads to mixing that is very
close to the TBM mixing.

There are several possible implications of these state-
ments:

(i) The TBM mixing is not accidental in spite of argu-
ments (1–5), and there is a certain flavor symmetry
behind this mixing. This symmetry cannot be an
exact symmetry of the Lagrangian (in the proposed
models it is broken spontaneously or explicitly), and
therefore deviations from the TBM mixing at some
level are expected anyway. The deviations can origi-
nate from (i) renormalization group effects [10],
(ii) deviations from ‘‘correct’’ vacuum expectation
value (VEV) alignment [11] [12], (iii) a soft break-
ing of the�� � andCP symmetries [13], (iv) higher
order corrections of a flavor symmetry breaking and
higher dimensional mass operators [14],
(v) perturbation of the TBM-mass matrix and con-
tribution from the charged lepton sector [15],
(vi) breaking of the mass degeneracy of three heavy
(right-handed) Majorana neutrinos [16], etc.

(ii) The approximate TBM mixing is not accidental but
is a manifestation of some other structure or other
symmetry which differs from the flavor symmetries
proposed so far as an explanation of TBM. Viable
alternatives are the quark-lepton complementarity
[9] and weak complementarity [17], when the bi-
maximal mixing is obtained as a result of flavor
symmetry.

(iii) The approximate TBM mixing is accidental: it re-
sults from an interplay of different, and to a large
extent, independent factors or/and contributions.
Some other physics apart from the flavor symmetry
is involved. The mixing results are from a many-step
construction and fixing various parameters by intro-
duction of additional auxiliary symmetries and
structures.

The main question we address in the paper is how to
disentangle these possible implications. Clearly, the con-
clusive way to answer the question is to check predictions
of specific models that explain the TBM mixing.
Unfortunately, most of the proposed models do not give
new generic or strict predictions. Therefore, interpretation
of results will be rather ambiguous. Furthermore, in many
cases the underlying physics is at very high mass scales
(grand unified theory or even higher), so that its direct tests
are not possible.

The symmetry, if it exists, is realized in terms of the
mass matrix and not the mixing matrix. Therefore, the step
is to explore violation of the TBM symmetry of the mass
matrix. If the deviations of the mass matrix from mTBM are
large (enhanced), and the symmetry is broken strongly, the

symmetry explanation of the TBM is less plausible. If in
the large region of parameters (which would correspond to
a large variety of different structures of matrix) the mass
matrix leads to the approximate TBM mixing, the TBM
looks accidental.
A somewhat similar question (‘‘is TBM hidden or acci-

dental symmetry?’’) has been discussed in [18]. In a sense,
the inverse problem has been considered: small (‘‘soft’’)
�20% relative corrections (perturbations) to the TBM-
mass matrix elements have been introduced, and the con-
sequences of these perturbations for mixing angles have
been studied, depending on the mass hierarchy and phases.
Our approach, criteria of accidental, and conclusions differ
from those obtained in [18] (see Sec. IV).
This paper is organized as follows: In Sec. II, we present

a simple formalism which accounts for the effects of
deviations from the TBM on the structure of the neutrino
mass matrix. Using this formalism, in Sec. III, we study the
properties of the neutrino mass matrices (in the presence of
the deviations) for different mass spectra and values of the
CP phases. In Sec. IV, we consider the implications of the
obtained results for the flavor symmetries. We search for
some alternative structures of the mass matrix, and corre-
spondingly, alternative explanation of the observed mix-
ing. Conclusions are given in Sec. V.

II. DEVIATIONS OF THE MASS MATRIX FROM
THE TBM FORM

A. Deviations from the TBM mixing

Let us define the parameters that characterize the devia-
tion of the mixing angles from the TBM values as

D12 � 1
3 � s212; D23 � 1

2 � s223; D13 � s13; (10)

where cij � cos�ij and sij � sin�ij. Using the results in

Table I, we find the central values and the 1
 allowed
intervals of these deviations (see Table II). For the 1–2 and
1–3 mixings, the relative deviations equal, correspond-
ingly, 3D12 and 2D23. The central values of these devia-
tions and the maximal allowed values at 1
 level are (3–
6)% and (6–12)% for the 1–2 mixing, and (8–10)% and
(18–19)% for the 2–3 mixing. Thus, the typical size of the
relative deviations is about 10% for the 1–2 mixing and
20% for the 2–3 mixing. The 1–3 mixing can be compared
with values of other mixings: for the central value
s13=s12 ¼ 0:23 and in the 1
 interval, s13=s12 ¼ 0:33.
The 1–3 mixing can be smaller but not much smaller
than other mixings.
Instead of D12 and D23, we could introduce deviations

for sines:

d12 � 1ffiffiffi
3

p � s12; d23 � 1ffiffiffi
2

p � s23: (11)

In the lowest order there are linear relations between dij
andDij: d23 ¼ D23=

ffiffiffi
2

p
, d12 ¼ D12

ffiffiffi
3

p
=2 in contrast to s13,
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which gives the deviation from zero. Furthermore, in con-
trast to s13, the linear deviations D12, D23 are smaller than
the quadratic ones. For the linear deviations, we have
s13 � d12 � d23, and for the present best fit values,

s213 � d12 � d23: (12)

It can be a hierarchy of the deviations.

B. Corrections to the neutrino mass matrix

To account for the effects of deviation from the TBM
mixing on the structure of the mass matrix, wewill perform
an expansion of the matrix in powers of the deviation
parametersDij. In the lowest approximation, the correction

due to Dij equals

UTBMm
diag�Uð1ÞT

ij þ transponent; (13)

where �Uð1Þ
ij is the first order correction to UTBM due to the

deviation Dij. Equation (13) can be also rewritten in the

form mTBMUTBM�U
T
j þ transponent. Because of hier-

archy (12), we compute also corrections of the order s213,
which are given by

UTBMm
diag�Uð2ÞT

13 þUð2Þ
13m

diagUT
TBM þ �Uð1Þ

13m
diag�Uð1ÞT

13 :

(14)

Here Uð2Þ
13 is the matrix of second order in s213. Using (13)

and (14), we find the mass matrix in the lowest order
approximation as

m� ¼ mTBM þ s13

0 � 1ffiffi
2

p e�i�g 1ffiffi
2

p e�i�g

. . .
ffiffiffi
2

p
bei� 0

. . . . . . � ffiffiffi
2

p
bei�

0
BBB@

1
CCCA

þ s213
2

2e�2i�g �b �b

. . . �g g

. . . . . . �g

0
BB@

1
CCA

þD23

0 b �b

. . . aþ b� c 0

. . . . . . �ðaþ b� cÞ

0
BB@

1
CCA

þ 3bD12

�1 � 1
4 � 1

4

. . . 1
2

1
2

. . . . . . 1
2

0
BB@

1
CCA; (15)

where

g � c� ae2i�; (16)

a, b, c are combinations of the neutrino masses defined in
Eq. (5). Notice that corrections are proportional to the
elements of the TBM matrix and therefore correlate with
the original TBM structure. It follows from the expression
(15) immediately that
(1) s13 as well as D23 corrections break all three TBM

conditions (6)–(8);
(2) s213 and D12 corrections violate only the third

condition.
Corrections due to the nonzero 1–3 mixing depend on b

and the combination g of original parameters a and c.
The expression for the mass matrix (15) can be rewritten

in terms of matrices that explicitly violate the TBM con-
ditions:

m� ¼ mTBM þm0
TBM þ x

0 1 �1
. . . 0 0
. . . . . . 0

0
@

1
A

þ y
0 0 0
. . . 1 0
. . . . . . �1

0
@

1
Aþ z

1 0 0
. . . 0 0
. . . . . . 0

0
@

1
A: (17)

HeremTBM is the original TBMmatrix (4) for a given mass
spectrum. The matrix m0

TBM has an exact TBM form with
the following parameters:

a0 ¼ b

2

�
15

2
D12 þ s213

�
; b0 ¼ �b

2

�
3

2
D12 þ s213

�
;

c0 ¼ �gs213:

Notice that, all the elements of m0
TBM are suppressed in

comparison to the zero order matrix mTBM by small devia-
tions: D12 � s213 � 0:02. In Eq. (17), x and y are the

strengths of violation of the first and second TBM con-
ditions, and z is the correction to mee:

x ¼ � s13ffiffiffi
2

p ge�i� þ bD23; (18)

y ¼ ffiffiffi
2

p
s13be

i� þ ðaþ b� cÞD23

¼ ffiffiffi
2

p
s13be

i� þ 2mTBM
�� D23; (19)

z ¼ � 27

4
bD12 þ

�
ge�2i� � b

2

�
s213: (20)

TABLE II. Central values and 1
 allowed intervals for the TBM deviation parameters according to the global analysis of different
groups (for further explanation, see the caption for Table I).

Deviation Bari group [5] GM-I [6] GM-II [6]

sin�13 0:126ð0:077� 0:179Þ 0:127ð0:071� 0:163Þ 0:118ð0:069� 0:156Þ
D23 0:034ð�0:039� 0:092Þ 0:037ð�0:034� 0:085Þ 0:037ð�0:034� 0:085Þ
D12 0:021ð0:002� 0:040Þ 0:014ð�0:0016� 0:027Þ 0:012ð�0:0036� 0:028Þ
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The corrections to the TBM structure have the following
properties. Contributions to x and y from s13 and D23 can
sum up, thus enhancing the violation of the TBM structure.
All corrections to the elements me� and me� but those of

s13 are proportional to b; z depends on the smallest devia-
tionD12 and is second order in s13. In general, parameters x
and y are independent. If b � a, cwhich, as we will see, is
realized in many situations, then x / s13, whereas y / D23.
If b� a, c, one can obtain x � y or x � y by selecting a
particular value of the phase �. In some cases correlation
between corrections x and y and the structure of the origi-
nal TBM-mass matrix appear.

