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Supersymmetry between Jackiw-Nair and Dirac-Majorana anyons
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The Jackiw-Nair description of anyons combines spin-1 topologically massive fields with the discrete
series representation of the Lorentz algebra, which has fractional spin. In the Dirac-Majorana formulation
the spin-1 part is replaced by the spin 1/2 planar Dirac equation. The two models are shown to belong to
an N = 1 supermultiplet, which carries a super-Poincaré symmetry.
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In the by now standard description of anyons due to
Jackiw and Nair [1], the spin 1 representation carried by
the topologically massive (TM) vector system [2,3] is
combined with fractional spin. The latter is carried by an
internal space (namely the Poincaré disc model of the
Lobachevsky plane) [4], described by a complex coordi-
nate z. A “Jackiw-Nair” (JN) wave function is,

Fu(zx) =Y fu2FL ), (1)

where the f, = ¢,7", ¢, = V[ Q2a + n)/TQRa)'(n + 1),
is restricted to the unit-disk [1,4]. The f,,n=0,1,2,...,
span an infinite dimensional orthonormal basis in internal
space. F,(x) is, for each internal index n, a TM wave
function. Then Jackiw and Nair propose to describe anyons
by the equations

(PM\\NS; _B+m)F=Or B+ =a—1: (2)

where @ > 0." Here F = (F ) and J; generates the direct
sum of Lorentz algebras, I} = J; + j,, where (J;;),* =
iew,)‘ generates the spin 1 representation of the Lorentz
algebra, and j,, carrying a fractional spin, belongs to the
discrete series of the Lorentz algebra (D}) [1]. J; acts on
the vector index of the field F,,, and j, acts on its “frac-
tional” part, labeled by n. The “internal” representation
can be realized as,

. . 1+ 2
Jo =20, + a, 1= Jd, — «,
2
L— 2 (3)
. - Z .
Jo = —I ) d, tia.
The Lorentz Casimir j*j, = —a(a — 1) is constant, so

the representation is irreducible.
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"The restriction to @ > 0 can in fact be removed, and leads to
interpolating anyons which correspond to nonunitary represen-
tations [5].
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Eqn. (2) fixes only one of the Casimirs of the planar
Poincaré group, and must therefore be supplemented with
subsidiary conditions. Those chosen by Jackiw and Nair
[1] are equivalent to

PHF, =0, et AP, j,F) = 0. “4)

Equations (2) and (4) imply the Klein-Gordon equation
with mass m, while (2) fixes the second Casimir operator of
the Poincaré group,

P#(_G}LV)\XVP)‘ + :S,Z) = B+m' (5)

Hence, the spinis 8, = a — 1. Eqns. (2) and (4) imply the
equation of the TM theory,

D ,F, = (i€, ,"P* + m§,")F, = 0. (6)

Conversely, it can be shown [5] that (2) and (4) together are
equivalent to imposing the TM equations (6), augmented
with the Majorana equation

(P*j, —am)F = 0. 7

The Jackiw-Nair theory is, hence, equivalent to the coupled
TM-Majorana system (6) and (7).

In another, slightly different approach [6], the anyon
field is described rather by a spinor,

Yo 2) =D g, i), (P, — B-m)p =0,
B-=a—} ®)

where the J, = J, +j, with (J,)," = —1(y,)." gen-
erate the spin 1/2 representation of the planar Lorentz
group. Instead of the TM equation (6), the field is required
to satisfy the planar Dirac equation,

Dab¢b = (PM’)/'U' - m)ab¢b =0. (9)

Note that the Dirac (9) and Majorana (7) equations [with ¢
replacing F] imply

(py* + B¢ =0, i€“" P, j, YAy =0 (10)
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as consistency conditions, which eliminate the redundant
modes [6].

