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In the context of the local gauge group SUð3Þc � SUð3ÞL � Uð1ÞX, we look for possible four family

models, where all the particles carry ordinary electric charges. Thirteen different anomaly-free fermion

structures emerge, out of which only two are realistic. For the simplest physical structure, we calculate the

charged and neutral weak currents and the tree-level Fermion masses. We also look for new sources of

flavor changing neutral currents in the quark sector in connection with the upcoming experimental results

at the Large Hadron Collider.
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I. INTRODUCTION

The standard model (SM) based on the local gauge
group SUð3Þc � SUð2ÞL �Uð1ÞY [1] has been very suc-
cessful so far, in the sense that its predictions are in good
agreement with present experimental results. However, the
SM falls short in explaining things as hierarchical charged
fermion masses, fermion mixing angles, charge quantiza-
tion, strong CP violation, replication of families, neutrino
masses, and oscillations [2], or the matter-antimatter asym-
metry of the Universe. It also does not contain a good
candidate for the dark matter component of the Universe
[3].

The SM does not predict the number N of Fermion
families existing in nature; the only restriction, N � 8
comes from the asymptotic freedom of SUð3Þc also known
as quantum-cromo dynamics or QCD [1]. Experimental
results at the CERN-LEP early in the 1990s implied the
existence of at least three families, each one having a
neutral lepton with a mass less than half the mass of the
neutral Z0 gauge boson, a result interpreted at the begin-
ning as an exact value for the total number of families in
nature, which is not quite correct. As a matter of fact, the
LEP data does not exclude the existence of extra families
having heavy neutrinos.

Determining the number of fermion families is a key
goal of the upcoming experiments at the Large Hadron
Collider (LHC) [4], and further at the International Linear
Collider [5]. In principle, the existence of new heavy quark
flavors and their mixing with the ordinary ones is possible,
due to the fact that the uncertainties on the measured
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
[6] left an open door for this, with a fourth family of quarks
ðt0; b0Þ and their mixing with the other three families, not
ruled out yet. Experiments at the Tevatron have already
constrained the masses of a fourth family of quarks to be
mt0 > 311 GeV and mb0 > 338 GeV [7].

Theoretical constrains on the masses of the fourth family
fermions t0, b0, �0, and �0

�, are obtained from the one-loop

contributions to the corrections parameter S and T [8]. In
contrast to some previous claims, a fourth sequential fam-
ily is not in conflict with the precision measurements [9] of
the electroweak parameters. Remarkably enough, fourth
family fermions with masses around 550 GeV would
couple strongly to the Goldstone bosons of the electroweak
symmetry breaking [4], producing condensates which
mimic in some way the effect of the Higgs scalars, joining
in this way the issue of the flavor problem with the, until
now, obscure spontaneous symmetry breaking mechanism.
Thus, it is clear that there is not experimental or phe-

nomenological evidence which excludes the existence of a
fourth family with a heavy neutrino. Indeed, the recent
electroweak precision data are equally consistent with the
presence of three or four families [10], whereas the four
family scenario is favored if the Higgs mass is heavier than
200 GeV [11].
Among the several extensions of the SM proposed so far,

the models based on the SUð3Þc � SUð3ÞL �Uð1ÞX local
gauge group (called here after 3-3-1 for short) are out-
standing because they can ameliorate in a natural way,
several shortcomings of the SM [12–17], (see Sec. II).
One common belief is that consistent 3-3-1 models can

exist only for 3; 6; 9 . . . families (multiple of three which is
the number of colors) [12–14]. This result, which is valid
for a particular way of canceling the gauge anomalies, is
not true in general as we are going to see. For example, E6

[18] as an anomaly-free grand unified theory has a 3-3-1
subalgebra, which is an anomaly-free family by family (as
in the SM), so it can be the source of an SUð3Þc �
SUð3ÞL �Uð1ÞX model with as many families as wished
(the 3-3-1 one family model, a subgroup of E6, was already
analyzed in Ref. [19]).
In this paper we are going to study models based on

the local gauge group SUð3Þc � SUð3ÞL �Uð1ÞX with
four families. In particular, we are going to find all the
possible 3-3-1 four family anomaly-free structures with-
out exotic electric charges and find the realistic ones,
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picking up the simplest one of them in order to see some of
its implication for the upcoming experimental results at the
LHC.

The paper is organized as follows: in Sec. II we find all
the possible 3-3-1 four family structures without exotic
electric charges, find the realistic ones, and present their
common gauge boson and Higgs scalar sectors; in Sec. III
we introduce the particular model chosen for our analysis
and calculate its electroweak currents (charged and neu-
tral); in Sec. IV we analyze the fermion masses for the
particular model under consideration and set our notation;
in Sec. V we obtain the constraints coming from flavor
changing neutral currents (FCNC) and calculate the maxi-
mum mixing allowed of the new quarks with the known
ones, and finally, Sec. VI contains our conclusions.

II. 3-3-1 MODELS WITHOUT EXOTIC ELECTRIC
CHARGES

Popular extensions of the SM are based on the local
gauge group SUð3Þc � SUð3ÞL �Uð1ÞX. The several pos-
sible fermion and scalar structures enlarge the SM in its
gauge, scalar, and fermion sectors. Let us mention some
outstanding features of 3-3-1 models:

(i) 3-3-1 models free of anomalies can be constructed
for one, two, three, four, five, and more families [16].

(ii) A Peccei-Quinn chiral symmetry can be imple-
mented easily [20,21] for some 3-3-1 models.

(iii) For some models with three families, one quark
family has different quantum numbers than the other
two, a fact that may be used to explain the heavy top
quark mass [22,23].

(iv) The scalar sector includes several good candidates
for dark matter [24].

(v) The lepton content is suitable for explaining some
neutrino properties [25].

(vi) The hierarchy in the Yukawa coupling constants can
be avoided by implementing several universal see-
saw mechanisms [23,26,27].

In Refs. [15–17] the classification of 3-3-1 models with-
out exotic electric charges for three families was presented,
where eight different models were founded. In this section
we will do a similar study but for 4 families. Our finding is
that there are 13 different anomaly-free four family 3-3-1
structures without exotic electric charges, out of which
only a few ones can be realistic.

To start with, let us consider the following six closed sets
of chiral fields (closed in the sense that each set includes
the antiparticles of each charged particle), where the quan-
tum numbers in parentheses refer to the
½SUð3Þc; SUð3ÞL;Uð1ÞX� representations.

