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The large-scale curvature perturbations induced by spectator anisotropic stresses are analyzed across

the matter-radiation transition. It is assumed that the anisotropic stress is associated with a plasma

component whose energy density is subdominant both today and prior to photon decoupling. The

enforcement of the momentum constraint and the interplay with the neutrino anisotropic stress determine

the regular initial conditions of the Einstein-Boltzmann hierarchy. The cosmic microwave background

observables have shapes and phases which differ both from the ones of the conventional adiabatic mode as

well as from their nonadiabatic counterparts.
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Supplementary anisotropic stresses may arise before
matter-radiation equality for diverse physical reasons. For
instance, on a phenomenological ground, one is often led to
consider a putative anisotropic stress associated with the
dark-matter component [1]. Along a similar line it is also
legitimate to consider the possibility that the dark-energy
component is endowed with an appropriate anisotropic
stress [2]. The two possibilities mentioned so far are char-
acterized by a common feature: in both cases the aniso-
tropic stress is attributed to species which are dominant (or
just slightly subdominant) today. This is the case for the
dark-matter and for the dark-energy components in the
�CDM paradigm whose basic parameters will be taken
to coincide, for the purposes of the present analysis, with
the ones determined by analyzing the WMAP 5 yr data
alone1 [3,4]. The purpose of the present paper is to scruti-
nize the situation where the source of large-scale inhomo-
geneity resides in a spectator anisotropic stress whose
associated energy density is subdominant today. It will be
argued that the ‘‘stressed’’ initial conditions for the CMB
anisotropies constitute an intermediate case between the
purely adiabatic and the purely nonadiabatic initial con-
ditions (see, e.g., [5]). The energy-momentum tensor of the
spectator fluid can be parametrized as

T 0
0 ¼ �s�x; T j

i ¼��spx þ�j
i ; T i

0 ¼ 0; (1)

where �spx ¼ wx�s�x and @i@j�
ij ¼ ðp� þ ��Þr2�x;

p� and �� are the pressure and energy density of the

photons; the ð0iÞ components of the energy-momentum
tensor of the spectator field are set to zero since it is of
higher order when the energy density and pressure of the
same field are fully inhomogeneous (i.e. they do not have
homogeneous background contribution). The barotropic
index wx will be taken to be constant for the purposes of
the present investigation. In the present paper, only the
scalar fluctuations of the metric will be considered: the
symbol �s appearing in Eq. (1) denotes the scalar fluctua-
tions of the corresponding quantity. The time evolution of
the system2 will be parametrized in terms of the scale
factor að�Þ normalized at equality, i.e. � ¼ a=aeq; within

this parametrization the evolution equations for the fluctu-
ations of the geometry and of the sources shall be written in
Fourier space and in terms of the rescaled wave number
� ¼ k�1; if � < 1 the given wavelength exceeds the
Hubble radius right before the equality time. In the oppo-
site case (i.e. � > 1) the given wavelength is smaller than

the Hubble radius at the same time �1 ¼ ð ffiffiffi
2

p þ 1Þ�eq. In
the synchronous coordinate system the perturbed entry of
the geometry reads3

�sgijð�;�Þ ¼ a2eq�
2ð�Þ

�
�̂i�̂jhþ 6�

�
�̂i�̂j �

�ij

3

��
; (2)

where hð�;�Þ and �ð�;�Þ describe the scalar fluctuations
of the metric and enter also the contravariant components
of the energy-momentum tensor, i.e.
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1For sake of concreteness the values of the cosmological

parameters used in the present paper will be taken to
coincide with the parameters arising from the 5 yr best fit to
the WMAP data alone, i.e., using standard notations,
ð�b0;�c0;��; h0; ns; 	reÞ ¼ (0.0441, 0.214, 0.742, 0.719,
0.963, 0.087), where 	re denotes the optical depth to reionization
and ns the spectral index of (adiabatic) curvature perturbations.

2Without loss of generality the space-time geometry will be
taken to be conformally flat implying that the background
geometry can be written as �g
� ¼ a2ð�Þ�
� where �
� �
diagð1;�1;�1;�1Þ is the Minkowski metric with signature
mostly minus.

3The conventions employed in Refs. [6,7] differ from the ones
employed here (and match the ones of [8] and references
therein).
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�sT
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2
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0i ¼ 1

a2eq�
2
ðpt þ �tÞvi

t;

�sT
ij ¼ 1

a2eq�
2

�
�spt�

ij þ 2pt

�
���ij þ �̂i�̂j

2
ðhþ 6�Þ

�

��ij
t

�
; (3)

where �ij
t denotes the total anisotropic stress. Introducing

the density contrasts for neutrinos, photons, CDM particle,
and baryons (i.e., respectively, ��, ��, �c, and �b) as well

as �x ¼ �s�x=��, the fluctuation of the total energy den-

sity and the total anisotropic stress are4

�s�t ¼ �t

�
�RðR��� þ R���Þ þ�M

�
!c0

!M0

�c þ !b0

!M0

�b

�

þ R��R�x

�
; (4)