The aim of this paper is to show that the Jackiw-Nair and
Dirac-Majorana approaches are two facets of the same
supersymmetric system: they are in fact, superpartners.
To this end, we note first that a fractional spin field can
be described, in both approaches, by equations of the same
form,

D y* =0,

= o —

1
(PHj, —am)p= =0, withspin{ﬁ_ 21 , (1D

+ T o
where D™ = ® and D~ = D are the operators in TM and
the Dirac equations (6) and (9), respectively, and we put
¥~ = ¢ and " = F. We note for further reference that,
in both frameworks, the posited first-order equations imply
that the field satisfies the Klein-Gordon equation.

The (fractional) spins of the fields ~ and " are
shifted by B_ — B, = 1/2, and have the same masses.
They can therefore be unified into a supermultiplet along
the same lines as done recently for the TM and Dirac fields
[5,7]. We posit

(P, J* —amV¥ =0, (Prj, —am)¥ =0, (12)

where W is formed by putting together the Dirac-Majorana
and Jackiw-Nair (1) fields,

qr:(z;),

_1
2for

v=(")
~(5)

The first equation in (12) here is the supersymmetric
equation which unifies the Dirac and TM equations [7],
and is supplemented by the Majorana equation.

The total spin operator, B=a+a=
diag(B_1,, B, 15) takes the value B~ on the subspaces
spanned by the Dirac-Majorana and the Jackiw-Nair field,
respectively.

Lorentz transformations are generated by ¢,

—€,,X"P* + 3, where J, = diag(J,, ) is block—
diagonal with irreducible components acting on the
Dirac-Majorana and Jackiw-Nair components of the super-
multiplet. Augmented with translations P, yields the
Poincaré algebra,

and @4 is a_ =

and o, = —1, for

[P, P,]=0, [V, P,]=
[EIRM, }IRV] = _l.E,u(V/\}IR/\.

_ifl“,)LP)‘, (13)
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The Lorentz algebra generated by 7, can be extended
into the superalgebra 03p(1]2) by adding the off-diagonal
0 O

matrices
0 1 1
L.=+2 i = )
: (Qé,/ o) er=(i o)
0, - 1 0 O (14)
2a 01 —i)

The operators L, form a Lorentz spinor, [ w L A] =
%(y u) AELE and interchange ¢ and F (where we returned
to our original notations).

They do not preserve the physical states defined as

solutions of the Dirac and TM equations, respectively.
Consider instead the supercharges

Qa= (P,y* — Rm),BLg, (15)

\/_

where R = diag(—1,, 13) is the reflection operator,
{R, L é} = 0, which transform a two-component Dirac field

into a three-component TM field F’ and conversely.
Explicitly,

NGNS
2. =(F)- (Zgn(Z)QAM“t//Z(X))' (o

A general SUSY transformation is a linear combination of
the Q@ 48, @ = {29 4. Moreover,
Dby} = {A(QMMD YF, 0, B (PP + m)F )

a7)

\/_

1
D,7F, = gﬂ(— 19, Dy,
- J_ 0u (P> 4 m),), (19)

showing that ¢, satisfies the Dirac equation if and only if
F!, satisfies the TM equation.

Now the Majorana equations are intertwined by the
SUSY transformation,

(PEj, — am) i, = (A(Q 1, #(P"j, — am)F,) = 0,
(19)

(PHj, — am)Fl, = {A(Q,,,“(P"j, — am)ih,) = 0
(20)

allowing us to conclude that the Q_é in (15) generate

indeed a supersymmetry transformation between the two,
DM and JN, sectors.

*Underlined capitals denote 0&p(1|2) spinors.
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Completing the Poincaré algebra (13) by the super-
charges (15),

(Qu Qut = 2PYhas + 5 [(TPas(P + m?)
— 2Py 5(PT — am)] (2)

where (Py), p means P*y, ,Secp.
On shell, the unified system carries therefore an N = 1
super-Poincaré symmetry. The super-Casimir is C =
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PrT, — 1[92, Q5] = m(a — 3/4) a constant, showing
that the representation is indeed irreducible.

We note, in conclusion, that the supersymmetry of the
two, Dirac-Majorana (DM) and Jackiw-Nair (JN) types of
anyons proved here explicitly had to be expected from that
of the “carrying” spin 1/2 and spin 1 spaces [2,5].
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