(i) S1 ¼ ½ð�0
�; �

�; E�
� Þ;�þ;Eþ

� �L with quantum num-
bers (1, 3,�2=3); (1, 1, 1); and (1, 1, 1), respectively.

(ii) S2 ¼ ½ð��; ��; N
0
�Þ;�þ�L with quantum numbers

(1, 3*,� 1=3) and (1, 1, 1), respectively.

(iii) S3 ¼ ½ðd; u;UÞ;uc; dc;Uc�L with quantum numbers
(3, 3*, 1=3); (3*, 1, �2=3); (3*, 1, 1=3); and (3*, 1,
�2=3), respectively.

(iv) S4 ¼ ½ðu; d;DÞ;uc;dc;Dc�L with quantum numbers
(3, 3, 0); (3*, 1,�2=3); (3*, 1, 1=3); (3*, 1, 1=3); and
(3*, 1, 1=3), respectively.

(v) S5 ¼ ½ðe�; �e; N
0
1Þ; ðE�; N0

2 ; N
0
3Þ; ðN0

4 ; E
þ; eþÞ�L

with quantum numbers (1, 3*,�1=3); (1, 3*,�1=3);
and (1, 3*, 2=3), respectively.

(vi) S6 ¼ ½ð�e; e
�; E�

1 Þ; ðEþ
2 ; N

0
1 ; N

0
2Þ; ðN0

3 ; E
�
2 ; E

�
3 Þ; eþ;

Eþ
1 ;E

þ
3 �L with quantum numbers (1, 3,�2=3); (1, 3,

1=3); (1, 3, �2=3); (111), (111); and (111),
respectively.

The former set of fields is exhaustive, in the sense that
any other set will include either exotic electric charges, 3-
3-1 vectorlike representations, or the anomaly-free singlet
representation (1,1,0) (a kind of right-handed neutrino).
The several triangle anomalies for the former six sets of
fields are presented in Table I, which in turn allows us to
build anomaly-free 3-3-1 models for one, two, three, or
more families.

A. Four family models

From the former table we can construct the following 13
anomaly-free 3-3-1 structures for four families of quarks
and leptons:
(1) 4ðS4 þ S5Þ,
(2) 4ðS3 þ S6Þ,
(3) 2ðS1 þ S2 þ S3 þ S4Þ,
(4) 2ðS3 þ S4 þ S5 þ S6Þ,
(5) 3S1 þ 2S3 þ 2S4 þ S5,
(6) 3S2 þ 2S3 þ 2S4 þ S6,
(7) S1 þ S2 þ 2S3 þ 2S4 þ S5 þ S6,
(8) 3S2 þ S5 þ 3S4 þ S3,
(9) 3S4 þ 3S5 þ S3 þ S6,
(10) S1 þ S2 þ 2S5 þ 3S4 þ S3,
(11) 3S3 þ S4 þ S5 þ 3S6,
(12) S1 þ S2 þ 2S6 þ S4 þ 3S3,
(13) 3S1 þ S6 þ 3S3 þ S4.

Let us make some comments:
(a) Structures 1 and 2 are four family models, a carbon

copy of the one family anomaly-free gauge struc-
tures already studied in Refs. [19,28], respectively.
Model one has 4 up type quarks and 8 down type

TABLE I. Anomalies for 3-3-1 fermion field structures.

Anomalies S1 S2 S3 S4 S5 S6

½SUð3ÞC�2Uð1ÞX 0 0 0 0 0 0

½SUð3ÞL�2Uð1ÞX �2=3 �1=3 1 0 0 �1
½Grav�2Uð1ÞX 0 0 0 0 0 0

½Uð1ÞX�3 10=9 8=9 �12=9 �6=9 6=9 12=9
½SUð3ÞL�3 1 �1 �3 3 �3 3
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quarks; model two has 8 up type quarks and 4 down-
type quarks.

(b) Structures 3 and 4 are four family models, a carbon
copy of two gauge models for two families.

(c) For the five four family structures in models 3, 4, 5,
6, and 7, the number of up-type quarks is equal to the
number of down type quarks; equal to six.

(d) The three four family structures 8, 9, and 10 all have
five up-type quarks and seven down type quarks.

(e) The three four family structures 11, 12, and 13 all
have seven up-type quarks and five down-type
quarks.

(f) The simplest lepton structure is the third one, with
six charged leptons and six Weyl neutral states.

B. The Gauge boson structure

All the 3-3-1 local Gauge models without exotic electric
charges have the same Gauge boson structure, dictated by
the group properties, independent of the number of fami-
lies in each particular model and of the fermion field
content. There are in total 17 gauge bosons: one gauge
field B�

X associated with Uð1ÞX, the 8 gluon fields G�
�

associated with SUð3Þc which remain massless after the
spontaneous breaking of the electroweak symmetry, and
another 8 gauge fields associated with SUð3ÞL that wewrite
for convenience as [17]

X8
�¼1

��A�
� ¼ ffiffiffi

2
p D�

1 Wþ� Kþ�

W�� D�
2 K0�

K�� �K0� D
�
3

0
B@

1
CA; (1)

where D
�
1 ¼ A

�
3 =

ffiffiffi
2

p þ A
�
8 =

ffiffiffi
6

p
, D

�
2 ¼ �A

�
3 =

ffiffiffi
2

p þ
A�
8 =

ffiffiffi
6

p
, and D�

3 ¼ �2A�
8 =

ffiffiffi
6

p
. ��, � ¼ 1; 2; . . . ; 8, are

the eight Gell-Mann matrices normalized as Trð����Þ ¼
2���.

The charge operator associated with the unbroken gauge
symmetry Uð1ÞQ is given by

Q ¼ �3L

2
þ �8L

2
ffiffiffi
3

p þ XI3; (2)

where I3 ¼ Diagð1; 1; 1Þ is the diagonal 3� 3 unit matrix,
and the X values are related to the Uð1ÞX hypercharge and
are fixed by anomaly cancellation. The sine square of the
electroweak mixing angle is given by

S2W ¼ 3g21=ð3g23 þ 4g21Þ; (3)

where g1 and g3 are the coupling constants of Uð1ÞX and
SUð3ÞL, respectively, and the photon field is given by
[14,17]

A�
0 ¼ SWA

�
3 þ CW

�
TWffiffiffi
3

p A�
8 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� T2

W=3Þ
q

B�

�
; (4)

where CW and TW are the cosine and tangent of the
electroweak mixing angle, respectively.
There are two weak neutral currents in the model asso-

ciated with the two flavor diagonal neutral gauge weak
bosons, which in the gauge basis can be written as

Z
�
0 ¼ CWA

�
3 � SW

�
TWffiffiffi
3

p A
�
8 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� T2

W=3Þ
q

B�

�
;

Z
0�
0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� T2

W=3Þ
q

A
�
8 þ TWffiffiffi

3
p B�;

(5)

and another electrically neutral current associated with the
gauge boson K0�. In the former expressions Z

�
0 coincides

with the weak neutral gauge boson of the SM [14,17].
Let us emphasize that Eqs. (1)–(5) presented here are

common to all the 3-3-1 gauge structures without exotic
electric charges [13–15], independent of the scalar sector,
of the number of families, and also of the fermion field
content for each particular model.

