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In this article we present new, genuinely non-Abelian vortex solutions in SUð2Þ Yang-Mills–Higgs

theory with only one isovector scalar field. These non-Abelian solutions branch off their Abelian

counterparts (Abrikosov–Nielsen-Olesen vortices) for precise values of the Higgs potential coupling

constant �. For all values of �, their energies lie below those of the Abelian energy profiles, the latter

being logarithmically divergent as � ! 1. The non-Abelian branches plateau in the limit � ! 1 and

their number increases with �, this number becoming infinite. For each vorticity, the gaps between the

plateauing energy levels become constant. In this limit the non-Abelian vortices are noninteracting and are

described by the self-dual vortices of the Oð3Þ sigma model. In the absence of a topological lower bound,

we expect these non-Abelian vortices to be sphalerons.
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I. INTRODUCTION

Non-Abelian vortices on R2 have attracted interest since
a very long time. Nambu [1] pointed out that vortices of
finite length in R3 require monopoles at each end.
Originally, they were proposed by Mandelstam [1] as
flux tubes absorbed by non-Abelian (’t Hooft-Polyakov)
monopoles at each end. In this picture the monopoles are
bound, implying that in the dual picture where the duals of
the monopoles are the quarks, one can describe confine-
ment in QCD.

The ’t Hooft-Polyakov monopole is a topologically sta-
ble and finite energy solution of the SUð2Þ Yang-Mills–
Higgs (YMH) system onR3, where the Higgs field takes its

values in the algebra, i.e., that it is an isovector, ~� ¼
ð�1; �2; �3Þ, under SOð3Þ rotations. Topologically stable
and finite energy vortex solutions of the gauged Higgs
system on R2 on the other hand are supported by the
Abelian Higgs model, where the Higgs field is a complex
scalar, ’ ¼ �1 þ i�2, i.e., it is an isovector �M ¼
ð�1; �2Þ under SOð2Þ rotations. This is the
Abrikosov–Nielsen-Olesen (ANO) vortex [2]. The field
multiplets in the two models do not match.

To construct a non-Abelian vortex on R2, it was realized
by Nielsen and Olesen that it is necessary to have a model
with more than one Higgs field. They chose [2] two SOð3Þ
isovector Higgs fields, each with its own symmetry break-
ing potential and vacuum expectation value, but with the
vacuum value of each oriented at different directions in
isospace—in the simplest case being orthogonal to each
other. In this way the SOð3Þ gauge group is completely
broken on the asymptotic circle of R2, which is necessary
for topological stability. Subsequently, this construction
was extended in models featuring N distinct Higgs fields,
generalizing the SUð2Þ vortices of [2] to SUðNÞ in [3–9].
These vortices, described as ZN vortices, are not genuinely

non-Abelian since their flux is restricted to a single direc-
tion along the Cartan subalgebra.
More recently, this problem was considered in the con-

text of N ¼ 2 supersymmetric QCD models by Hanay
and Tong [10], by Auzzi et al. [11], and by Eto et al. [12].
The salient feature of these models is that they have both
gauge and color symmetries that are broken by the con-
densate of the scalar fields in such a way that the unbroken
subgroup results in orientational zero modes of the string,
responsible for non-Abelian flux.
Non-Abelian vortices have been studied intensively in

the context of dual confinement in QCD (see the reviews in
[13,14]). In addition to this physical application, they
present important examples of cosmic strings [15,16],
relevant to cosmological phase transitions.
In this article, we have constructed non-Abelian vortices

of a SUð2Þ YMH model with only one algebra valued, i.e.,
isovector, Higgs field. (Non-Abelian vortices in the
Weinberg-Salam model were constructed in [17].) This
model features exactly the same field multiplets, on R2,
as the YMH system supporting the ’t Hooft-Polyakov
monopole on R3, differing from the two-Higgs models of
[2] and those supporting ZN vortices, and obviously from
the SQCD models of [10,11].

II. YMH MODEL AND NON-ABELIAN ANSATZ

Our model on R2 is described by the static Hamiltonian

H ¼�1
2TrF

2
ij �TrðDi�Þ2 þ ð4�Þ2 Trð14�2 þ�2Þ2; (1)

where � ¼ � i
2
~� � ~� is the anti-Hermitian isovector

Higgs field, and Aj ¼ � i
2
~Aj � ~�, with ~� ¼ ð�M;�3Þ, the

Pauli matrices. The gauge field is defined by F��¼
@�A��@�A�þ½A�;A�� and the gauge covariant deriva-

tive is given by D� ¼ @� þ ½A�; ��. Note that only Aj, the
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magnetic components of the SUð2Þ connection A� ¼
ðA0; AjÞ, appear in Eq. (1), since in the absence of a

Chern-Simons term, the electric component of the connec-
tion A0 vanishes, by virtue of the non-Abelian Julia-Zee
theorem [18,19].