The total correction to the ee element is

�mee ¼ a0 þ z ¼ �3bD12 þ e�2i�gs213: (21)

Although D12 is small, it enters �mee with the coefficient
3. In other places its effect is small. The correction to the
�� element originates from m0

TBM:

�m�� ¼ 3
2bD12 þ 1

2gs
2
13: (22)

It is about 2 times smaller than �mee and has an additional
phase difference between the two terms; �m�� ¼
� 1

2 �mee at � ¼ 	=2. Apart from some special cases,

this correction is negligible.
The exact expression for the mass matrix is simplified

substantially if D12 ¼ � ¼ 0:

m� ¼
a c13b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2D23

p � �� c13b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2D23

p þ �þ
. . . 1

2 ðaþ bþ cÞ þ y 1
2 ðaþ b� cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4D2

23

q
� 2

ffiffiffi
2

p
bD23s13

. . . . . . 1
2 ðaþ bþ cÞ � y

0
BB@

1
CCAþ s213ðc� aÞ

	
1 0 0

. . . D23 � 1
2

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4D2

23

q
. . . . . . �D23 � 1

2

0
B@

1
CA: (23)

Here

�
 � 1ffiffiffi
2

p s13c13
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 2D23

p ðc� aÞ;

y � ffiffiffi
2

p
bs13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4D2

23

q
þ ðaþ b� cÞD23:

(24)

The next order corrections, being proportional to s13D23,
appear in the off-diagonal elements: m��, me� and me�.
From (24), we have

�
 ¼ 1ffiffiffi
2

p s13c13ðc� aÞ 
 1ffiffiffi
2

p s13c13D23ðc� aÞ;

where the second term gives the same corrections to me�

and me�. In the lowest order, we obtain

�þ ¼ �� ¼ � � 1ffiffiffi
2

p s13c13ðc� aÞ;

y ¼ D23ðaþ b� cÞ þ ffiffiffi
2

p
s13b;

so that

m� ¼
a b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2D23

p � � b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2D23

p þ �
. . . 1

2 ðaþ bþ cÞ þ y 1
2 ðaþ b� cÞ

. . . . . . 1
2 ðaþ bþ cÞ � y

0
B@

1
CA:

As follows from the formulas obtained above, modifi-
cations of the matrix depend on the structure of the original
matrix. (The latter, in turn, depends strongly on the abso-
lute mass scale, mass hierarchy, and CP phases. For the
general dependence of the mass matrices on CP phases,
see [19]). According to (15), corrections are proportional to

the deviations multiplied by different original matrix ele-
ments:

�m�� ¼ X
i>j

X
��

fij��Dijm��;

where (i, j ¼ 1, 2, 3), (�, �, �, � ¼ e, �, �), and fij�� are

numerical coefficients that can contain also the phase
factors ei� and e�i�. Inserting into (15) a ¼ m0

ee, b ¼
m0

e�, and c ¼ m0
�� �m0

��, we find that the s13 corrections

mix the e-line and ��-block elements: the corrections to
the e-line elements me� and me� are proportional to the

elements of the �� block as well as to mee, whereas the
corrections to the �� block are proportional to m0

e�. The

D23 corrections do not mix elements from different blocks:
�m�� ¼ f23��D23m��. TheD12 corrections to all elements

are proportional to m0
e�. The s213 corrections mix the

��-block elements and mee. The correction to the subdo-
minant elements can be proportional to the element of the
dominant block and be much larger than the original
element. The elements of the dominant block can get
relative corrections of the order (20–30)% because the
corrections can be enhanced by some additional numerical
factors 2–3. In turn, these factors originate from the cor-
rection itself as well as some smallness of the original
element (say by factor 1=2–1=3). In the cases when the
original flavor matrix has no hierarchy, the corrections of
the order 30% can lead to the ‘‘anarchical’’ character of the
matrix with random values of elements.
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An alternative parameterization of deviations from the
TBM-mass matrix is proposed in [20], in which the ele-
ment mee is unchanged.

C. Basis corrections

The basis in which the symmetry is introduced may
differ from the flavor basis. In the symmetry basis, the

elements of the mass matrix equalmðsymÞ
�� ¼ m�� þ �mb

��,

where �mb
�� is the basis corrections. Taking into account

mixing in the quark sector, one can assume that the sym-
metry basis differs from the flavor basis by the Cabibbo-
Kobayashi-Maskawa type rotation. To get some idea about
the possible effects, we will consider for simplicity the 1–2
rotation only, with the angle �b of the order of Cabibbo
angle: sb � sin�b � sin�C � 0:2. This rotation gives the
following basis corrections:

�mb
ee ¼ �2sbcbme� þ s2bðm�� �meeÞ;

�mb
�� ¼ ��mee;

�mb
�e ¼ sbcbðm�� �meeÞ � 2s2bme�;

�mb
e� ¼ �sbm�� þ ð1� cbÞme� � �sbm�� þ s2b

2
me�;

�mb
�� ¼ sbm�� þ ð1� cbÞme� � sbm�� þ s2b

2
me�: (25)

Apparently certain correlations between corrections to
different elements exist, especially for some original struc-
tures of the mass matrix. For instance, if m�e and me� are

small (as, e.g., in the case of strong normal mass hier-
archy), then �mb

ee ¼ tan�b�m
b
�e corrections to �m

b
e� and

�mb
e� are large, �m

b
e� ¼ ��mb

e�m��=ðm�� �meeÞ, etc.
Alternatively, the basis corrections can be accounted for

by further deviation of the mixing angles from their TBM
values: �ij ! �ij þ ��bij. Therefore, in our consideration

this can be taken into account by enlarging possible inter-
vals forDij. For instance, a change of the 1–2 mixing by �C
leads to the interval �12 ¼ 20� � 45�. The upper value
corresponds to the maximal 1–2 mixing and the quark
lepton complementarity case. This interval corresponds
to D12 ¼ �0:17� 0:22.

We will comment on possible additional changes of
structure of the mass matrix due to these corrections.

D. Violation of the TBM conditions

Violation of the TBM symmetry of the neutrino mass
matrix can be characterized by parameters that describe
violation of the equalities (6)–(8). For the first two equal-
ities, we can introduce

�e �
me� �me�

me�

; (26)

��� �
m�� �m��

m��

: (27)

Since the difference ðmee þme�Þ � ðm�� þm��Þ depends
on �e and ���,

3 we define the third violation parameter in

a different way to avoid the strong correlation between the
parameters. The third TBM condition (8) can be rewritten
using (6) and (7) as �L ¼ �R, where

�L � mee þ
me� þme�

2
;�R � m�� þ

m�� þm��

2
:

Then the third TBM-violation parameter can be introduced
as

�� � �L � �R

�R

: (28)

In ��, the effects of large violations of the first and second
conditions are excluded.
Specific values of the violation parameters correspond to

certain features of the mass matrix. For instance, �e ¼ 1
corresponds to the texture zero me� ¼ 0, ��� ! 1 gives

condition for m�� ¼ 0, etc. These values, in turn, can
testify for some new symmetries of the mass matrix.
In what follows we will express the TBM-breaking

parameters in terms of Dij and study their dependence on

the absolute mass scale, type of mass spectrum, and CP
phases. We identify situations when the TBM conditions
can be strongly violated. It is convenient to present the
diagonal mass matrix in (3) as

mdiag ¼ diagðm1; m2; m3Þ ¼ m1Iþ diagð0; m;MÞ;
where m � m2 �m1, M � m3 �m1 and I is the unit
matrix. For definiteness, we will take s13 > 0.

1. The parameter �e

According to (17), this parameter can be written as

�e ¼ 2
s13 þ �

s13 � ~s13e
i ~�
; (29)

where in the first approximation � and ~s13 do not depend
on s13, and furthermore, � / D23. The factor 2 originates
from the fact that me� �me� ¼ 2x, whereas me� ¼ xþ
A. The quantity ~s13e

i ~� plays a crucial role: It determines
the position of the pole of �e which corresponds to texture
zero me� ¼ 0. Also, it determines the values of s13 at

which some other special features of the neutrino mass
matrix can be realized. Indeed, a given value of �e corre-
sponds to

s13 ¼ �e~s13e
i ~� þ �

�e � 2
:

3In the lowest order the difference equals x� yþ z�
3bD23 � me��e=2þm�����=2þOðD12; s

2
13Þ.
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So, if � is zero or small, which is realized in many cases,

~s13e
i ~� determines special values of �e, and correspond-

ingly, special mass relations (see Table III). Which of the
possibilities in Table III can be realized depends on the
upper bound on s13 and the value of ~s13, which in turn is
given by the mass spectrum and CP phases. Realization of
the possibilities from the left to right in Table III requires
decreasing values of ~s13.

In terms of masses and mixing angles, �e has the
following expression:

�e ¼ ms12c12ðc23 � s23Þ � s13
ðc23 þ s23Þ
ms12c12c23 � 
s13s23

; (30)

where


 � Me�i� �ms212e
i� � 2im1 sin�:

Consequently, the pole value and the phase equal

~s 13 � s12c12 cot�23
m



� s12c12

m



ð1þ 2D23Þ;

~� � arg

�
m




�
:

The expression for �e can be rewritten approximately as

�e � 2
s13ð1þD23Þ � ~s13D23

s13 � ~s13e
i ~�

:

Then

� � ðs13 � ~s13ÞD23:

According to (29), �e ¼ 1, which corresponds tome� ¼
0, is realized at

s13 ¼ �ð~s13ei ~� þ 2�Þ ¼ � ~s13ðei ~� � 2D23Þ
1þ 2D23

: (31)

At

s13 ¼ 1

3
ð~s13ei ~� � 2�Þ ¼ ~s13ðei ~� þ 2D23Þ

3þ 2D23

;

we obtain me� ¼ 2me�.

The strongest dependence of �e is on s13. In the case of
the maximal 2–3 mixing, D23 ¼ 0, Eq. (31) gives

~s 0
13 �

�������� s12c12m

Me�i� �ms212e
i� � 2im1 sin�

��������: (32)

Since the CP phases are unknown, in general, ~� can take
any value. Therefore, for a given mass hierarchy and s13

and varyingCP phases, the maximal and minimal values of

�e are realized for ~� ¼ 0 and 	: �e ¼ j2s13=ðs13 
 ~s13Þj.
If ~� ¼ 0, at s13 ¼ ~s13, �e has a singularity. If ~� � 0,

the function j�ej has the peak

j�ej ¼ 2s13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs13 � ~s13 cos ~�Þ2 þ ð~s13 sin ~�Þ2

q ; (33)

see Fig. 1. The maximum is at s13 ’ ~s13 cos ~�. For s13 �
~s13, �e approaches the asymptotic value �as

e ¼ 2, which
corresponds to the equality me� ¼ �me�.

