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Spacetime curvature plays the primary role in general relativity but Einstein later considered a theory

where torsion was the central quantity. Just as the Einstein-Hilbert action in the Ricci curvature scalar R

can be generalized to fðRÞ gravity, we consider extensions of teleparallel, or torsion scalar T, gravity to

fðTÞ theories. The field equations are naturally second order, avoiding pathologies, and can give rise to

cosmic acceleration with unique features.
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I. INTRODUCTION

Acceleration of the cosmic expansion is one of the
premier mysteries of physics and may be the clearest
clue to properties of gravity beyond general relativity.
Extensions to gravity have been considered by making
the action a function of the spacetime curvature scalar R
or other curvature invariants, by coupling this Ricci scalar
to a scalar field, by introducing a vector field contribution,
and by using properties of gravity in higher dimensional
spacetimes. Here we take a wholly different path, avoiding
the curvature completely, although our results will end up
with interesting relations to each of the above mentioned
theories.

Rather than use the curvature defined via the Levi-Civita
connection, one could explore the opposite approach and
use the Weitzenböck connection that has no curvature but
instead torsion. This has the interesting property that the
torsion is formed wholly from products of first derivatives
of the tetrad, with no second derivatives appearing in the
torsion tensor. In fact, this approach was taken by Einstein
in 1928 [1,2], under the name ‘‘Fern-Parallelismus’’ or
‘‘distant parallelism’’ or ‘‘teleparallelism’’. It is closely
related to standard general relativity, differing only in
terms involving total derivatives in the action, i.e. boundary
terms.

In this paper, we investigate extensions where a scalar
formed from contractions of the torsion tensor is promoted
to a function of that scalar. This parallels the concept of
extension of the Ricci scalar R in the Einstein-Hilbert
action to a function fðRÞ, which has attracted much atten-
tion in recent years as a way to explain acceleration of the
Universe [3,4]. The generalized fðTÞ torsion theory has the
advantage, however, of keeping its field equations second
order due to the lack of second derivatives, unlike the
fourth order equations (at least in the metric formulation)
of fðRÞ theory that can lead to pathologies.

II. COSMOLOGICAL EQUATIONS

We start with the Robertson-Walker metric for a homo-
geneous and isotropic space with zero spatial curvature:

ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj; (1)

where a is the expansion factor. The orthonormal tetrad
components eAðx�Þ relate to the metric through

g�� ¼ �ABe
A
�e

B
� ; (2)

where A, B are indices running over 0, 1, 2, 3 for the
tangent space of the manifold and �, � are coordinate
indices on the manifold, also running over 0, 1, 2, 3
(with i, j being the spatial indices).
The torsion tensor and permutations (note the different

symmetry properties from the curvature case), are

T�
�� � �e�Að@�eA� � @�e

A
�Þ; (3)

K��
� � � 1

2
ðT��

� � T��
� � T�

��Þ; (4)

S�
�� � 1

2
ðK��

� þ �
�
�T��

� � ��
�T

��
�Þ: (5)

In place of the Ricci scalar for the Lagrangian density, one
has the torsion scalar (also see [5])

T � S�
��T�

��; (6)

and the gravitational action is

I ¼ 1

16�G

Z
d4xjejT; (7)

where jej ¼ detðeA�Þ ¼ ffiffiffiffiffiffiffi�g
p

. For a more detailed deriva-

tion giving a clearer picture of the relation to general
relativity, with the difference arising in boundary terms,
see [6–9].
Following [5] we now promote T to a function, replacing

it in the action by T þ fðTÞ, in analogy to fðRÞ gravity
(see, e.g., [3,4]). The modified Friedmann equations of
motion are (cf. [5] with different notation)

H2 ¼ 8�G

3
�� f

6
� 2H2fT; (8)
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ðH2Þ0 ¼ 16�GPþ 6H2 þ fþ 12H2fT
24H2fTT � 2� 2fT

; (9)

where the Hubble expansion parameter H ¼ _a=a, a prime
denotes a derivative with respect to lna, � is the energy
density and P is the pressure. Evaluating Eq. (6) for the
unperturbed metric, one finds T ¼ �6H2, so one can use T
and H interchangeably.

Taking a universe with only matter (so P ¼ 0), we find
the solution TðaÞ in closed form:

aðTÞ ¼ exp

�
� 1

3

Z T

�6H2
0

d ~T
~T

1þ fT þ 2 ~TfTT
1� f= ~T þ 2fT

�
: (10)

One can also define an effective dark energy density and
equation of state

�de ¼ 1

16�G
ð�fþ 2TfTÞ; (11)

w ¼ �1þ 1

3

T0

T

fT þ 2TfTT
f=T � 2fT

¼ � f=T � fT þ 2TfTT
ð1þ fT þ 2TfTTÞðf=T � 2fTÞ : (12)

From the modified Friedmann equations (8) and (9) we
see that a constant f acts just like a cosmological constant,
and f linear in T (i.e. fT ¼ constant) is simply a redefini-
tion of Newton’s constant G.