�i�j�
ij
t ¼ �2

�
ðp� þ ��Þ�� þ

X
a

ðpa þ �aÞ�a

þ ðp� þ ��Þ�x

�
; (5)

where �Rð�Þ ¼ 1=ð�þ 1Þ and �Mð�Þ ¼ �=ð�þ 1Þ;
��ð�;�Þ denotes the neutrino anisotropic stress; R� ¼
0:4052, R� ¼ ð1� R�Þ, and Rbð�Þ ¼ ð3=4Þ�b=�� ’
0:215� denote, respectively, the neutrino fraction, the
photon fraction, and the ratio of the baryon and photon
energy densities (weighted by a factor 3=4 which arises in
the photon-baryon sound speed). In Eq. (5) a sum over
other potential components has been added: these compo-
nents could account for the possible stresses arising either
in the dark-matter or in the dark-energy sectors (see, e.g.,
[1]) but will not be explicitly considered hereunder. The
timelike and the spacelike components of the covariant
conservation of the energy-momentum tensor of Eq. (1)
demand, respectively, that

@�x

@�
þ 3wx � 1

�
�x ¼ 0; �xð�;�Þ ¼ 4

3wx

�xð�;�Þ:
(6)

In the � parametrization the Hamiltonian and the momen-
tum constraints read, respectively,

@h

@�
¼ �2�

2ð�þ 1Þ�� 3

�

�
�RðR��� þ R���Þ

þ�M

�
!c0

!M0

�c þ !B0

!M0

�b

�
þ R��R�x

�
; (7)

�2�2 @�

@�
¼ � 4ffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ 1
p

�
R�
� þ R�½1þ Rbð�Þ�
�b

þ 3

4

!c0

!M0

�
c

�
; (8)

where 
�b ¼ 
� ’ 
�b represents the common value of the

photon and baryon velocities; the same identification will
be made hereunder [see Eqs. (14) and (15)] and it is fully
justified to lowest order in the tight-coupling approxima-
tion. Defining the variable Q ¼ ðhþ 6�Þ, the remaining
two (perturbed) Einstein equations can be written as

@2h

@�2
þ 5�þ 4

2�ð�þ 1Þ
@h

@�
� �2�

2ð�þ 1Þ
¼ 3

�2ð�þ 1Þ ½R��� þ R��� þ 3wxR��x�; (9)

@2Q
@�2

þ 5�þ 4

2�ð�þ 1Þ
@Q
@�

¼ �2�

2ð�þ 1Þ þ
12

�2ð�þ 1Þ ðR��� þ R��xÞ: (10)

The evolution equations of the neutrinos obey

@��

@�
¼ � 2
�

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p þ 2

3

@h

@�
;

@
�
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(11)
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15

@Q
@�

� 3
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The evolution equations of the dark-matter sector obey
instead

@�c

@�
¼ � 
c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p þ 1

2

@h

@�
;

@
c
@�

þ 
c
�

¼ 0: (13)

The system of photons and baryons can be treated, within
an excellent approximation, to lowest order in the tight-
coupling expansion where the quadrupole of the photons
vanishes and the governing equations are given by

@
�b
@�

þ Rb
�b
�ðRb þ 1Þ ¼

�2��

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p ðRb þ 1Þ ; (14)

@��
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¼ � 2

3


�bffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p þ 2

3

@h

@�
;

@�b

@�
¼ � 
�b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p þ 1

2

@h

@�
:

(15)

From Eq. (6), it follows that P�ð�; �Þ ¼
½4=ð3wxÞ�P�ð�Þð�=�iÞ1�3wx , where P�ð�;�Þ denotes
the power spectrum of �x while P�ðkÞ denotes the power
spectrum of �x whose explicit expression is assigned as
P�ðkÞ ¼ Bðk=kpÞnx�1; kp ¼ 0:002 Mpc�1 is the pivot

4Using standard notations !c0 ¼ h20�c0, !b0 ¼ h20�b0, and
!M0 ¼ h20�M0.
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scale at which the power spectrum coincides with its
amplitude B. Diverse initial conditions can be imposed
to the whole system of equations. They are customarily
divided into adiabatic and nonadiabatic [5,9] (see also
[6,7]). The adiabaticity condition together with the con-
straints on the evolution of the fluctuations implies the
following set of initial conditions:

��ð�;�iÞ ’ ��ð�;�iÞ ’ 3
4�bð�;�iÞ ’ 3

4�c ¼�R��xð�;�iÞ;
��ð�;�iÞ ¼ 0; (16)


�ð�;�iÞ ’ 
�bð�;�iÞ ’ 
cð�;�iÞ ’ 0;

�xð�;�iÞ ¼ 3wx

4
�xð�;�iÞ;