The parameter�e depends onm1 via ~s13. As we will see,
changing m1 one can increase or decrease ~s13, depending
on the CP phases.
According to (31), a nonzero D23 shifts the pole: ~s13 ¼

~s013ð1þ 2D23Þ. For the present best fit value of s23, we
obtain ~s13 ¼ 1:07~s013, and for D23 ’ 0:09, we have a

�10% change of �e. The asymptotic value of �e for large
s13 becomes

�e ¼ 1þ cot�23 � 2þD23:

In the limit s13 ! 0, we obtain from (30) �e ¼
1� tan�23 � 2D23. Then the central and the 1
 allowed
values for D23 (D23 ¼ 0:034 and 0.09) give, correspond-
ingly, �e ¼ ð0:07; 0:18Þ.
If D23 > 0, the deviation �e is greater than that in the

case of the maximal 2–3 mixing. For example, in the case

TABLE III. Special values of the violation parameter �e and the corresponding relations

between elements of the mass matrix. Here values of the ratio s13e
�i ~�=~s13 are given for � ¼ 0.

s13e
�i ~�=~s13 � 1

3
1
3 �1 1 � 1

�e
1
2 �1 1 1 � 2

Mass relation 2me� ¼ me� me� ¼ 2me� me� ¼ 0 me� ¼ 0 me� ¼ �me�

∆

φ∼=0
φ∼=π/6
φ∼=π/5
φ∼=π/4
φ∼=π

FIG. 1. j�ej as a function of s13 for different values of ~�. We
take the best fit values of �23 and �12.
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of strong mass hierarchy (m1 ’ 0) and for the best fit values
of mixing angles, we obtain �e � 12 instead of 8.

2. The parameter ���

Similarly to the previous case and according to Eq. (17),
this violation parameter can be presented as

��� ¼ �2
D23 þ �

D23 � ~D23

; (34)

where in the lowest order � and the pole value ~D23 do not
depend on D23. In the limit � � 0, the parameter ~D23

determines special values of ���, and consequently, spe-

cial relations between the matrix elements (see Table IV).
Explicitly, in terms of deviation parameters, we obtain

~D 23 ¼ � 1

2
23

½Mc213 þmc212 þ 2m1 þ 2m0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4D2

23

q

þ s213ðms212e
2i� þm1ðe2i� � 1ÞÞ


and

� ¼ m0


23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4D2

23

q
� m0


23

;

where

m0 � �ms13s12c12e
i�

and


23 � Mc213 �mc212 þms212s
2
13e

2i� þm1s
2
13ðe2i� � 1Þ:

Neglecting the s213 terms, we have in the first approxi-

mation

� � m0


23

¼ �ðm2 �m1Þs13s12c12ei�
m3 �m2c

2
12 �m1s

2
12

and

~D 23 ��m3 þm2c
2
12 þm1s

2
12 � 2ðm2 �m1Þs12c12s13ei�

2ðm3 �m2c
2
12 �m1s

2
12Þ

:

For real values of ~D23, this quantity determines the
position of the pole of ��� which corresponds to m�� ¼
0. According to (34), the equality ��� ¼ �1, ðm�� ¼ 0Þ,
is realized at D23 ¼ �ð ~D23 þ 2�Þ, and at D23 ¼ 1

3 ð ~D23 �
2�Þwe obtainm�� ¼ 2m�� (��� ¼ 1). In many situations

� � 0. Nonzero � leads to a shift of the special points
from the values indicated in Table IV.

In the lowest order ��� depends on the 1–3 mixing via

m0 only. Neglecting the s213 corrections, we have m
0
1 ¼ m1.

The strongest dependence of ��� is the one on D23. For

s13 ¼ 0, we have m0 ¼ 0, � ¼ 0, and

��� �
�������� 2D23

D23 � ~D23

��������: (35)

In this case,

~D 23 ¼ � m3 þm2c
2
12 þm1s

2
12

2ðm3 �m2c
2
12 �m1s

2
12Þ

: (36)

For maximal 2–3 mixing, D23 ¼ 0, we obtain from (34)

��� ¼ 4m0

m1s
2
12 þm2c

2
12 þm3 þ 2m0 : (37)

According to (19), in the first approximation the correc-
tions are proportional to the e� element of the original

TBM matrix:
ffiffiffi
2

p
s13b ¼ ffiffiffi

2
p

s13m
0
e�.

If s13 � 0 and D23 � 0 simultaneously, ��� can be

further enhanced. The dependence of ��� onD23 is shown

in Fig. 2.
Notice that the �� block of the mass matrix in all the

cases with strong enhancement of ��� can be presented as

m� � 2m0
D23 þ ~D23

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4D2

23

q
. . . �D23 þ ~D23

0
@

1
A: (38)

This shows that when violation of the second condition is
strong, the off-diagonal elements are much larger (by
factor ð2D23Þ�1 > 5) than the diagonal elements. In other
words, violation of the TBM condition is large when m��

and m�� elements are subleading. This means that the
structure of the whole mass matrix does not change sub-
stantially by these corrections.
The TBM parameters can be introduced in a different

way:

�0
e �

me� �me�

me� þme�

; (39)

thus, excluding the linear dependence of the denominator
on s13. The two parameters are related by

�0
e ¼ �e

2��e

:

So, the texture zero me� ¼ 0 would correspond to �0
e ¼

�1 and the relation me� ¼ �me� is realized when �0
e !

1, etc. The pole value ~s13 is determined from the condition
�0

eð~s13Þ ¼ �1.

TABLE IV. Special values of the violation parameter ��� and the corresponding relations
between the elements of the mass matrix. Values of the ratio D23= ~D23 are given for � ¼ 0.

D23= ~D23 � 1
3

1
3 �1 1 � 1

��� � 1
2 1 �1 1 � �2

Mass relation m�� ¼ 2m�� 2m�� ¼ m�� m�� ¼ 0 m�� ¼ 0 m�� ¼ �m��
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3. The parameter ��

Using (17), we find

�L ¼ aþ bþ
�
ce�2i� � a� b

2

�
s213 �

15

4
bD12;

�R ¼ aþ bþ 3bD12:

And consequently,

�� ’ s213ðce�2i� � a� b
2Þ � 27

4 D12b

aþ bþ 3bD12

¼ s213½m3e
�2i� � 1

2 ðm1 þm2Þ
 � 9
4D12ðm2 �m1Þ

1
3m1 þ 2

3m2 þ ðm2 �m1ÞD12

:

�� reflects violation of the TBM structure bymee andm��.

Therefore, instead of �� we can simply use the deviation
of mee from its TBM value:

�mee � mee �mTBM
ee

¼ �ðm2 �m1ÞD12 þ ½m3e
�2i� �m1 � ðm2 �m1Þ

	 ð13 �D12Þ
s213:
This correction is not affected by the 2–3 mixing.
Contribution of D12 is rather small. The larger effect can
be due to s213. Ifm1 � 0, the last term can dominate:mee �
m3s

2
13. Equation (40) reproduces the one in (21) when high

order terms �D12s
2
13 are neglected. In the case of strong

mass hierarchy and s13 ¼ 0, we have mee � m2ð1=3�
D12Þ.

The proposed formalism allows us immediately (and
very precisely) to trace an impact of the deviations from
the TBM mixing on structure of the neutrino mass matrix.

The effect of future measurements of the mixing angles can
be seen immediately.

III. PROPERTIES OF THE NEUTRINO MASS
MATRIX

Formulas obtained in the previous section allow us to
‘‘design’’ neutrino mass matrices with certain required
properties which agree with observations. We reconstruct
the neutrino mass matrix in the cases of TBM mixing and
deviations from TBM for different mass hierarchies and
CP-violation phases. The results of the numerical compu-
tations are given in Tables V and VI. Tables V and VI
illustrate the maximal possible modifications of structures
at a certain confidence level. Apparently, any intermediate
structure between the original TBM and matrices with
deviations presented in Table V are possible. As the best
fit values, we take D12 ¼ 0:012; D23 ¼ 0:037 and s13 ¼
0:118 and for 1
 deviations, we use D12 ¼ 0:028; D23 ¼
0:085 and s13 ¼ 0:156.
Modification of the mass matrix (for fixed values of the

deviations) depends on the CP-violating phases. Table V
corresponds to � ¼ 0. For certain cases this does not
correspond to the maximal deviation of the mass matrix
from the TBM form. In Table VI, we show the mass
matrices for � ¼ 	 when they lead to stronger deviations
than in Table V.
Because of the hierarchy of the allowed deviations (12),

the following combinations of mass matrix elements are
approximately invariant under corrections:

me� þme� � const; m�� þm�� � const: (40)

The elements mee and m�� receive only small

corrections.
We will consider several ‘‘benchmark’’ spectra deter-

mined by the mass hierarchy/ordering, andCP parities. For
each case, we (i) compute the parameters of the mass
matrix and reconstruct the TBM matrix, (ii) find the lowest
order corrections using (18)–(20) and identify conditions at
which corrections are maximal, (iii) compute ~s13, ~D23 and
the TBM-violation parameters, and (iv) discuss the prop-
erties of the mass matrix with corrections.

A. Normal mass hierarchy

In the case of strong normal mass hierarchy, we take
m1 � 0; see lines NHð0; 0Þ and NHð0; 	2Þ in Table V.

(a) The parameters of the mass matrix

a ¼ b � m2

3
�

ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

q
3

;

a; b � c � m3 �
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

31

q

give the TBM matrix

∆ µτ

FIG. 2. Dependence of j�23j on D23 for different values of the
lightest neutrino mass and �2 ¼ 	

2 . We take the best fit values of

�13 and �12. The value m3 ¼ 0 corresponds to the inverted mass
hierarchy.

Is THE TRIBIMAXIMAL MIXING ACCIDENTAL? PHYSICAL REVIEW D 82, 013008 (2010)

013008-9



m� �
m2

3
m2

3
m2

3

. . . m3

2 þ m2

3 � m3

2 þ m2

3

. . . . . . m3

2 þ m2

3

0
B@

1
CA:

(b) The lowest order corrections equal

x � � 1ffiffiffi
2

p s13m3e
�i�;

y � �D23m3 þ
ffiffiffi
2

p
3

s13m2e
i�;

�mee � �m2D12 þ s213m3e
�2i�;

�m�� � 1

2
ðm2D12 þm3s

2
13Þ:

(41)

Notice that in y the two contributions can be of the
same size and enhance each other. The same is in
�mee and �m��. For D23 > 0, the maximal devia-

tions are achieved if�3 ¼ 	=2 and �¼0 or�3 ¼ 0
and � ¼ 	. For the best fit values of the mixing
angles, the maximal deviations equal (in the units
10�2 eV) j�meej � 0:10, jxj � 0:45, jyj � 0:25,
and the correction to the subleading elements are
bigger than the original TBM elements. At the 1

level, the corrections become j�meej � 0:15, jxj �
0:65, jyj � 0:5, and the structure of the mass matrix
can substantially deviate from the TBM form.