C. The scalar sector

Again, all the 3-3-1 local gauge models without exotic
electric charges may have in common the same Higgs
scalars structure, independent of the fermion representa-
tion we are referring to, and thus, independent of the
number of families in the model.
In our analysis we are going to use the set of three Higgs

scalars introduced in the original papers [13,14] (the eco-
nomical set consisting only of two Higgs scalars [17] or the
enlarged set with four Higgs scalars [23] are the other two
alternatives).
The set of three scalar fields and their vacuum expecta-

tion values (VEV) are

�1ð1;3�;�1=3Þ¼
��

1

�0
1

�00
1

0
BB@

1
CCA; withVEV: h�1i¼ 1ffiffiffi

2
p

0

v1

V1

0
BB@

1
CCA;

(6a)

�2ð1;3�;�1=3Þ¼
��

2

�0
2

�00
2

0
BB@

1
CCA; withVEV: h�2i¼ 1ffiffiffi

2
p

0

v2

V2

0
BB@

1
CCA;

(6b)

�3ð1;3�;2=3Þ¼
�0

3

�þ
3

�0þ
3

0
BB@

1
CCA; withVEV: h�3i¼ 1ffiffiffi

2
p

v3

0

0

0
BB@

1
CCA;

(6c)

with the hierarchy v1 � v2 � v3 � 102 GeV �
V1 � V2 � 1 TeV.
The set of scalars and VEV in Eq. (6a) properly breaks

the SUð3Þc � SUð3ÞL �Uð1ÞX symmetry in two steps,
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SUð3Þc � SUð3ÞL �Uð1ÞX !ðVAÞ
SUð3Þc � SUð2ÞL �Uð1ÞY

!ðvBÞ
SUð3Þc �Uð1ÞQ;

for A ¼ 1, 2; B ¼ 1, 2, 3. This allows for the matching
conditions g2 ¼ g3 and

1

g2Y
¼ 1

g21
þ 1

3g22
; (7)

where g2 and gY are the gauge coupling constants of the
SUð2ÞL and Uð1ÞY gauge groups in the SM, respectively.

This set of three scalar Higgs with the VEV as stated is
enough to produce tree-level masses for all the charged
fermion fields of any three or four family model.

D. The neutrino sector

The 13 four family structures defined in Sec. II A are
renormalizable (anomaly-free), but unfortunately, in the
form they are presented, most of them are ruled out by
neutrino phenomenology. Let us see why.

From the 13 structures, the one with the simplest
Fermion content is number 3 which has the lepton fields
present in 2S1 þ 2S2, with 6 different charged particles (12
Weyl states) and 6 neutral Weyl states, a lepton structure
that we may write for convenience as

c eL ¼ ð�0
e; e

�; E�
e ÞL � ð1; 3;�2=3Þ; eþL ; Eþ

eL; (8a)

c �L ¼ ð�0
�;�

�; E�
�ÞL � ð1; 3;�2=3Þ; �þ

L ; E
þ
�L; (8b)

c �L ¼ ð��; �0
�; N

0
�ÞL � ð1; 3�;�1=3Þ; �þL ; (8c)

c �0L ¼ ð�0�; �00
� ; N

0
�0 ÞL � ð1; 3�;�1=3Þ; �0þL : (8d)

Using the scalar Higgs fields and VEVas introduced in (6),
the only Yukawa mass terms for the fermion neutral Weyl
states of this model are of the form

L ð3Þ
n ¼ hn	ijkh�i�

3 ic j
�Lc

k
�0L þ H:c:; (9)

¼ hnv3ð�0
�N

0
�0 � N0

��
0
�0 Þ þ H:c:; (10)

which represents two Dirac masses at the electroweak
scale, involving four spin 1=2 Weyl states, leaving only
room for two massless Weyl states which, in our notation,
are �0

e and �0
� (they may pick up masses via quantum

corrections), with the inconvenience that, by taking a
Yukawa coupling constant hn, which is very small, pro-
duces four states with masses smaller thanMZ=2 instead of
the experimentally allowed number of 3. So, this model as
stated is ruled out unless new ingredients are added [as, for
example, an extra neutral Weyl state N0

�00 � ð1; 1; 0Þ fol-
lowed by a fine tuning of some Yukawa coupling constants
to secure very small masses for three neutrinos]. Notice
that the use of the economical set of Higgs scalars [17], or
the enlarged set [23], does not solve this problem at all.

A new interesting ingredient appears for structure five
which has the Fermion content present in 3S1 þ S5 þ
2ðS3 þ S4Þ. The lepton content for this particular four
family structure can be written as

c eL ¼ ð�0
e; e

�;E�
e ÞL � ð1;3;�2=3Þ; eþL ;Eþ

eL; (11a)

c �L ¼ ð�0
�;�

�;E�
�ÞL � ð1;3;�2=3Þ; �þ

L ;E
þ
�L; (11b)

c �L ¼ ð�0
�; �

�;E�
� ÞL � ð1;3;�2=3Þ; �þL ;Eþ

�L; (11c)

c �0L ¼ ð�0�; �0
�0 ;N

0
1ÞL � ð1;3�;�1=3Þ; (11d)

c 1L ¼ ðE�
2 ;N

0
2 ;N

0
3ÞL � ð1;3�;�1=3Þ; (11e)

c 2L ¼ ðN0
4 ;E

þ
2 ; �

0þÞL � ð1;3�;2=3Þ: (11f)

When all the possible Yukawa terms for the Weyl neutral
states are included, the following 8� 8 mass matrix in the
basis ð�e; ��; ��; ��0 ; N