(17)

where �i denotes the initial integration time when the
neutrino anisotropic stress vanishes exactly. We are now
interested to see what happens to the neutrino anisotropic
stress when the initial conditions of the system obey
Eqs. (16) and (17). The results of the numerical integration
are illustrated in Fig. 1 for different values of wx and
different values of �. The initial conditions are set in the
limit � � �dec, where �dec ¼ adec=aeq denotes the value

of � at photon decoupling (for the best fit to the 5 yr
WMAP data alone �dec ’ 2:92 as indicated in Fig. 1 with
the vertical line in the plot at the left). If wx > 1=3 the
anisotropic stress is driven to zero; if � � 1, then��ð�;�Þ
will not oscillate for � � 1 while in the opposite case (i.e.
� > 1) the neutrino anisotropic stress will be oscillating for
the same range of �. If wx ¼ 1=3 the asymptotic value of
��ð�;�Þ will be, approximately, �R�=R��xðk; �decÞ for
� < 1; in the opposite case (i.e. � > 1) �� will oscillate
around the same asymptote reached in the � < 1 case. A
similar phenomenon has been discussed, in the past, in the
case of large-scale magnetic fields which affect the aniso-
tropic stress but which also interact with the charged
particles [10]. Finally notice that, if wx < 1=3, �xð�;�Þ
grows with � and might even get dominant. This situation
is more similar to the one treated in [1] and will not be
specifically addressed here. From the numerical solution of

the system in terms of hð�; �Þ and �ð�; �Þ one can also
compute other fluctuations with relevant gauge-invariant
interpretation such as the curvature perturbations on co-
moving orthogonal hypersurfaces (i.e. R), the density
contrast on comoving orthogonal hypersurfaces (i.e. 	m),
and also � the curvature perturbations on constant density
hypersurfaces (see, e.g. [11]). Denoting with �i � 1 the
value of � at the onset of the numerical integration,
�ð�;�Þ / lnð�=�iÞ provided ��ð�; �iÞ ! 0 since 
� and

�b are both proportional to �2�.

It is interesting to assume now that the whole source of
large-scale inhomogeneity resides in the spectator aniso-
tropic stresses. Could we get reasonable shapes of the
CMB observables in the absence of the conventional adia-
batic mode? The answer is negative and it is contained in
Fig. 2 where the temperature autocorrelations (i.e. TT
power spectra) and the temperature-polarization cross cor-
relations (i.e. TE power spectra) are computed in the most
favorable case, i.e. wx ¼ 1=3. In both plots of Fig. 2 the
full line illustrates the WMAP 5 yr best fit (in terms of the
WMAP data alone and in the case of the conventional
adiabatic mode) while the dashed and dot-dashed lines
refer to the case of the spectator stresses with different
spectral indices (one of them coinciding with the one of the
standard adiabatic mode). For the purposes of Fig. 2, the
amplitude of the power spectrum of the anisotropic stress
has been taken to beB ¼ 2:41� 10�9. In spite of possible
adjustments in the amplitude as well as in the pivot scale,
the shapes of the TTand TE correlations cannot be made to
coincide either with the ones of the conventional adiabatic
mode nor with the typical patterns of the isocurvature
modes.
The numerical integration has been carried on by using,

as initial conditions of the Boltzmann solver, the result of
the numerical integration of the explicit system discussed
above. The matching regime between the two regimes
coincides with � ’ 10�4 when the tight coupling between
baryons and photons is valid. The first regime of evolution
dictated by the equations derived here avoids a potentially
stiff problem if � is initially very small. The Boltzmann
solvers is a modified version of [8,12] which, in turn, is
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FIG. 1 (color online). The relaxation of the neutrino anisotropic stress for different values of wx and �.
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based on [6,7]. From Fig. 2 it appears that, as expected, the
shapes and phases of the TT and TE correlations obtained
in the case of the adiabatic mode (full lines in both plots)
differ from the ones induced by the spectator stresses
(dashed and dot-dashed lines in both plots of Fig. 2).
Spectator stresses can be treated and discussed in conjunc-
tion with a dominant adiabatic mode; absent of the adia-
batic mode the shapes of the TT correlations have
intermediate features between the isocurvature humps
of the CDM-radiation mode [5]. The situation is also
different from the case of the magnetized CMB observ-
ables when the adiabatic mode is absent [8] (see also [12]).
In [13] (first reference) it is claimed that large-scale mag-
netic fields provide the same shapes for the TT correlations
obtainable in the case of an adiabatic mode with appropri-

ate amplitude. The initial conditions derived in [10] have
been used in [13] (with supplementary typos) and then
subsequently criticized by a subset of the authors (see,
respectively, third and second references of [13]). Since
we find the references [13] self-contradictory we do not
want to comment on the possibility that a fully inhomoge-
neous magnetic field can seed structure formation in the
absence of an adiabatic mode (as, suggested in the first
reference of [13]). The present paper shows more modestly
that spectator stresses alone [as introduced in Eq. (1)] do

not reproduce the observed patterns of the TT and TE
correlations assuming the initial conditions given in (16)
and (17).
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FIG. 2 (color online). The TT and TE power spectra induced by the spectator anisotropic stress in the absence of the conventional
adiabatic mode (dashed and dot-dashed lines in both plots). The WMAP 5 yr best fit is reported, for comparison, with the full lines in
both plots. Double logarithmic scale is used in the plot at the left while a linear scale is employed in the plot at the right.
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