(c) The parameters of violation of the TBM conditions:
At D23 ¼ 0, we have

TABLE V. Numerical examples of neutrino mass matrices in the cases of NH, partially degenerate spectrum (PD), IH, and
degenerate spectrum (D). The numbers in brackets of the scenario definition indicate the CP phases ð�2; �3Þ. We show matrices for the
exact TBM (left column), the best fit values of the mixing angles (central column), and the mixing angles allowed at 1
 level (right
column). We take � ¼ 0 and the elements of the matrices are in the unit 10�2 eV.

Scenario Exact TBM Best fit values 1
 deviation

NH(0,0)

0:3 0:3 0:3
. . . 2:7 �2:1
. . . . . . 2:7

0
@

1
A 0:35 �0:06 0:7

. . . 2:6 �2:1

. . . . . . 2:8

0
@

1
A 0:39 �0:15 0:8

. . . 2:4 �2:0

. . . . . . 3:0

0
@

1
A

NHð0; 	2Þ
0:3 0:3 0:3
. . . �2:1 2:7
. . . . . . �2:1

0
@

1
A 0:2 0:7 �0:16

. . . �1:8 2:7

. . . . . . �2:4

0
@

1
A 0:14 0:8 �0:34

. . . �1:5 2:6

. . . . . . �2:6

0
@

1
A

PD(0,0)

2:06 0:06 0:06
. . . 3:7 �1:6
. . . . . . 3:7

0
@

1
A 2:1 �0:19 0:34

. . . 3:6 �1:5

. . . . . . 3:8

0
@

1
A 2:1 �0:25 0:44

. . . 3:4 �1:5

. . . . . . 3:9

0
@

1
A

PDð0; 	2Þ
2:06 0:06 0:06
. . . �1:6 3:7
. . . . . . �1:6

0
@

1
A 1:95 0:65 �0:57

. . . �1:2 3:6

. . . . . . �1:8

0
@

1
A 1:9 0:79 �0:81

. . . �0:86 3:5

. . . . . . �2:1

0
@

1
A

PDð	2 ; 0Þ
0:6 �1:4 �1:4
. . . 2:2 �3:0
. . . . . . 2:24

0
@

1
A 0:7 �1:8 �0:9

. . . 1:7 �3:0

. . . . . . 2:6

0
@

1
A 0:8 �1:9 �0:7

. . . 1:3 �2:9

. . . . . . 2:9

0
@

1
A

PDð	2 ; 	2Þ
0:6 �1:4 �1:4
. . . �3:0 2:2
. . . . . . �3:0

0
@

1
A 0:57 �0:95 �1:8

. . . �3:1 2:2

. . . . . . �3:0

0
@

1
A 0:57 �0:86 �1:9

. . . �2:9 2:1

. . . . . . �3:1

0
@

1
A

IH(0,0)

4:8 �0:03 �0:03
. . . 2:4 2:4
. . . . . . 2:4

0
@

1
A 4:8 0:36 �0:44

. . . 2:6 2:4

. . . . . . 2:3

0
@

1
A 4:7 0:45 �0:60

. . . 2:9 2:3

. . . . . . 2:1

0
@

1
A

IH(0,0)

1:6 �3:2 �3:2
. . . �0:7 �0:8
. . . . . . �0:7

0
@

1
A 1:7 �3:2 �3:2

. . . �1:4 �0:8

. . . . . . �0:2

0
@

1
A 1:9 �3:2 �3:1

. . . �1:7 �0:8

. . . . . . 0:05

0
@

1
A

D(0,0)

20:0 0:006 0:006
. . . 20:3 �0:3
. . . . . . 20:3

0
@

1
A 20:0 �0:04 0:06

. . . 20:2 �0:3

. . . . . . 20:3

0
@

1
A 20:0 �0:05 0:07

. . . 20:2 �0:3

. . . . . . 20:3

0
@

1
A

Dð	2 ; 0Þ
6:6 �13:3 �13:3
. . . 6:9 �13:6
. . . . . . 6:9

0
@

1
A 7:3 �14:7 �11:5

. . . 3:4 �13:6

. . . . . . 9:8

0
@

1
A 8:1 �15:2 �10:2

. . . 1:02 �13:3

. . . . . . 11:4

0
@

1
A

Dð0; 	2Þ
20 0:006 0:006
. . . �0:3 20:3
. . . . . . �0:3

0
@

1
A 19:4 3:2 �3:4

. . . 1:5 19:9

. . . . . . �1:5

0
@

1
A 19:0 4:0 �4:8

. . . 3:6 19:5

. . . . . . �3:2

0
@

1
A

Dð	2 ; 	2Þ
6:6 �13:3 �13:3
. . . �13:6 6:9
. . . . . . �13:6

0
@

1
A 6:8 �11:4 �15:0

. . . �15:4 6:7

. . . . . . �12:0

0
@

1
A 7:1 �11:1 �15:1

. . . �15:6 6:5

. . . . . . �12:0

0
@

1
A
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~s 0
13 � s12c12

ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

�m2
31

s
’ 0:09;

and ~� � 2�2 � 2�3 þ �. Notice that ~s013 in (42) is

slightly smaller than the present best fit value of s13
and at the 1
 level s13=~s13 � 2. Therefore, all the
possibilities indicated in Table III can be realized.
For the best fit value of the 1–3 mixing, �e ¼ 11:6.
For the 1
 upper bounds on the 1–3 mixing, the
parameter equals �e ¼ 6:4. Thus, the first TBM
relation in (6) can be broken very strongly. Such a
strong influence (even for small s13) originates from
the fact that s13 mixes the large and small mass
scales in the mass matrix, and therefore the correc-
tions to the subleading elements (me�, me�) are

proportional to the large mass: �s13

ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

31

q
.

From (36), we have

~D 23 ¼ �1=2; � � s13s12c12
m

M
� ~D23;

and therefore

��� � 4D23

1þ 2D23

� 4D23:

Since D23= ~D23 < 0:2 (1
), no texture zeros or spe-
cial relations indicated in Table IV can be obtained.
The effect of the 1–3 mixing is very small, since the
element b is small. According to (37), ��� �
2s13 sin2�12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21=�m
2
31

q
� s13=3.

The examples in Table V correspond to � ¼ 0. For
� ¼ 	, according to Eq. (41), the values of me� and

me� permute, see Table V. Also, in this case mee is
suppressed. Signs of corrections to the��-block and

e-line elements can be independently changed, vary-
ing �3 and �. The correction to mee is then fixed.

(d) Properties of the mass matrix:
(a) The allowed corrections to the subleading e� and e�

elements dominate the original TBM values: x � b;
changes of elements of the �� block can be of the
order 1; mee can be suppressed by the corrections of
the order s213.

(b) Texture zeros appear: me� ¼ 0 or me� ¼ 0 at s13
determined by ~s13.

(c) Special relations me� ¼ rme�, with r ¼ 1=2, 2 can

be obtained.
(d) The equality mee ¼ �me� can be approximately

realized.
(e) The sharp difference of the elements of the�� block

and the e line disappear. So, one may have a smooth
decrease of values of the elements from m�� to mee

with the additional smallness of me�. This structure
resembles the structure of the quark mass matrices
with, however, a much larger expansion parameter
�� 0:5–0:8.

(f) The maximal deviation of m� from mTBM corre-
sponds to m2 > 0, m3 > 0, and � ¼ 	, which leads
to the strong increase of me� and the decrease of

m��. In this case, the correction to mee is positive.

The ee element is suppressed, ifm2 > 0,m3 < 0 and
� ¼ 0. In this case, the mass matrix has the follow-
ing form:

m� ¼
0:4 0:8 0:2
. . . 2:3 �2:0
. . . . . . 3:0

0
@

1
A10�2 eV:

The basis corrections can further smear difference of the
e-line and ��-block elements. Varying Sb in the interval
�0:2� 0:2, one finds �mb

ee ¼ ð�0:24� 0:4Þ, �mb
e� ¼

ð0:32��0:44Þ, �mb
e� ¼ ð0:4��0:4Þ in the units

10�2 eV.
The total correction to mee can be as large as 0:002 eV,

which is still smaller than the original a ¼ 0:003 eV.
However, mee ¼ 0 can be realized with the increase of
m1. This can be achieved if

m1 ¼ �m2

2
þ 9

4c213
m2D12 þ 3

2
m3tan

2�13:

Numerically, mee ¼ 0 if m1 � 5:2:10�3 eV for the TBM
case, m1 � 3:3:10�3 eV and m1 � 6:10�3 eV for the best
fit values of the mixing angles with � ¼ 0, 	2 , respectively.

B. Partially degenerate spectrum

Suppose jm1j � jm2j � �m< jm3j. Numerically this
corresponds to �m� ð2� 3Þ � 10�2 eV and m3 ¼
ð5:5–6:0Þ � 10�2 eV. The phase �2 becomes important.
1. The case �2 ¼ 0, lines PDð0; 0Þ and PDð0; 	2Þ in

Table V.

TABLE VI. The same as in Table V for the Dirac phase � ¼
	.