0
1 ; N

0
2 ; N

0
3 ; N

0
4ÞL is obtained:

0 0 0 0 0 0 0 M1

0 0 0 0 0 0 0 M2

0 0 0 0 0 0 0 M3

0 0 0 0 0 0 a B1

0 0 0 0 0 �a 0 b1
0 0 0 0 �a� 0 0 b2
0 0 0 a� 0 0 0 B2

M�
1 M�

2 M�
3 B�

1 b�1 B�
2 b�2 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

; (12)

where the entries a, b1, b2 are Dirac mass terms propor-
tional to the SM mass scale v3, B1 and B2 are Majorana
mass terms proportional to the 3-3-1 mass scale VA and the
entries MA, A ¼ 1, 2, 3 are Majorana mass terms coming
from the bare Lagrangian

c 2LðM1c eL þM2c �L þM3c �LÞ þ H:c:;

which can be as large as the Planck scale. Because of the
presence of this last mass entry, the rank of the previous
matrix is six, with two eigenvalues equal to zero.
Unfortunately, the large bare mass entries cannot be used
to generate seesaw mechanisms and only, if we allow a
discreet symmetry which forbids this bare mass entries, the
matrix could have three zero mass states, becoming in this
way a realistic one.
Analyses similar to the previous ones have been carried

through for the neutrino sector of the 13 anomaly-free
lepton structures enumerated in Sec. II A. The results are
presented in Table II.
According to this Table, only structures 12 and 13

survive the natural condition of having 3 tree-level zero
mass neutrinos, which may pick up non zero masses via
radiative corrections. Some other structures may become
realistic if new fields are added, and/or if some Yukawa
coupling constants are fine-tuned to very small values as
mentioned before.
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III. A FOUR FAMILY MODEL

In this section we start the study of one of the two four
family models which survives in a natural way the preci-
sion measurements of the electroweak parameters. In par-
ticular, we choose model 13 with the Fermion structure
given by 3S1 þ S6 þ 3S3 þ S4. The Fermion content for
this particular four family model is written in the following
way

c i
QL ¼ ðdi; ui;UiÞTL

� ð3;3�;1=3Þ; dicL ; u
ic
L ; Uic

L ; i¼ 1;2;3; (13a)

c 4
QL ¼ ðu4; d4;DÞTL � ð3;3;0Þ; u4cL ; d4cL ;Dc

L; (13b)

c eL ¼ ð�0
e; e

�;E�
e ÞL � ð1;3;�2=3Þ; eþL ;Eþ

eL; (13c)

c �L ¼ ð�0
�;�

�;E�
�ÞL � ð1;3;�2=3Þ; �þ

L ;E
þ
�L; (13d)

c �L ¼ ð�0
�; �

�;E�
� ÞL � ð1;3;�2=3Þ; �þL ;Eþ

�L; (13e)

c �0L ¼ ð�0
�0 ; �

0�;E�
�0 ÞL � ð1;3;�2=3Þ; �0þL ;Eþ

�0L (13f)

c 1L ¼ ðEþ
1 ;N

0
1 ;N

0
2ÞL � ð1;3;1=3Þ; (13g)

c 2L ¼ ðN0
3 ;E

�
1 ;E

�
2 ÞL � ð1;3;�2=3Þ; Eþ

2L; (13h)

with the following particle content: seven up-type quarks,
five down-type quarks, ten charged lepton states, and seven
Weyl neutral lepton states.

A. Weak currents

The fermion currents for this particular Fermion struc-
ture are

1. Charged currents

The interactions of the charged vector gauge boson
fields with the spin 1=2 fermion fields are

HCC ¼ gffiffiffi
2

p X3
i¼1

X
�

f½Wþ
� ð ���L


���
L þ �Eþ

1L

�N0

1L þ �N0
3L


�E�
1L � �uiL


�diL þ �u4L

�d4LÞ þKþ

� ð ���L

�E�

�L þ �Eþ
1 


�N0
2L

þ �N0
3L


�E�
2L � �UiL


�diL þ �u4L

�DLÞ þK0

�ð ���
L 


�E�
�L þ �N0

1L

�N0

2L þ �E�
1L


�E�
2L � �UiL


�uiL þ �dL

�D4LÞ�g

þH:c:; (14)

where � ¼ e, �, �, �0 is a fourth family lepton index and
i ¼ 1, 2, 3 is a three family quark index.

2. Neutral currents

The neutral currents J�ðEMÞ, J�ðZÞ, and J�ðZ0Þ, are
associated with the Hamiltonian H0 ¼ eA�J�ðEMÞ þ
g
CW

Z�J�ðZÞ þ g0ffiffi
3

p Z0�J�ðZ0Þ.
The vectorlike electromagnetic current for this model is

J�ðEMÞ ¼ 2

3

X3
i¼1

�
ð �ui
�ui þ �Ui


�Ui þ �u4

�u4Þ

� 1

3
ð �di
�di þ �d4


�d4 þ �D
�DÞ
�

�X
�

ð ���
��� þ �E�
�


�E�
�

þ �E�
1 


�E�
1 þ �E�

2 

�E�

2 Þ
¼ X

f

qf �f

�f; (15)

where again the sum over � is for � ¼ e, �, �, �0. The
square root of the fine structure constant is proportional to

e 	 g3SW ¼ g1CW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2

W=3
q

> 0, and qf is the electric

charge of the fermion f in units of e.
The left-handed currents for this model are

J�ðZÞ ¼ J
�
L ðZÞ � S2WJ

�ðEMÞ;
J�ðZ0Þ ¼ TWJ

�ðEMÞ � J�L ðZ0Þ;
where

J�L ðZÞ ¼
1

2

�X
�

ð ���L

���L � ���

L 

���

L Þ þ �Eþ
1L


�Eþ
1L

� �E�
1L


�E�
1L þ �N0

3L

�N0

3L � �N0
1L


�N0
1L

þX3
i¼1

ð �uiL
�uiL þ �u4L

�u4L � �diL


�diL

� �d4L

�d4LÞ

�

¼ X
f

T3f
�fL


�fL; (16)

TABLE II. Neutrino sectors.