The energy of this model is not endowed with a topo-
logical lower bound and a priori we would not expect the
resulting vortices to be topologically stable. But the ques-
tion of stability is more subtle than this. The (genuinely)
non-Abelian vortices we have constructed numerically,
present bifurcations from the corresponding Abelian pro-
files, on plots of their energies vs. the Higgs self-interaction
coupling constant �. Remarkably, it turns out that each
non-Abelian profile lies below the corresponding Abelian
profile for all values of � and hence cannot be expected to
decay into the Abelian vortex with higher energy than it
has. Indeed, we show that in the � ! 1 limit these non-
Abelian vortices are described by the (stable) self-dual
‘‘instantons’’ [20] of the Oð3Þ sigma model on R2.
However, since these Abelian vortices embedded in the
non-Abelian theory at hand are known to be unstable, one
cannot expect this feature of the non-Abelian vortices
found here to imply stability. Furthermore, the Belavin-
Polyakov ‘‘instantons’’ feature an arbitrary scale, which
indicates instability. Thus, we would expect that our non-
Abelian vortices are in effect, sphalerons. The quantitative
stability anaysis will be carried out elsewhere.

The radial Ansatz we use is

� ¼ �h
�ðnÞ

r

2i
� �g

�3

2i
;

Aj ¼ �ð"x̂Þj
r

�
c
�ðnÞ

r

2i
� ðaþ nÞ�

3

2i

�
; j ¼ 1; 2;

(2)

where we denote �ðnÞ
r ¼ cosn’�1 þ sinn’�2 and ð"x̂Þj ¼

ðsin’;� cos’Þ. Here, fa; c; g; hg are functions of r only
and the integer n is the vortex number. This Ansatz,
previously used to construct non-Abelian Chern-Simons–
Higgs vortices [21], is a consistent truncation of the most
general Ansatz.

III. EQUATIONS OF MOTION

Subject to the Ansatz Eq. (2), the Euler-Lagrange equa-
tions reduce to the following set of nonlinear ordinary
differential equations:

�r

�
ar
r

�
r
¼ ��2ðah� cgÞh;

�r

�
cr
r

�
r
¼ �2ðah� cgÞg;

ðrhrÞr ¼ 1

r
ðah� cgÞa� 8�2�2r½1� ðh2 þ g2Þ�h;

�ðrgrÞr ¼ 1

r
ðah� cgÞcþ 8�2�2r½1� ðh2 þ g2Þ�g; (3)

together with the constraint equation

�2ðhgr � ghrÞ � 1

r2
ðacr � carÞ ¼ 0: (4)

The subscript r denotes ordinary differentiation with re-
spect to r. The energy density now reads

E ¼ 1

4r2
ða2r þ c2rÞ þ 1

4
�2

�
ðh2r þ g2rÞ þ 1

r2
ðah� cgÞ2

þ 4�2�2½1� ðh2 þ g2Þ�2
�
; (5)

the total energy E given by E ¼ 2�
R
rEdr.

The embedded Abelian solutions, namely, the solutions
to the embedded Abelian subsystem, correspond to the
truncation fc ¼ 0; g ¼ 0g. These are the ANO vortices
which play an important role in the classification of the
non-Abelian vortices we have constructed. In particular we
will study the dependence of these on the parameter �, so it
is pertinent at this point to note that the critical configura-
tion of the Abelian vortices corresponds to the value � ¼ 1

4 .

This is the Bogomol’nyi limit where the Abelian vortices
do not interact.

IV. NUMERICAL RESULTS

In order to generate vortex solutions to Eqs. (3) and (4),
we impose boundary conditions such that the energy of the
solutions is finite and both the gauge and the Higgs field
functions are regular at the origin. The system of equations
is solved numerically by means of a collocation method for
boundary-value ordinary differential equations, equipped
with an adaptive mesh selection procedure.
The only free parameters are n and �, since we fixed the

unit of length by setting � ¼ 1 in what follows. For fixed
finite values of these parameters, only a finite number of
regular solutions exist. There always exists one Abelian
solution (ANO solution) for any n and �ð� 0Þ. For small
values of �, this is the only possible solution. However, as
� increases new non-Abelian solutions branch off the
Abelian ones. With increasing �, more and more non-
Abelian branches appear, their number becoming infinite
for � ¼ 1. For given n, all of the non-Abelian solutions
have energy lower than that of their Abelian counterparts
for each value of �. This branch structure of the solutions is
exhibited in Fig. 1 where the energy per vortex number,
E=n, is plotted versus the constant � for n ¼ 1, 2.
In this figure we observe the first two non-Abelian

branches for n ¼ 1 and the first three ones for n ¼ 2.
The lowest non-Abelian branch branches off the Abelian
solutions at � � 3:705, 0.975, for n ¼ 1, 2, respectively. It
is clearly seen that higher values of the vorticity n allow for
new non-Abelian branches at lower values of �. This is
more explicitly shown in Fig. 2, where the locations of the
first branching points for n ¼ 1, 2, 3 are given.
The structure of non-Abelian branches may be labeled

by the pair (n, m), n being the vorticity and the integer m
indicating the specific non-Abelian branch for that vortic-
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ity n (lower m means lower energy). Notice that the
Abelian solutions behave in a different way, which we
will emphasize below. In fact, although Abelian solutions
exist for any nonvanishing value of �, for each non-Abelian
branch there exists a minimal value of �, �min