Scenario Best fit values 1
 deviation

NH(0,0) 0:35 0:67 �0:11
. . . 2:5 �2:1
. . . . . . 2:9

0
@

1
A 0:38 0:77 �0:28

. . . 2:3 �2:0

. . . . . . 3:1

0
@

1
A

PD(0,0)

2:1 0:32 �0:21
. . . 3:5 �1:55
. . . . . . 3:8

0
@

1
A 2:1 0:38 �0:32

. . . 3:4 �1:5

. . . . . . 3:9

0
@

1
A

PDð	2 ; 	2Þ
0:57 �1:9 �0:81
. . . �2:6 2:1
. . . . . . �3:4

0
@

1
A 0:57 �2:05 �0:51

. . . �2:4 2:0

. . . . . . �3:7

0
@

1
A

IH(0,0)

4:8 �0:41 0:39
. . . 2:6 2:4
. . . . . . 2:3

0
@

1
A 4:7 �0:51 0:55

. . . 2:9 2:3

. . . . . . 2:1

0
@

1
A

IHð	2 ; 0Þ
1:75 �3:44 �2:91
. . . �0:36 �0:9
. . . . . . �1:3

0
@

1
A 1:9 �3:6 �2:6

. . . �0:37 �1:05

. . . . . . �1:4

0
@

1
A

Dð	2 ; 	2Þ
6:7 �15:8 �10:2
. . . �11:0 6:3
. . . . . . �16:3

0
@

1
A 7:1 �16:7 �8:4

. . . �10:0 5:5

. . . . . . �17:7

0
@

1
A
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(a) The parameters of the mass matrix

m1 � m2 � �m> 0; a � �m;

b ¼ � � �m2
21

6 �m
� 7 � 10�4 eV;

give the TBM-mass matrix

m� �
�m � �
. . . 1

2 ðm3 þ �mÞ � 1
2 ðm3 � �mÞ

. . . . . . 1
2 ðm3 þ �mÞ

0
B@

1
CA:

The main feature of this matrix is a strong (factor of
30) suppression of the me� and me� elements in

comparison with the other elements which are of
the same order. Now �m�m3, and consequently, a
strong difference betweenm�� andm�� can appear.

(b) The lowest order corrections equal

x ¼ � 1ffiffiffi
2

p s13ðm3e
�i� � �mei�Þ;

y ¼ D23ð �m�m3Þ;
�mee ¼ s213ðm3e

�2i� � �mÞ:
In the case of PDð0; 0Þ, the corrections are not large:
the m3 and �m terms partially cancel each other in x
and y. Although x � �, the elements me� and me�

are small, and the structure of the matrix with the
dominant �� block does not change.
The situation is different for �3 ¼ 	=2, see line
PDð0; 	2Þ of Table V. Corrections are maximal if

m3 < 0 and � ¼ 0:

x ¼ � 1ffiffiffi
2

p s13ðjm3j þ �mÞ; y ¼ D23ð �mþ jm3jÞ;

�mee ¼ �s213ðjm3j þ �mÞ:
For � ¼ 	, the correction x changes the sign and
values of me� and me� interchange.

(c) Violation of the TBM conditions: According to (31)

~s 13 ¼ s12c12
�m2

21

2 �m

� 10�2;

so that for the maximal allowed smax
13 , we have

smax
13 =~s13 � 20 and therefore all special mass rela-

tions in Table III can be satisfied. � ¼ ðs13 �
~s13ÞD23, and since smax

13 � ~s13, the corrections of

the order s13D23 become important.
From (36), we find ~D23 ¼ �ðm3 þ �mÞ=2ðm3�
�mÞ � 3=2, which is larger than in the case of strong
mass hierarchy, and correspondingly, the effect of
violation of the second condition is weaker. In this
case, � � 0.

(d) Properties of the mass matrix PDð0; 	2Þ:
(a) Corrections to the subleading elements are large:

about an order of magnitude larger than the TBM

values. Therefore, the subleading mass matrix can
be modified completely.

(b) At the 1
 level, the mass matrix has all of the
elements of the same order (within a factor of 3).
This can be considered as a realization of the anar-
chical structure.

(c) Equality me� � �me� can be achieved. Exact zero

of one of these elements is realized for very small
s13. Equalities me� ¼ �m�� or mee ¼ �m�� can

be obtained.
Basis corrections can further ‘‘equilibrate’’ elements. For
sb ¼ 0:2, they equal �mb

ee ¼ 0:04, �mb
�e ¼ 0:31,

�mb
e� ¼ 0:32, and �mb

�� ¼ �0:31 in the units 10�2 eV.

They are of the order of the TBM-violation corrections for
the ee and e� elements.
2. �2 ¼ 	=2; see line PDð	2 ; 0Þ and PDð	2 ; 	2Þ.
(a) The parameters of the mass matrix

m1 � �m; m2 �� �m; a� �m

3
; b��2 �m

3

lead to the TBM-mass matrix

m� �
1
3
�m � 2

3
�m � 2

3
�m

. . . m3

2 � �m
6 � m3

2 � �m
6

. . . . . . m3

2 � �m
6

0
B@

1
CA: (42)

All the elements are of the same order, so that
corrections do not change the structure strongly.
The ee element is the smallest one.

(b) The lowest order corrections equal

x ¼ � 1ffiffiffi
2

p s13m3e
�i� � 2

3
�mD23;

y ¼ � 2
ffiffiffi
2

p
3

s13 �mei� �D23

�
1

3
�mþm3

�
;

�mee ¼ s213m3 þ 2 �mD12;

�m�� ¼ 1

2
�mee � �mD12:

For D23 > 0, the largest deviations appear when
� ¼ 0 and m3 > 0 (�3 ¼ 0) or � ¼ 	 and �3 <
	=2. For the best fit (bf) values of the mixing
parameters (and 1
), we have x��0:5ð�0:8Þ, y�
�0:3ð�0:7Þ, �mee � 0:15ð0:3Þ (in the units
10�2 eV). Corrections to the e� and e� elements
are of the order 1; corrections to other elements are
up to (20–30)%.

(c) The parameters of violation of the TBM conditions:
The poles of �e and ��� are at

~s 13 ¼ � �m sin2�12ð1þ 2D23Þ
Me�i� þ 2 �ms212e

i� � 2im1 sin�
;

~D23 ¼ �m3 � �mð1� s13 tan2�12e
i�Þ

2ðm3 þ �mÞ � Dmax
23 ;
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where Dmax
23 is the maximal allowed value of D23 at

1
, so no texture zeros are realized in the �� block.
(d) Properties of the mass matrix:
(a) Texture zero me� ¼ 0, is realized at s13 �

ð0:13; 0:19; 0:34Þ for m1 ¼ ð0:005; 0:01; 0:02Þ eV;
(b) In the case of PDð	2 ; 0Þ, the structure is possible with

all elements being of the same order and mee and
me� being the smallest ones.

The basis corrections for sb ¼ 0:2 equal �mb
ee ¼ 0:6,

�mb
�e ¼ 0:43, �mb

e� ¼ 0:58 and �mb
�� ¼ �0:63 in the

units 10�2 eV. They are of the order of the TBM-violation
corrections for the e� and e� elements and large for the ee
and �� elements.

C. Inverted mass hierarchy

If m3 � 0, we obtain jm1j � jm2j � �m, �m�
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

31

q
�

5 � 10�2 eV. The structure of the mass matrix is similar to
that in the partially degenerate case. Similarly, the results
strongly depend on the phase �2.

1. �2 ¼ 0, line IHð0; 0Þ.
(a) Parameters of the mass matrix

m1 � m2 � �m> 0; a � �m;

b ¼ �� 2:7 � 10�4 eV;

give the TBM-mass matrix

m� �
�m � �
. . . 1

2
�m 1

2
�m

. . . . . . 1
2
�m

0
B@

1
CA:

The elements me� and me� are suppressed by 2

orders of magnitude in comparison to the other
elements.

(b) The lowest order correction:

x ¼ 1ffiffiffi
2

p s13 �mei�; y ¼ D23 �m;

�mee ¼ �s213 �m; �m�� ¼ 1

2
�mee:

Corrections strongly correlate with the TBM struc-
ture: they suppress the ee and �� elements, and
enhance the �� element (if D23 > 0). Corrections
tome� andme� dominate, so thatme� � �me�. The

matrix with corrections can be written as

m� � �m

1� s213
1ffiffi
2

p s13e
i� � 1ffiffi

2
p s13e

i�

. . . 1
2 þD23

1
2

. . . . . . 1
2 �D23

0
B@

1
CA:

Corrections are small tomee and at the bf values (1

level) of the deviation they equal approximately
10% (20%) for the elements of the �� block.

(c) The parameters of violation of the TBM conditions:
If D23 ¼ 0, we obtain from (32) very small pole

value

~s 13 � s12c12
�m2

21

2�m2
31

� 0:008:

Consequently, for the central values of the 1–3
mixing we have nearly maximal TBM violation,
�e � 2. All the relations in Table III can be
satisfied.
For s13 ¼ 0, we have ~D23 � 0:5, and as can be
immediately seen from Eq. (43),

��� ¼ 4D23

1

1� 2D23

� 4D23;

independently of the phase �2. If D23 ¼ 0, we

obtain from (37) ��� � s13 sin2�12
�m2

21

�m2
31

, which is

strongly suppressed.
(d) Properties of the mass matrix, (line IHð0; 0Þ):
(a) Structure of the dominant block of the mass matrix

does not change substantially in comparison to the
TBM form.

(b) No texture zeros can be obtained in the �� block.
(c) The matrix has no special structure apart from some

trend of increase of elements from m�� to mee, with
mee being the largest one.