Structure Number of Weyl neutral states Massless states

1: 20 0

2: 16 0

3: 6 2

4: 18 0

5: 8 2

6: 10 2

7: 12 0

8: 11 1

9: 19 0

10: 13 1

11: 17 0

12: 11 3

13: 7 3
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J�L ðZ0Þ ¼ X
�

X3
i¼1

½S�1
2Wð ��0

�L

��0

�L þ �Eþ
1L


�Eþ
1L þ �N0

3L

�N0

3L � �diL

�diL þ �u4L


�u4LÞ

þ T�1
2Wð ���

L 

���

L þ �N0
1L


�N0
1L þ �E�

1L

�E�

1l � �uiL

�uiL þ �d4L


�d4LÞ
� T�1

W ð �E�L

�E�

�L þ �N2L

�N2L þ �E�

2L

�E�

2L � �UiL

�UiL þ �DL


�DLÞ�
¼ X

f

T9f
�fL


�fL; (17)

where S2W ¼ 2SWCW , T2W ¼ S2W=C2W , C2W ¼C2
W�S2W ,

T3f¼Diagð1=2;�1=2;0Þ is the third component of the
weak isospin acting on the representation 3 of SUð3ÞL
(the negative when acting on 3*), and T9f ¼
DiagðS�1

2W; T
�1
2W;�T�1

W Þ is a convenient 3� 3 diagonal ma-
trix acting on the representation 3 of SUð3ÞL (the negative
when acting on 3*).

IV. MASSES FOR FERMIONS

In this section we calculate the most general mass
matrices for the fermion fields of this particular model,
produced by the 3 scalar Higgs fields in (6) and their
respective VEV. We also set the notation to be used in
the rest of the paper.

A. Neutral leptons

The mass terms for the neutral Weyl states of this
particular model are included in the following Yukawa
Lagrangian:

Lð13Þ
n ¼ X

A¼1;2

�
��

Ac 1L

�X
�

hA�c �LþhAc 2L

��
þH:c:; (18)

where again � ¼ e, �, �, �0. Now, in the basis
ð�0

e; �
0
�; �

0
�; �

0
�0 ; N

0
1 ; N

0
2 ; N

0
3ÞL the former expression pro-

duces the following Hermitian mass matrix:

MN ¼ 1ffiffiffi
2

p

0 0 0 0 �Me me 0
0 0 0 0 �M� m� 0
0 0 0 0 �M� m� 0
0 0 0 0 �M�0 m�0 0

�Me �M� �M� �M�0 0 0 �M
me m� m� m�0 0 0 m
0 0 0 0 �M m 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

(19)

where the entries M� ¼ P
Ah

A
�VA, � ¼ e, �, �, �0, and

M ¼ P
Ah

AVA areMajorana mass terms proportional to the
3-3-1 mass scale VA, A ¼ 1, 2, andm� ¼ P

Ah
A
�vA,� ¼ e,

�, �, �0, and m ¼ P
Ah

AvA are Dirac mass terms propor-
tional to the SM mass scale vA, A ¼ 1, 2. This Hermitian
mass matrix is a rank four matrix, with three eigenvalues
equal to zero that we may identify as the three neutrinos,
with the other four Weyl states pairing to produce Dirac
masses at the scales VA and vA, respectively.

B. Charged leptons

This model contains 10 charged leptons. The scalar
Higgs fields in (6) couple to the charged 3-3-1 singlet
leptons with the following Lagrangian

Lð13Þ
l ¼ X

A¼1;2

�A

�
hA22c 2LE

þ
2Lþ

X
�

�
hA�2c �LE

þ
2L

þX
�þ
L

ðhA
2�þc 2L�

þ
L þhA

��þc �L�
þ
L Þ
��

þH:c:; (20)

where � ¼ e, �, �, �0 and �þ
L ¼ eþL , �þ

L , �
þ
L , �

0þ
L , Eþ

eL,
Eþ
�L, E

þ
�L, E

þ
�0L. For the most general case, the 10� 10

mass matrix obtained is of rank ten.

C. Neutrinos

The tree-level Hermitian 7� 7 mass matrix for the
neutral spin 1=2 Weyl states in (19) has 3 eigenvalues
equal to zero that we may identify with the 3 neutrinos in
nature. Because of the richness of the model, those states
pick up radiative Majorana masses when the quantum
corrections are taken into account. As is inferred from a
careful study of the Yukawa Lagrangian in (18) and (20)
we can draw two-loop radiative diagrams Babu-type [29],
as depicted in Fig 1, which are contained in the model in a
natural way, that is, without the inclusion of new ingre-
dients. The upper vertex in the two diagrams comes from a

term in the scalar potential of the form fj�y
1 :�2j2.

D. Up quarks

The Yukawa Lagrangian that the three Higgs scalar
fields in Sec. II C produce for the seven up quark fields in
model 13 is

Lð13Þ
u ¼X3

i¼1

X2
A¼1

c iT
QL�

�
AC

�X4
j¼1

h
uj
iAu

jc
L þX3

l¼1

hUl

iAU
lc
L

�

þ c 4T
QL�3C

�X4
j¼1

h
uj
43u

jc
L þX3

l¼1

hUl

43U
lc
L

�
þH:c:; (21)

where the h’s are Yukawa couplings and C is the charge
conjugation operator. For the most general case, the 7� 7
mass matrix obtained is of rank seven.

E. Down quarks

For the five Down quarks fields in model 13, the Yukawa
Lagrangian that the three Higgs scalar fields and their VEV
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in Sec. II C produce, is

L ð13Þ
d ¼ X3

i¼1

c iT
QL�

�
3C

�X4
j¼1

h
dj
i3d

jc
L þ hDi3D

c
L

�

þ X2
A¼1

c 4T
QL�AC

�X4
j¼1

h
dj
4Ad

jc
L þ hD4AD

c
L

�
þ H:c:;

(22)

where the h’s are Yukawa couplings and C is the charge
conjugation operator. For the most general case, the 5� 5
mass matrix obtained is of rank five.

The mass matrices obtained from (21) and (22) must be
diagonalized in order to get the mass eigenstates which
exist in nature, defining in this way a nonunitary 7� 5
quark mixing matrix of the form

Vud
mix 	 Vu

LPVdy
L

¼

Vud Vus Vub Vub0 Vub00

Vcd Vcs Vcb Vcb0 Vcb00

Vtd Vts Vtb Vtb0 Vtb00

Vt0d Vt0s Vt0b Vt0b0 Vt0b00

Vt00d Vt00s Vt00b Vt00b0 Vt00b00

Vt000d Vt000s Vt000b Vt000b0 Vt000b00

Vtiv0d Vtiv0s Vtiv0b Vtiv0b0 Vtiv0b00

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (23)

where Vu
L and Vd

L are 7� 7 and 5� 5 unitary matrices

which diagonalize MUM
y
U and MDM

y
D, with MU and MD,

the up and down quark mass matrices obtained from (21)
and (22), respectively, and P is the projection matrix over
the ordinary quark sector [in the weak basis, the exotic
quarks transform as singlets under SUð2ÞL transformations,
thus they do not couple with the W
 Gauge bosons]. The
transpose of this matrix is given by

P T ¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0
BBBBB@

1
CCCCCA: (24)

Vud
mix in (23) defines the couplings of the physical quark

states, ðu; c; t; t0; t00; t000; tiv0Þ and ðd; s; b; b0; b00Þ with the
charged current associated with the weak gauge bosonWþ.