ðn;mÞ (which
depends on n andm), below which the non-Abelian branch
ceases to exist. In fact, at that minimal value the non-
Abelian branch matches the corresponding Abelian branch
for that value of n, so �min

ðn;mÞ corresponds to the branching

points where non-Abelian branches start to exist.
A remarkable fact in Fig. 2 is that the gap between

neighboring branching points is roughly constant for
each n on logarithmic scale for �. More precisely, the
quantity n½logð1þ �min

ðn;mþ1ÞÞ � logð1þ �min
ðn;mÞÞ� is roughly

constant and independent of (n, m). This feature becomes
more accurate for large �, revealing an underlying struc-
ture in the non-Abelian sector in the limit � ! 1. In fact,
denoting the energy of the (n, m) non-Abelian solutions by
Eðn;mÞ ¼ Eðn;mÞð�Þ, one observes in Fig. 1 that for each m
the energy per vortex number tends to a limit which does
not depend on n but only on m.

It turns out that

lim
�!1

Eðn;mÞð�Þ
n

¼ 2�m; (6)

the energy per unit vorticity is equal to the energy of the
unit vortex. Hence, non-Abelian vortices with given m are
noninteracting in that limit. Figure 3 shows this limit for
n ¼ 3 solutions. In that figure it is clearly seen that in the
large � region the ratio E=ð2�nÞ approaches the integer
value m that labels the non-Abelian branches. One ob-
serves an infinite number of non-Abelian branches for
each n emerging from the logarithmically divergent
Abelian profile, each converging to a finite limit.
One can understand this feature as follows. We have

verified that in this limit the contribution of the potential
term in Eq. (1) to the energy of the non-Abelian vortices
vanishes. (This contrasts with the corresponding situation
for the vortices of the Abelian Higgs model.) Thus, the
YMH theory supporting the non-Abelian vortices becomes
a Oð3Þ sigma model on R2 in this limit [22]. Likewise, in
our case the vanishing of the Higgs potential leads to the
Oð3Þ sigma model constraint, resulting in the SOð3Þ
gauged Oð3Þ model, which unlike in the Weinberg-Salam
(WS) case [23], does not satisfy the Derrick scaling re-
quirement for finite energy. To this end, we have verified
that in this limit the contribution to the energy of the YM
term TrF2 in Eq. (1) also vanishes, consistently with the
Derrick scaling requirement, and that indeed the YM po-
tential becomes a pure-gauge in this limit. Thus, the only
contribution comes from the TrD�2 term in Eq. (1), which
in this case reduces to Tr@�2 of the scale invariant Oð3Þ
sigma model on R2. Our non-Abelian vortices in this limit
are described by the radially symmetric vorticity-n subset
of the noninteracting self-dual Belavin-Polyakov ferro-
magnetic vortices [20].
The effect of non-Abelianness on YMH solutions affects

not only the energy values, which become lower for non-
Abelian solutions, but also to the way the energy is dis-
tributed throughout space. Both for Abelian and non-
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FIG. 2. Location of the first branching points for n ¼ 1, 2, 3.
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tential coupling constant � for YMH solutions with n ¼ 3.

 0

 3

 6

 9

12

15

0 3 6 9

E
/n

log(1+λ)

n=1n=2

Abelian
non-Abelian m=1
non-Abelian m=2
non-Abelian m=3

FIG. 1. Energy per vortex number E=n versus the Higgs
potential coupling constant � for YMH solutions with n ¼ 1, 2.
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Abelian configurations, solutions are radial for n ¼ 1 (their
energy density having the global maximum at the origin)
and circular for n > 1 (their energy density having the
global maximum at a finite nonvanishing value of r). For
ring-shaped configurations (n > 1), as the solutions are
more non-Abelian (lower values of m) the energy density
profile spreads: the maximum is moved to higher values of
r and its height decreases. In addition, the value of the
energy density at the origin tends to zero, the profile
becoming more and more ringlike. This result is demon-
strated in Fig. 4 where the energy density profiles of YMH
solutions with n ¼ 3 and � ¼ 20:0 are shown.

V. CONCLUSIONS

As a final comment on the possible physical status of our
solutions, we emphasize that the model on R2 employed
here is precisely that which supports monopoles on R3.
Interestingly, this YMH model on R3 supports also
monopole-antimonopole solutions, constructed in [26].
This describes a consistent picture where our vortices are
candidates for flux tubes starting and ending on monopoles
of opposite polarities. Our results are qualitatively consis-
tent with the picture in [26]. In particular for vorticities
n � 3, the energy density distribution in the monopole-
antimonopole configuration presents a ring-shaped density
situated on the symmetry plane (the R2 plane where our
vortices exist) much like the circles in Fig. 4.
We conclude by noting that the vortices constructed are

genuinely non-Abelian, but are not endowed with a topo-
logical lower bound. That leads us to expect that these non-
Abelian solutions are unstable for finite values of �, even
though the limiting solutions, namely, the Belavin-
Polyakov vortices for � ! 1 are stable.
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