(d) Equality me� � �me� can be achieved. Texture

zeros me� or me� are possible for very small values

of s13.
The basis corrections for sb ¼ 0:2 equal �mb

ee ¼ �0:08,
�mb

�e ¼ �0:47, �mb
e� ¼ �0:48, and �mb

�� ¼ 0:48 in the
units 10�2 eV. They are of the order of the TBM correc-
tions for the e� and e� elements.
2. �2 ¼ 	=2, line IHð	2 ; 0Þ:
(a) The parameters of the mass matrix

m1 � �m; m2 � � �m; a � �m=3;

b � � 2 �m

3
; c ¼ 0

give the TBM matrix that equals

m� � �m

1
3 � 2

3 � 2
3

. . . � 1
6 � 1

6

. . . . . . � 1
6

0
B@

1
CA:

Now the elements of the e row dominate.
(b) Lowest order corrections equal

x ¼ �m

3

�
1ffiffiffi
2

p s13e
�i� � 2D23

�
;

y ¼ � �m

3
ð2 ffiffiffi

2
p

s13e
i� �D23Þ;

�mee ¼ �m

�
2D12 � 1

3
s213

�
;

�m�� ¼ � �m

�
D12 þ 1

6
s213

�
:

Is THE TRIBIMAXIMAL MIXING ACCIDENTAL? PHYSICAL REVIEW D 82, 013008 (2010)

013008-13



For the bf (and 1
) values of the mixing parameters,
we have x��0:25ð�0:5Þ, y� 0:2ð0:3Þ, �mee �
0:2ð0:3Þ in the units 10�2 eV. The maximal values
of the corrections can be achieved for � ¼ 	, see

Table VI.
The overall structure of the mass matrix does not
change substantially. Corrections correlate with zero
order structure being proportional to the same �m:

m� � 1

3
�m

1þ 6D12 � s213 �2þ 1ffiffi
2

p s13e
�i� � 2D23 �2� 1ffiffi

2
p s13e

�i� þ 2D23

. . . � 1
2 � 2

ffiffiffi
2

p
s13e

i� þD23 � 1
2

. . . . . . � 1
2 þ 2

ffiffiffi
2

p
s13e

i� �D23

0
BB@

1
CCA:

(c) The parameters of violation of the TBM conditions:
Since the e� and e� elements are dominant, the
relative corrections are small. Indeed, the ‘‘pole’’
value of s13 equals

~s 13 � 2s12c12
ð1� 2s212Þ

� 3;

and for the allowed range, s13 � ~s13, the TBM
violation is suppressed:

�e � 2s13
~s13

� 2

3
s13:

In contrast, since the original elements of the ��
block are suppressed, the relative corrections tom��

and m�� can be large, thus strongly violating the
second TBM condition. For ���, we find the pole at
~D23 ¼ 1

2 � s13 tan2�12e
i�. At the 1
 level, ~D23 �

0:09, and one can achieve m�� ¼ 0, as is shown in
Table V.
For D23 ¼ 0, we have

��� � 4s13 sin2�12
cos2�12 � 2s13 sin2�12

:

This dependence has a pole at s13 ¼ 0:5 cot2�12 �
0:17–0:20, at the maximal allowed values of the 1–3
mixing. Thus, ��� ! 1 and the violation of the

TBM structure is strongly enhanced. According to
(43), the s13corrections are enhanced by the addi-

tional factor 2
ffiffiffi
2

p � 3. For smaller values of s13,
��� � 4s13 tan2�12.

(d) Properties of the mass matrix:
(a) The matrix can show ‘‘inverted flavor hierarchy’’

with m�� being the smallest element;
(b) Depending on �, m�� ¼ 0 or m�� ¼ 0 texture zero

can be obtained at the 1
 level.
The basis corrections are �mb

ee ¼ 1:16, �mb
�e ¼ �0:19,

�mb
e� ¼ 0:09, and �mb

�� ¼ �0:22 in units of 10�2 eV.
The correction to mee is large.

D. Degenerate spectrum

In the case of degenerate spectrum, m1 � m2 � m3 �
m0, the structure of the mass matrix depends strongly on
values of both Majorana phases.
1. �2 ¼ �3 ¼ 0, line Dð0; 0Þ.
(a) The parameters of the mass matrix equal

a � m0; b � �S � �m2
21

6m0

; c ¼ m0 þ �A;

aþ bþ c ¼ 2m0 þ �A;

aþ b� c � ��A � ��m2
31

2m0

:

Numerically, for m0 ¼ 0:2 eV we find �S ¼
6:7 � 10�5 eV and �A ¼ 6:2 � 10�3 eV. The TBM-
mass matrix is very close to the unit matrix:

m� �
m0 �S �S
. . . m0 þ 1

2 �A � 1
2 �A

. . . . . . m0 þ 1
2 �A

0
B@

1
CA

¼ m0I þ
0 �S �S
. . . 1

2 �A � 1
2 �A

. . . . . . 1
2 �A

0
B@

1
CA:

Furthermore, there is a strong hierarchy of the sub-
leading (off-diagonal) elements.

(b) The lowest order corrections: Neglecting terms pro-
portional to �S, we find

x ¼ � 1ffiffiffi
2

p s13½ðm0 þ �AÞe�i� �m0e
i�
;

y ¼ ��AD23;

�mee ¼ s213½ðm0 þ �AÞe�2i� �m0
;
and the size of corrections strongly depends on �:

x �
�� 1ffiffi

2
p s13�A � ¼ 0

i
ffiffiffi
2

p
s13m0 � ¼ 	=2

:

For � ¼ 	=2, the correction �mee is the maximal:
�mee ¼ �2m0s

2
13.

(c) Parameters of the violation of the TBM conditions:
For �2 ¼ 0, the e� and e� elements are very small,
so that they can be canceled at very small ~s13.
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Indeed,

~s 13 � s12c12
�m2

21

�m2
31

¼ 0:015:

Correspondingly, the singularity and the peak move
to small values of s13.
The pole value ~D23 � �1=s213e

2i� ! 1, so that

��� � D23

�m2
31

2m2
0

turns out to be strongly suppressed as a consequence
of the dominance of the �� and �� elements. For
s13 � 0 and D23 ¼ 0, ���� s13 sin2�12�m

2
21=2m

2
0,

and for m0 ¼ 0:2 eV, the breaking is very strongly
suppressed due to the smallness of b: ��� �
�10�3s13.

(d) Properties of the mass matrix:
(a) Corrections do not affect the dominant elements but

can change completely the subdominant structure.
(b) The only significant change in the neutrino mass

matrix is the violation of the equality of me� and

me�: �e � 2 can be achieved, which corresponds to
me� ’ �me�:

m� ’ m0Iþ
�mee x �x
. . . y � 1

2 �A þ�m��

. . . . . . �y

0
@

1
A:

Notice that due to corrections the elements of the
second subdominant matrix in (43) can be of the
same order: jxj � jyj � �A, or can obey certain
symmetry.

(c) Since ~s13 is very small, all special mass relations
indicated in Table III, including texture zeros, can be
achieved.

The basis corrections equal �mb
ee ¼ 0:01, �mb

�e ¼ 0:06,
�mb

e� ¼ 0:06, and �mb
�� ¼ �0:06 (in the units 10�2 eV).

They are of the order of the TBM deviation corrections for
the e� and e� elements.

2. �2 ¼ 0, �3 ¼ 	=2; line Dð0; 	2Þ.
(a) The parameters of the TBM-mass matrix

a � m0; b � �S; c ¼ �m0 � �A;

aþ bþ c � ��A; aþ b� c � 2m0 þ �A;

a� c ¼ 2m0 þ �A

give the TBM matrix

m� �
m0 �S �S
. . . � 1

2 �A m0 þ 1
2 �A

. . . . . . � 1
2 �A

0
B@

1
CA

¼ m0T þ
0 �S �S
. . . � 1

2 �A
1
2 �A

. . . . . . � 1
2 �A

0
B@

1
CA;

where T is the ‘‘triangle’’ matrix with the only
nonzero elementsmee ¼ m�� ¼ m��. The elements

of the matrix are strongly hierarchical.
(b) The lowest order corrections equal

x ¼ 1ffiffiffi
2

p s13½ðm0 þ �AÞe�i� þm0e
i�
;

y ¼ �2m0D23; �mee ¼ 2s213m0:

The largest deviation is for � ¼ 0: x � ffiffiffi
2

p
s13m0.

(c) The parameters of violation of the TBM conditions:

~s 13 � s12c12
�m2

21

4m2
0

¼ 2:5 � 10�4

for m0 ¼ 0:2 eV. The reason for this smallness is
that the original elements of the e row are very
small. For the allowed values of s13, the maximal
TBM violation,�e � 2, can be nearly achieved, and
all of the special mass relations in Table III can be
realized.
The �� and �� elements are strongly suppressed,
and the corrections dominate. The pole of ���,

which corresponds to m�� ¼ 0, is at

~D 23 � ��m2
31

8m2
0

¼ �0:008

and is achieved for the negative values ofD23 (�23 >
	=4). Then from (35), we obtain

��� � 2
D23

D23 þ �m2
31

8m2
0

ð1þ 2D23Þ
:

Numerically, we have ~D23 ¼ �ð0:03; 0:0075;
0:0033Þ for m0 ¼ ð0:1; 0:2; 0:3Þ eV, correspond-
ingly. This pole value is well within the 1
 allowed
range for D23, so, all of the special mass relations in
Table IV can be obtained. In particular, for positive
D23 at D23 � � ~D23, we have ��� ¼ 1 which cor-

responds to m�� ¼ 0. For jD23j � j ~D23j;��� ! 2

independently of the sign of D23. This value of ���

corresponds to m�� ’ �m��. Notice that for m0 ¼
0:2 eV and 1
 allowed D23, the ratio D23= ~D23 �
12, so that the limit can be realized with a good
accuracy.
For nonzero 1–3 mixing but D23 ¼ 0,

��� � 2s13 sin2�12
�m2

21

4m2
0s

2
13 þ�m2

21c
2
12

:

For s13 � c12

ffiffiffiffiffiffiffiffi
�2

21

q
=2m0 � 10�2, we have

��� � sin2�12
s13

�m2
21

2m2
0

:

The deviation increases with a decrease of s13;
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however, even in the maximum��� does not exceed

0.03.
(d) Properties of the mass matrix:
(a) With corrections the neutrino mass matrix takes the

following form:

m� � m0

1
ffiffiffi
2

p
s13 � ffiffiffi

2
p

s13
. . . 2D23 � 1

2m0
�A 1þ 1

2m0
�A

. . . . . . �2D23 � 1
2m0

�A

0
BB@

1
CCA:

Here two TBM conditions are maximally broken;
however, x � a. Corrections have a completely
different symmetry from that of the dominant block
which has the triangle form.

(b) Corrections to the dominant triangle structure can
all be of the same order and of the size of the
Cabibbo angle with respect to the dominant struc-
ture

m� ¼ m0½T þ 0:2D
;

where D is the democratic matrix or matrix with
elements of the same order.

(c) Since both ~s13 and ~D23 are very small, special rela-
tions for elements of the e line and �� block can be
satisfied simultaneously.

The basis corrections are �mb
ee ¼ �0:81, �mb

�e ¼ �4:0,
�mb

e� ¼ �4:1, and �mb
�� ¼ 4:1 (in the units 10�2 eV).

The corrections to the e� and e� elements are of the order
of the corrections due to the TBM-mixing deviations.