V. QUARK MIXING

In this section we are going to see how large the mixing
between the known quarks in the first 3 families and the
new ones can be, without violating current experimental
limits. Two kinds of experimental constrains are going to
be considered: the measured values of the known 3� 3
quark mixing matrix and current values and bounds for
FCNC processes.

A. The 3� 3 quark mixing matrix

The masses and mixing of quarks in the SM come from
Yukawa interaction terms with the Higgs condensate,
which produces two 3� 3 quark mass matrices for the
up and down quark sectors; matrices that must be diago-
nalized in order to identify the mass eigenstates. The

unitary CKM quark mixing matrix (VCKM 	 Vu
3LV

dy
3L ) cou-

ples the six physical quarks to the charged weak gauge
boson Wþ, where Vu

3L and Vd
3L are now the diagonalizing

unitary 3� 3 matrices of the SM up and down quark
sectors, respectively.
The unitary matrix VCKM has been parametrized in the

literature in several different ways, but the most important
fact related with this matrix is that most of its entries have
been measured with high accuracy, with the following
experimental limits [6]:

Vexp ¼
0:970 � jVudj � 0:976 0:223 � jVusj � 0:228 0:003 � jVubj � 0:006
0:219 � jVcdj � 0:241 0:90 � jVcsj � 1:0 0:037 � jVcbj � 0:045
0:006 � jVtdj � 0:008 0:034 � jVtsj � 0:044 jVtbj � 0:78

0
@

1
A: (25)

The numbers quoted in matrix (25), which are measured at the Fermi scale ð� � MZÞ [30], are generous in the sense that
they are related to the direct experimental measured values, at 90% confidence level, with the largest uncertainties taken

FIG. 1. Two-loop Babu-type diagrams contributing to the neu-
trino masses.
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into account, without bounding the numbers to the ortho-
normal constrains on the rows and columns of a 3� 3
unitary matrix. In this way we leave the largest room
available for possible new physics, respecting the well
measured values in Vexp.

B. FCNC

The unitary character of the SM mixing matrix VCKM

implies flavor diagonal couplings of all the neutral bosons
of the SM (such as Z boson, Higgs boson, gluons, and
photon) to a pair of quarks, giving as a consequence that no
FCNC are present at tree level. At one-loop level, the
charged currents generate FCNC transitions via penguin
and box diagrams [1], but they are highly suppressed by the
Glashow-Iliopoulos-Maiani mechanism [31]. For example,
FCNC processes in the charm sector (c ! u
) were calcu-
lated in the context of the SM in Ref. [32], giving a
branching ratio suppressed by 15 orders of magnitude.

To date, the following direct FCNC branching ratios and
bounds have been measured in several experiments:

(i) Br½b ! s
� ¼ ð3:52
 0:24Þ � 10�4 [33],
(ii) Br½B ! K�lþl�� ¼ ð1:68
 0:86Þ � 10�6 [34],
(iii) Br½s ! d
ðdlþl�Þ�< 10�8 [35],
(iv) Br½c ! ulþl��< 4� 10�6 [36],
(v) Br½b ! slþl�; dlþl��< 5� 10�7 [37],

with l ¼ e,�. In our study, these ratios and bounds are also
going to be respected. Important to mention here that the
SM next to next to leading order calculation for Br½b !
s
� is ð3:60
 0:30Þ � 10�4 [38], already in agreement
with the measured value, which constitutes a very sensitive
proof of new physics.

C. Numerical analysis

The numerical analysis that follows aims to set upper
bounds on the fourth rows and fourth columns of MU and
MD, the quark mass matrices obtained from (21) and (22)
using as phenomenology constrains the values of the ma-
trix Vexp in (25) and the experimental measured values and

bounds for FCNC quoted in Sec. VB. Since we want to
consider just the maximal mixing of the ordinary quarks
with the exotic ones, our approach consists of looking only
for a mixing with the fourth family up and down quarks,
under the assumption that the simultaneous mixing with
the other exotic quarks is always possible, but not maxi-
mal. So, in our numerical analysis we will set zero every-
where in the fifth row and column of MD except for the
diagonal entry, doing the same for the fifth, sixth, and
seventh rows and columns of MU.

In the analysis we assume that v1 ¼ v2 ¼ v3 	 v ¼
82 GeV, the value supported by the result M2

W ¼ g23ðv2
1 þ

v2
2 þ v2

3Þ=2 [13] with g3 the gauge coupling constant of

SUð3ÞL [that is equal to g2, the gauge coupling constant of
SUð2ÞL in the SM], and we also use V ¼ 1 TeV, the 3-3-1
mass scale which fixes the mass values for all the new
fermions of the different models.

D. The 7� 5 mixing matrix

In this section we are going to set limits to some values
of the mixing matrix Vud

mix in (23). For this purpose we have

designed software which starts by fixing a value Vtb �
0:78, the smallest permitted by Vexp in (25). According to

our analysis this allows for maximal mixing of the top
quark with the other ones.
Notice also that, although the mass matricesMU andMD

in Eqs. (21) and (22) are not symmetric due to the existence
of the new mass scale VA present in all the 3-3-1 models,
they can always be made the product of a unitary matrix
times a Hermitian one, with the unitary matrix reabsorbed
in a new definition of the right-handed quark fields, some-
thing which does not affect the physics of 3-3-1 models,
because the right-handed fields are singlets under SUð3ÞL.
So, for our numerical analysis we will look only for
symmetric up and down quark mass matrices.
The numerical analysis using MATHEMATICA subrou-

tines, throws as a result of the largest mixing allowed of
the known quarks with the exotic ones, without violating
the measured values of the mixing matrix (25) or the
experimental values and bounds for FCNC, occurs for
the following set of mass matrices:

Mu
7 ¼

0:00047 0:02812 0 0 0 0 0
0:02812 0:580 0 0 0 0 0

0 0 171:7 0 0 0 0
0 0 0 mt0 0 0 0
0 0 0 0 mt00 0 0
0 0 0 0 0 mt000 0
0 0 0 0 0 0 mtiv0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

(26)

Md
5 ¼

0:018 �0:4288 �2:63 �3:41 0
�0:4288 9:316 57:608 75:98 0
�2:63 57:608 361:8 472:4 0
�3:41 75:98 472:4 624:5 0

0 0 0 0 mb00

0
BBBBB@

1
CCCCCA;

(27)

which for mt0 ¼ mt00 ¼ mt000 ¼ mtiv0 ¼ mb00 ¼ 1000 GeV,
reproduces the following set of eigenvalues at the weak
scale (in units of GeV):

mt ¼ 171:8; mc ¼ 0:582; mu ¼ 1� 10�3;

mb ¼ 2:83; ms ¼ 0:069; md ¼ 3:4� 10�3;

mb0 ¼ 993;

numbers to be compared with the values quoted in the
second paper in Ref. [30].
Diagonalizing the former mass matrices produce the

following nonunitary 7� 5 mixing matrix:
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V7�5
mix ¼

0:976 0:224 0:006 0:009 0
0:220 �0:970 0:038 0:096 0
0:006 0:035 0:798 0:602 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (28)

with numbers to be compared with the experimental limits
in (25).

E. New FCNC processes

Next, we are going to evaluate the new penguin contri-
butions to the FCNC processes coming from the nonuni-
tary character of V7�5

mix in Eq. (28).

1. The bottom sector

Let us evaluate first the electromagnetic penguin con-
tribution to Brtðb ! s
Þ coming from the t quark, calcu-
lated with the expectator model, scaled to the semileptonic
decay b ! qil�l, qi ¼ c, u, and without including QCD
corrections (which are small for the b sector [1]). This
value is calculated to be [32]

B rtðb ! s
Þ � 3�

2�

jV�
tbVtsF

QðxtÞj2
½fðxcÞjVcbj2 þ fðxuÞjVubj2�

BB!Xl�l
;

(29)

where � is the fine structure constant, BB!Xl�l � 0:1 is the

branching ratio for semileptonic b meson decays taken
from Ref. [6], xt ¼ ðmt=MWÞ2, xc ¼ mc=mb, and xu ¼
mu=mb. F

QðxÞ is the contribution of the internal heavy
quark line to the electromagnetic penguin given by

FQðxÞ ¼ Q

�
x3 � 5x2 � 2x

4ðx� 1Þ3 þ 3x2 lnx

2ðx� 1Þ4
�

þ 2x3 þ 5x2 � x

4ðx� 1Þ3 � 3x3 lnx

2ðx� 1Þ4 ;

where Q ¼ 2=3 for t in the quark propagator [Q ¼ �1=3

and x ¼ xb
0 ¼ ðmb0=MWÞ2 when b0 propagates] and fðxiÞ

is the usual phase space factor in semileptonic meson
decay, given by [1]

fðxÞ ¼ 1� 8x2 þ 8x6 � x8 � 24x4 lnx:

For the numerical evaluations ofBrtðb ! s
Þ, let us use
the values �ð1 GeVÞ ¼ 1=135, mt ¼ 385 GeV, mc ¼
1:25 GeV, mb ¼ 6:0 GeV, and mu ¼ 2:6 MeV, which
are the mass values at 1 GeV [30]. Using these numbers

we obtain: F2=3ðxtÞ � 0:544, fðxcÞ � 0:724, and fðxuÞ �
1. Plugging in the numbers in Eq. (29) and using the values
for V7�5

mix in Eq. (28) for the couplings of the physical quark

states, we get

B rtðb ! s
Þ � 6� 10�5;

which is as close to the SM calculation as it should be,
since this process does not receive a contribution from the
exotic quarks.
The former analysis can be used also to estimate the

branching ratios for the rare gluon penguin decay b ! sg,
where g stands for the gluon field. The results is

Brtðb ! sgÞ ¼ �sð1 GeVÞ
�ð1 GeVÞ Brtðb ! s
Þ

� 13Brtðb ! s
Þ � 7:8� 10�4;

a process difficult to measure due to the hadronization of
the gluon field g. (This last process is of the same order of
magnitude of the virtual weak penguin bottom process b !
sZ.)
A similar analysis shows that

B rtðb ! d
Þ ¼ jVtdj2
jVtsj2

Brtðb ! s
Þ � 2:2� 10�6;

which is safe and in agreement with the bounds quoted in
Sec. IVB.

2. The strange sector

In a similar way we can evaluate Brtðs ! d
Þ scaled to
the semileptonic decay s ! ul�l, which is given now by

B rtðs ! d
Þ � 3�

2�

jV�
tsVtdF

2=3ðxtÞj2
fðx0uÞjVusj2

BK!�l�l : (30)

With x0u ¼ mu=ms;msð1 GeVÞ ¼ 111 MeV, and
BK!�l�l � 5� 10�2 taken from Ref. [6], we get

B rtðs ! d
Þ � 3:8� 10�11;

in agreement with the experimental bound quoted in
Sec. IVB.

3. The charm sector

Now let us evaluate Brb
0 ðc ! u
Þ scaled to the semi-

leptonic decay c ! qjl�l, where qj ¼ s, d. The branching

ratio is

Brb
0 ðc ! u
Þ

BD!Xsl�l

� 3�

2�

jðV�
cb0Vub0 ÞF�1=3ðxb0 Þj2

½fðxsÞjVcsj2 þ fðxdÞjVcdj2�
; (31)

where xs ¼ ms=mc, xd ¼ md=mc. With BD!Xsl�l
� 0:2

taken from Ref. [6], F�1=3ðxb0 Þ � 0:3856, fðxsÞ � 0:94
for ms ¼ 111 MeV and fðxdÞ � 1, for md ¼ 5:6 MeV,
we get

B rb
0 ðc ! u
Þ � 8:36� 10�8;

7 orders of magnitude larger than the SM prediction [32],
but still unobservable and small. Of course, the quantum
QCD corrections for this decay could be quite large (see
the second paper in Ref. [32]).
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4. The top sector

We proceed in this analysis with the study of the FCNC
for the top quark in the context of the four family 3-3-1
model in consideration here. As we are about to see, some
of the predictions are ready to be tested at the LHC.