3. �2 ¼ 	=2 and �3 ¼ 0; line Dð	2 ; 0Þ.
(a) The parameters of the mass matrix

m2 � �m0; a ¼ m0

3
; b ¼ � 2m0

3
;

c ¼ m0; aþ bþ c � 2m0

3
;

aþ b� c � � 4m0

3

lead to TBM matrix

m� � m0

1
3 � 2

3 � 2
3

. . . 1
3 � 2

3

. . . . . . 1
3

0
B@

1
CA ¼ m0I � 2

3
m0D;

(43)

where D is the democratic matrix.

(b) The lowest order corrections equal

x ¼ � 1ffiffiffi
2

p s13

�
e�i� � 1

3
ei�

�
m0 � 2

3
D23m0;

y ¼ � 2

3
m0ð2D23 þ

ffiffiffi
2

p
s13e

i�Þ;

�mee ¼ 2m0

�
D12 þ 1

3
s213

�
;

�m�� ¼ m0

�
�D12 þ 1

3
s213

�
:

The relative corrections are enhanced because the
elements of the original matrix are suppressed by
numerical factors. The corrections equal 50%
(100%) for y, 20% (30) for x and 10% (20%) for
the ee element.

(c) The violation of the TBM conditions: The original
elements e� and e� are large and s13 produces a
relatively small effect. The pole value equals ~s13 �
cot�12 > 1; as a result, for the allowed values of s13
the breaking parameter is suppressed:

�e ¼ 2s13

cot�12e
i ~� � s13

� 2s13 tan�12: (44)

The pole of ��� is given by

~D 23 ¼ �1
2tan

2�12ð1þ 2 cot�12s13e
i�Þ

� �1
4ð1þ 2

ffiffiffi
2

p
s13e

i�Þ:
Consequently, ~D23 � Dmax

23 for � ¼ 0. The minimal

value of ~D23 is realized at � ¼ 	 and the maximal
possible s13: ~D23 � 0:1 for which ~D23 � Dmax

23 .

Therefore, one can reach the pole and m�� � 0.
Since �2 ¼ 	=2, the parameter � is not suppressed
and becomes important:

� ¼ s13 sin2�12e
i�

2ð1þ cos2�12Þ :

Texture zero m�� ¼ 0 is realized if D23 ¼
�ð ~D23 þ �Þ. For � ¼ 0, we obtain at the 1
 level
�ð ~D23 þ �Þ � 0:085, which is close to the 1
 al-
lowed value of D23. Consequently, m�� � 0 can be

achieved at the 1
 level, as can be seen in Table V.
For s13 ¼ 0, we have

��� � 4
D23

tan2�12 þ 2D23

: (45)

For negative D23, the deviation can be substantially
enhanced (� 12D23); however, the pole is still not
realized.
The 1–3 mixing effect (for D23 ¼ 0) on violation of
the second TBM condition is given by

��� � 4s13
c12

s13 þ 2s13c12
� 4s13 cot�12:
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Here the correction is enhanced by the factor
4 cot�12 � 6, so that for the maximal allowed 1–3
mixings, we obtain ��� � 1.

(d) Properties of the mass matrix:
(a) The e� and e� elements can differ by (50–60)%,
(b) Texture zerosm�� ¼ 0 orm�� ¼ 0 can be achieved;

(c) The equalities mee � �me�, m�� ¼ m�� are

possible;
(d) The matrix may have a rather random anarchical

character;
(e) At the 1
 level, the structure of the matrix can

change strongly, and the TBM conditions can be
strongly broken.

The basis corrections are �mb
ee ¼ 5:2, �mb

�e ¼ 1:1,
�mb

e� ¼ �2:4, and �mb
�� ¼ 2:98 (in the units 10�2 eV).

They are of the order of the TBM corrections for e� and e�
elements and large for ee elements.

4. �2 ¼ �3 ¼ 	
2 , line (Dð	2 ; 	2Þ):

(a) The parameters of the mass matrix

m1 ¼ m0; m2 � �m0 � �S;

m3 � �m0 � �A; a ¼ m0

3
; b ¼ � 2m0

3
;

c ¼ �m0; aþ bþ c � � 4m0

3
;

aþ b� c � 2m0

3

give the TBM-mass matrix

m� � m0

1
3 � 2

3 � 2
3

. . . � 2
3

1
3

. . . . . . 2
3

0
B@

1
CA ¼ �m0V1

¼ m0T � 2

3
m0D;

where D is the democratic matrix. This matrix dif-
fers from the one in the previous case by permuta-
tion in the �� block. It is proportional to the
symmetry matrix V1.

(b) The lowest order corrections equal

x ¼ 1ffiffiffi
2

p s13

�
e�i� þ 1

3
ei�

�
m0 � 2

3
D23m0;

y ¼ 2

3
m0ðD23 þ

ffiffiffi
2

p
s13e

i�Þ;

�mee ¼ 2m0

�
D12 � 2

3
s213

�
:

The deviation x is enhanced if � ¼ 	:

x ¼ �2
3m0ð

ffiffiffi
2

p
s13 þD23Þ:

In this case, y ¼ 2
3m0ðD23 �

ffiffiffi
2

p
s13Þ. All the ele-

ments of the TBM matrix are of the same order
and just differ by factor 2. The elements of the e
raw and �� block affected by the corrections are
large, and therefore the effect of the corrections is
relatively small: for the bf values and 1
, we have
12% (25%) for y (�� block), and 25% (45%) for x
and 8% (10%) for the ee element.

(c) The parameters of violation of the TBM conditions:
Now ~s13 � tan�12, so that

�e ¼ 2s13

tan�12e
i ~� � s13

� 2s13 cot�12: (47)

The violation parameter ��� equals

��� � 4D23

D23

cot2�12 þ 2D23

:

Here enhancement is weaker than in the previous
case. For D23 ¼ 0, we have

��� � 4s13
s12

c12 � 2s13s12
� 4s13 tan�12:

Since

~D 23 ¼ � c212 � sin�12s13e
i�

2s212
; j ~D23j � Dmax

23 ;

no zeros can be obtained in the �� block.
(d) Properties of the mass matrix: It may have the form

m� �
a y z
y z a
z a y

0
@

1
Aþ �m� ¼ m0

1
3 � 2

3 ð1þD23Þ þ
ffiffi
2

p
3 sin2�13 � 2

3 ð1�D23Þ �
ffiffi
2

p
3 sin2�13

. . . � 2
3 þ y

m0

1
3

. . . . . . � 2
3 � y

m0

0
BB@

1
CCA:

This matrix has approximate cyclic symmetry and
the elements of the second diagonal are equal (see
also the line Dð	2 ; 	2Þ in Table V).

If � ¼ 0, then y is enhanced: y ¼ 2
3m0ðD23 þ

ffiffiffi
2

p
s13Þ,

and the two contributions sum up. At the same time, in x
the two contributions partially cancel each other. The
elements of the mass matrix have a rather random spread

within factor 3, without a clear structure. The TBM con-
ditions are broken by Oð1Þ factors.
The basis corrections for sb ¼ 0:2 equal �mb

ee ¼ 4:4,
�mb

�e ¼ �2:9, �mb
e� ¼ �1:6, and �mb

�� ¼ 1:1 (in the

units 10�2 eV). They are large for the ee element and
significant for the e� and e� elements.
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IV. DEVIATIONS FROM THE TBM AND FLAVOR
SYMMETRY

Using results of the previous sections, we will consider
implications of the mass matrices with deviations from the
TBM structure for the flavor symmetries.

Recall that the TBM as well as other flavor structures
could be an immediate consequence of symmetry, if, e.g.,
(i) a single mechanism of neutrino mass generation domi-
nates and various corrections are negligible; (ii) Higgses
are flavorless, so that the problem of VEV alignment does
not exist. In this case, one needs to adjust the Yukawa
coupling constants only. It can be shown, however, that
flavor symmetry, should be broken to explain TBM. The
flavor structures that can be obtained in this scenario do not
reproduce TBM but they can serve as the dominant struc-
tures of the mass matrix.

The operator responsible for the Majorana neutrino
masses has the form

L ¼ hijLiLjX;

where, in general, the ‘‘Higgs factor’’ X is some combina-
tion of the Higgs fields.

A. Deviations from TBM and new flavor symmetries?

Do neutrino mass matrices with deviations from TBM
have some new symmetry which differs from the TBM
symmetry? Here we briefly note some possibilities; their
detailed realizations will be presented elsewhere [21].

As we have established in the previous sections, the
corrections can lead to new equalities between the matrix
elements. In particular,

me� � �me�; (48)

as well as m�� ¼ �m��, me� ¼ m��, me� ¼ nme� with,

e.g., n ¼ 2, 1=2, etc. Let us consider implications of the
equality (48).

If b ¼ m0
e� and the deviation D23 are very small, then

the correction x dominates, y is negligible, and further-
more, the corrections of the order s13D23, which contribute
to me� and me� equally, are also small. In this case, the

mass matrix has the following approximate form:

a �x x
. . . 1

2 ðaþ cÞ 1
2 ða� cÞ

. . . . . . 1
2 ðaþ cÞ

0
B@

1
CA:

The conditions for this form of matrix are realized in the
cases of spectra with quasidegenerate first and second
states: m1 � m2 and �2 ¼ 0: PDð0; 0Þ, PDð0; 	2Þ,
IHð0; 0Þ, Dð0; 0Þ, Dð0; 	2Þ. [Notice that in Table V the

examples of matrices correspond to the maximal allowed
value of D23, so that the correction s13D23 leads to the
violation of equality (48)].

In the case of inverted mass hierarchy, IHð0; 0Þ, also c ’
0. The matrix (49) is invariant under the transformation

V0
2 ¼

1 0 0
0 0 �1
0 �1 0

0
@

1
A;

which is one the generators of S4. This is new residual
symmetry, since the first TBM condition is broken by the
1–3 mixing. As we have mentioned before, the equality
(48) and symmetry with respect to V2 (9) can be restored
by redefinition: �� ! ���. In this case, the �� element

changes the sign: 1
2 ða� cÞ ! � 1

2 ða� cÞ and the third

TBM condition turns out to be broken: �L ��R ¼ a�
cþ x. Now the matrix is invariant with respect to V2 but
not V1.
In contrast to the TBM matrix, the matrices with devia-

tions can contain texture zeros [22] and agree with ob-
served neutrino masses. Interesting examples, which can
testify for certain symmetries, follow:
(1) The texture zeros me� ¼ 0 or me� ¼ 0 can be

achieved in the cases of normal mass hierarchy:
NHð0; 0Þ, NHð0; 	2Þ, partial degeneracy: PDð0; 0Þ,
PDð0; 	2Þ, inverted hierarchy: IHð0; 0Þ, degenerate
spectrum: Dð0; 0Þ, Dð0; 	2Þ. In all these cases, the

original elements of the e line are small.
(2) The texture zeros m�� ¼ 0 or m�� ¼ 0 can be

obtained in the cases of inverted mass hierarchy
IHð	2 ; 0Þ, and degenerate spectrum Dð0; 	2Þ. The

condition for that is m0
�� ¼ m0

�� � m0
��.

(3) Matrices with two texture zeros become allowed:
various combinations of zeros in the e line and ��
block (indicated above) can be obtained for the
degenerate spectrum Dð0; 	2Þ. In particular, in the

case of very small 1–3 mixing (s13 ¼ 0:001),D23 �
0:032, � ¼ 0, andm1 ¼ 0:09 eV, all the elements of
the second diagonal can be zero, m�� ¼ me� ¼ 0.

By changing the value of � and the sign of D23, we
can change the positions of ‘‘zeros.’’ If D23 �
�0:032, the two texture zeros m�� ¼ me� ¼ 0 are
achieved. If � ¼ 	, we getm�� ¼ me� ¼ 0, so that

the 1–2 mixing is induced. If D23 ��0:032 and
� ¼ 	, we get m�� ¼ me� ¼ 0.

(4) An interesting possibility is the matrix with two
texture zeros: me� ¼ mee ¼ 0 which can be

achieved in the case of normal mass hierarchy
with m1 � 0:0031 eV at the best fit values of the
mixing angles and ð�2; �3; �Þ ¼ ð	=2; 0; 	Þ. This
is the signature of yet another class of underlying
symmetries.

(5) Also, the Fritzsch-type matrix with mee ¼ 0, me� ¼
0 and relatively small m�� can be realized in the

case of normal mass hierarchy and m1 � 0:0035 eV
at the best fit values of the mixing angles and
ð�2; �3; �Þ ¼ ð	=2; 0; 0Þ.
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B. Two-component structure of the mass matrix

In a number of cases, the neutrino mass matrix has a
strongly hierarchical structure with large elements forming
the dominant block and small subdominant elements. This
may indicate that the mass matrix has a two-component
structure

m� ¼ Md þ�s; (49)

where Md and �s are the dominant and subdominant
contributions. The matrices Md and �s may have different
origins and different symmetries, the subdominant matrix
�s may appear as a result of breaking of symmetry of Md,
and symmetry can be completely broken in �s.

As we have shown the relative corrections to the domi-
nant block elements are of the order 30%, whereas correc-
tions to the subdominant elements can be much larger than
the original elements. Therefore, if the mass matrix, in-
deed, has two different contributions, the corrections can
completely change the structure and possible symmetries
of the subdominant matrix. There are different scenarios
for (49). The dominant Md can be a consequence of
unbroken symmetry, whereas the subdominant block ap-
pears as a result of symmetry breaking.

Here we briefly consider possible symmetries which
lead to various dominant structures:

(1) The �� �-dominant block (the case of normal
mass hierarchy) has, e.g., the Uð1Þ symmetry with
the charge prescriptions Lð�eÞ ¼ 1, Lð��Þ ¼
Lð��Þ ¼ 0 [23].

(2) The matrix with the dominant block, which consists
of the ��, ��, ��, and ee elements, is realized in
the case of partially degenerate spectrum PDð0; 0Þ.
It is invariant under

�e ! �e; �� ! ���; �� ! ���:

Clearly this symmetry cannot be the exact symmetry
of the whole Lagrangian, but it can appear as a
residual summery for neutrino Yukawa couplings.
The matrix proportional to the unit matrix, Md ¼
m0I, is the dominant structure for the degenerate
spectrumDð0; 0Þ. It can be a consequence of various
discrete and continuous symmetries. Suppose the
lepton doublets, Li, form a triplet of some symmetry
group Gf: L� 3, and Higgses are flavorless. Then

to get the invariant combination 3	 3� 1, the
group Gf should be SOð3Þ or some of its subgroup.

The smallest group with irreducible representation 3
is A4, and the invariant combination LiLi produces
the required unit matrix.
Suppose the Higgs factor X is a singlet of the
symmetry group but not invariant, e.g., X � 10 or
X � 100 of A4, then LiLj should transform as 100 and
10, correspondingly. These combinations produce
either zero mass (because of the antisymmetric na-
ture of couplings) or the matrix proportional to the

diagonal phase matrix: m� ¼ m0diagð1; e2i	=3;
e4i	=3Þ.

(3) The triangle matrix Md ¼ m0T is the dominant
structure in the case of degenerate spectrum
Dð0; 	2Þ. This structure can be a consequence of

discrete or continuous symmetries, as in the pre-
vious case. In particular, the A4 model with triplet
Li, in the complex representation leads to the tri-
angle form.

Also the triangle dominant structure with mee � m�� is

possible in the case of deviation from TBM. This structure
can be produced in models where �� and �� form a doublet

of some (discrete) symmetry group: L1 � 1 and ~L ¼
ðL2; L3ÞT � 2. The neutrino mass matrix is diagonal for
the real representation and of the triangle form for complex
representation. Such a situation can be realized in the case
of the S3 group and its further embedding like S4, etc.
If the lepton doublets transform as singlets of the sym-

metry group, e.g., L1 � 1, L2 � 10, L3 � 100 (and X� 1),
the neutrino mass matrix is of the triangle form

m� ¼ v
h11 0 0
0 0 h23
0 h23 0

0
@

1
A;

where h11 and h23 can be of the same order.
A possibility to get some flavor structures immediately

from symmetry is to use a single Yukawa coupling, but
with X having nontrivial flavor structure. If L� 3 and X �
3, the neutrino mass matrix equals

m� ¼ h
v1 v3 v2

v3 v2 v1

v2 v1 v3

0
@

1
A: (50)

The TBM form can be achieved if v2 ¼ v3 but in this case
jm1j ¼ jm2j. With possible deviations from TBM, we can
easily reproduce the required structure of (50) with m1 �
m2. It appears in the case of the degenerate spectrum
Dð	2 ; 	2Þ [see Eq. (48)]. The problem is reduced now to

VEV alignment: v1 � 1=3, v2 � �2=3� x, v2 �
�2=3þ x, and x ¼ �y.

C. No-symmetry case

1. Anarchical matrix with random values of elements
[24] is an extreme case. Matrix of this type appears for
certain intervals of CP phases in the cases of partial
degeneracy or degenerate spectra: PDð	2 ; 0Þ, Dð	2 ; 	2Þ,
Dð	2 ; 0Þ when the original TBM-mass matrix has no or

weak hierarchy of elements. In these, the ‘‘random’’
mass matrix leads accidentally to the strong degeneracy
of mass eigenstates. This implies fine-tuning, unless cer-
tain new symmetry is introduced. Alternatively, this can
imply that the mixing comes from the charged lepton
sector whereas the neutrino mass matrix has a diagonal
quasidegenerate form and obeys certain symmetry.
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There are various possible origins of the anarchical
structure, for instance, the seesaw mechanism with many
(n � 3) right-handed neutrinos. Another possibility is
when two different and independent mechanisms give
comparable contributions to the mass matrix. Each of these
contributions separately may have rather regular structure.

D. Matrices with flavor alignment

There are two possibilities:
(1) Normal flavor alignment. In the case of normal mass

hierarchy with m1 � 0 the corrections due to devia-
tions from TBM as well as basis corrections can
wash out sharp differences between the elements of
the �� block and e line. As a result, one obtains a
gradual decrease in the size of the elements from
m�� to mee.

(2) In the case of inverted mass hierarchy (see
IHð	2 ; 0Þ), the corrections can produce an inverse

flavor hierarchy when the values of the matrix ele-
ments increase , while moving from � to � flavors.

These possibilities may indicate some perturbative ori-
gins and a kind of the Froggatt-Nielsen mechanism [25]
with a large expansion parameter.

V. CONCLUSION

Is the TBM mixing accidental? The question is reduced,
essentially, to the question of whether this mixing imme-
diately follows from some (broken) symmetry or other
principle, or if it appears as a result of a many-step con-
struction, and fixing various parameters by introduction of
additional symmetries and structures.

The symmetry is formulated at the level of the mass
matrix. Therefore, if the data imply a very specific mass
matrix with small deviations from the TBM form, we can
say that TBM is not accidental. We find the opposite: very
strong deviations ofm� frommTBM and strong violations of
the TBM conditions (immediate manifestation of the sym-
metry) are allowed. This can be considered as an indication
that TBM is accidental. We find that a large variety of the

mass matrices with deviations from TBM explain experi-
mental data.
Strong deviations ofm� frommTBM open up a possibility

of the some alternative approaches to explain the data.
Namely, some other symmetry (which differs from the
TBM symmetry) or other principle can be involved. For
instance, matrices with texture zeros are allowed which
indicates, e.g., Uð1Þ underlying symmetry. Also, matrices
with different relations between the elements are possible,
which testify for yet another class of symmetries.
We show that the mass matrix may show no trace of

symmetry having random values of elements. However,
this corresponds to the quasidegenerate spectrum which
implies another way to explain the data. In some cases, the
matrix has certain flavor alignment: gradual change of
values of matrix elements from mee to m��.
For certain ranges of masses and CP phases, the mass

matrix has a structure with a strong hierarchy between
matrix elements: dominant and subdominant ones. We
find that corrections can change the dominant elements
by factors Oð1Þ and be much larger than the subdominant
elements. This may support the idea of the two-component
structure of the mass matrix when the dominant block has
certain (unbroken) flavor symmetry and appears at the
lowest renormalizable level, whereas the subdominant
structures can be result of symmetry breaking by, e.g.,
high order operators with flavon fields.
If it turns out that these new approaches lead to a simpler

and more straightforward explanation of the data, the
TBM-symmetry approach will be disfavored.
The 1–3 mixing leads to the most strong corrections. So,

forthcoming measurements of this mixing will play a
crucial role in the understanding of the underlying physics
[26]. Corrections to other angles produce a next order
effect (as s213), although in some cases they can be en-

hanced by additional numerical factors.
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