In the SM, the one-loop induced FCNC for the top quark
have a strong Glashow-Iliopoulos-Maiani suppression, re-
sulting in negligible branching ratios for top FCNC decays.
The SM values predicted are [39]:BrSMðt ! c
Þ � 4:6�
10�14, and BrSMðt ! cgÞ � 4:6� 10�12.

The new FCNC Brb
0 ðt ! c
Þ and Brb

0 ðt ! u
Þ pre-
dicted for the top quark in the context of the 3-3-1 model
under consideration here, scaled to the semileptonic decay
t ! qkl�l, qk ¼ b, s, d; are given by

Brb
0 ðt ! c
Þ
BT!Xl�l

� 3�

2�

jðV�
tb0Vcb0 ÞF�1=3ðxb0 Þj2

½fðxbÞjVtbj2 þ fðxsÞjVtsj2�
; (32)

which we evaluate at the mt ¼ 163 GeV, the pole mass
scale for the top quark, which gives

B rb
0 ðt ! c
Þ � 2:76� 10�6BT!Xl�l ;

which is as large as the semileptonic branching ratio
BT!Xl�l

measured for the top quark comparatively gets ,

and much larger than 10�14, the SM prediction.
From the former analysis we can get

Brb
0 ðt ! cZÞ ¼ 4�

sinð2�ÞBrb
0 ðt ! c
Þ

� 40Brb
0 ðt ! c
Þ;

2 orders of magnitude larger than Brb
0 ðt ! c
Þ, a value

not far from the LHC capability, with a similar conclusion

for the branching Brb
0 ðt ! cgÞ, where g stands for the

gluon field.
Finally we find

Brb
0 ðt ! u
Þ � jVub0 j2

jVcb0 j2
Brb

0 ðt ! c
Þ

� 2:43� 10�8BT!Xl�l
:

VI. CONCLUSIONS

In the present work we classified all the possible 3-3-1
four family models which do not contain exotic electric
charges or fermion vectorlike representations (including
right-handed neutrino singlets). A total of 13 different
fermion structures were found, out of which only two are
realistic in the sense that they can bear 3 and only 3 light
neutrinos.
Contrary to the minimal 3-3-1 model of Pisano-Pleitez

and Frampton [12] and some of its trivial extensions which,
due to the particular way the anomalies are cancelled,
accept only models for a number of families equal to a
multiple of 3 (and just 3 if the QCD asymptotic freedom is
recalled), the models without exotic electric charges can
hold for as many families as wished. So, if a fourth family
is found, for example, in the LHC experiments, the mini-
mal 3-3-1 model will be ruled out, but not the models we
have presented here.
Also, in the paper we did some phenomenology for what

we believe is the simplest realistic 3-3-1 four family model.
In particular, for the model under study we searched for the
largest mixing between ordinary and exotic quarks without
violating current experimental constrains in the quark mix-
ing matrix and in the values and bounds measured for
FCNC processes.
Some of our conclusions may be relevant for the forth-

coming Tevatron and LHC results, which may find evi-
dence for a fourth family and also measure with high
accuracy the value of Vtb; in particular, a value in the range
0:8 � Vtb � 0:9 can lead to strong predictions of rare top
decays such as t ! cZ, with a branching ratio of the order
of 10�5, perfectly reachable at the LHC [40].
To conclude, let us spell out our main conclusion: The

existence of a fourth family does not rule out the SUð3Þc �
SUð3ÞL �Uð1ÞX local gauge structure.

ACKNOWLEDGMENTS

We acknowledge partial financial support from the sos-
tenibilidad program of the Universidad de Antioquia,
Colombia.

[1] For an excellent compendium of the SM see: J. F.

Donoghue, E. Golowich, and B. Holstein, Dynamics of

the Standard Model (Cambridge University Press,

Cambridge, 1992).
[2] For a review, see R. N. Mohapatra and Y. Smirnov, Annu.

Rev. Nucl. Part. Sci. 56, 569 (2006), and references

therein.
[3] S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
[4] B. Holdom, J. High Energy Phys. 08 (2006) 076; 03

(2007) 063; 08 (2007) 069.

[5] A. K. Ciftci, R. Ciftci, and S. Sultansoy, Phys. Rev. D 72,
053006 (2005).

[6] C. Amsler et al., Phys. Lett. B 667, 1 (2008); M. Bona

et al., http://pdg.lbl.gov/; see also CKMfitter Group, http://

www.utfit.org and http://ckmfitter.in2p3.fr/.
[7] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.

104, 091801 (2010).
[8] E. Gates and J. Terning, Phys. Rev. Lett. 67, 1840 (1991).
[9] G. D. Kribs, T. Plehn, M. Spannowsky, and T.M. P. Tait,

Phys. Rev. D 76, 075016 (2007).

BENAVIDES, PONCE, AND GIRALDO PHYSICAL REVIEW D 82, 013004 (2010)

013004-10

http://dx.doi.org/10.1146/annurev.nucl.56.080805.140534
http://dx.doi.org/10.1146/annurev.nucl.56.080805.140534
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1088/1126-6708/2006/08/076
http://dx.doi.org/10.1088/1126-6708/2007/03/063
http://dx.doi.org/10.1088/1126-6708/2007/03/063
http://dx.doi.org/10.1088/1126-6708/2007/08/069
http://dx.doi.org/10.1103/PhysRevD.72.053006
http://dx.doi.org/10.1103/PhysRevD.72.053006
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1103/PhysRevLett.104.091801
http://dx.doi.org/10.1103/PhysRevLett.104.091801
http://dx.doi.org/10.1103/PhysRevLett.67.1840
http://dx.doi.org/10.1103/PhysRevD.76.075016


[10] H. J. He, N. Polonsky, and S. f. Su, Phys. Rev. D 64,
053004 (2001).

[11] G. D. Kribs, T. Plehn, M. Spannowsky, and T.M. P. Tait,
Phys. Rev. D 76, 075016 (2007).

[12] F. Pisano and V. Pleitez, Phys. Rev. D 46, 410 (1992); P. H.
Frampton, Phys. Rev. Lett. 69, 2889 (1992); V. Pleitez and
M.D. Tonasse, Phys. Rev. D 48, 2353 (1993); 48, 5274
(1993); D. Ng, Phys. Rev. D 49, 4805 (1994); L. Epele, H.
Fanchiotti, C. Garcı́a Canal, and D. Gómez Dumm, Phys.
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