III. RESULTS FOR COSMIC ACCELERATION

At high redshift, we desire general relativity to hold so
as to agree with primordial nucleosynthesis and cosmic
microwave background constraints. Therefore we want
f=T ! 0 at early times, a � 1. Regarding the future,
Eq. (9) says an asymptotic future de Sitter state (with H ¼
constant and w ¼ �1), for example, occurs when the
numerator (but not the denominator) vanishes. Many func-
tions fðTÞ can give a de Sitter fate for the Universe; here
we examine two models.

As a first example, consider a power law

f ¼ �ð�TÞn ¼ �6nH2n: (13)

From Eq. (8), the dimensionless matter density today

�m ¼ 8�G�mða ¼ 1Þ
3H2

0

¼ 1þ fðT0Þ
6H2

0

þ 2fT; (14)

so � ¼ ð6H2
0Þ1�nð1��mÞ=ð2n� 1Þ. The Hubble expan-

sion freezes in the future at the value H1 ¼ H0ð1�
�mÞ1=½2ð1�nÞ�. The effective dark energy equation of state
varies from w ¼ �1þ n in the past to w ¼ �1 in the
future. For example, solving the modified Friedmann equa-
tions numerically, for n ¼ 0:25 one has w0 ¼ �0:91 and
wða ¼ 0:5Þ ¼ �0:81; for this form of fðTÞ to be a viable
model compared to current data one needs n � 1.

Such a functional form as Eq. (13) results in a power of
H being added to the Friedmann equation and is equivalent
(at least at the background level) to the phenomenological
models of [10,11]. In [12] it was shown that such models
behave as freezing scalar fields, and, in particular, ap-
proach a de Sitter state in the future along the curve w0 ¼
3wð1þ wÞ. We have numerically solved the equations of
motion to verify that this holds for such an fðTÞ as well.
Note that n ¼ 1=2 gives the same expansion history as
DGP gravity [13,14], so fðTÞ gravity can be viewed as
having some connection to higher dimension theories.
Another fine tuning for the power law models is that one

has a similar condition to fðRÞ gravity in that the factor fT ,
acting to rescale Newton’s constant, should be small. The
condition is not as sensitive as in fðRÞ gravity, because
there R changes with scale so solar system and galactic
constraints impose tight bounds on fR. For fðTÞ theories, T
is much less scale dependent (of order ðk=HÞ2�2 [15]) so
the time variation of G gives the main limit. This again
imposes n � 1.
To keep the variation of the gravitational coupling small

within fðRÞ theory, [16] adopted an exponential depen-
dence on the curvature scalar. Here we explore a similar
exponential dependence on the torsion scalar as an ex-
ample. We take the form

f ¼ ��Tð1� epT0=TÞ; (15)

where � ¼ ð1��mÞ=½1� ð1� 2pÞep�. Note that there is
only one parameter, p, besides the value of the matter
density today, �m.
Figure 1 illustrates the behavior of the equation of state

for several values of p. At high redshift the model acts like

FIG. 1 (color online). Effective dark energy equation of state
is plotted vs scale factor for the exponential fðTÞ model of
Eq. (15). The model acts like a cosmological constant at high
redshift and in the future, crossing w ¼ �1 in between but in the
opposite manner from fðRÞ gravity.
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�CDM, then it deviates first to w>�1 then w<�1:
crossing w ¼ �1 in the opposite sense from fðRÞ grav-
ity—and asymptotically approaches a de Sitter fate. The
parameter pmainly controls the amplitude of the deviation
from w ¼ �1. No fine-tuning is needed, with p & 1 al-
lowed by current cosmological observations of the expan-
sion history.

IV. SUMMARYAND CONCLUSIONS

The class of fðTÞ gravity theories is an intriguing gen-
eralization of Einstein’s ‘‘new general relativity,’’ taking a
curvature-free approach and instead using a connection
with torsion. It is analogous to the fðRÞ extension of the
Einstein-Hilbert action of standard general relativity, but
has the advantage of second order field equations. We have
also seen that it can be related to the form of modifications
to the Friedmann equations due to higher dimensional
gravity theories such as DGP.

It is also related to scalar-tensor gravity. Writing the
gravitational action as

S ¼
Z

d4xjejfT þ fðTÞ þ ðT � AÞ½1þ fAðAÞ�g; (16)

one can view the last term as a Lagrange multiplier term
and find an equivalent scalar-tensor theory with A ¼ T and
an effective potential

Veffðc Þ ¼ T

1þ fT
� T þ f

ð1þ fTÞ2
; (17)

c ¼ � lnð1þ fTÞ: (18)

Furthermore, Einstein originally introduced teleparallel-
ism to obtain a vector field component of the field equa-
tions [2,17], intending to unify gravity and
electromagnetism. Recently, interest has grown in vector
fields, ‘‘Einstein aether theories,’’ as a way to obtain cos-
mic acceleration [18]. These theories can also give mod-
ifications to the field equations involving functions of H2,
i.e. T (see, e.g., [19]). Indeed they can be viewed as closely
related to torsion theories (see [7,8] for details).
Thus, torsion theories can unify a number of interesting

extensions of gravity beyond general relativity. In inves-
tigating the nature of gravitation, we may find that Einstein
presaged the acceleration of the Universe not only through
the cosmological constant but through a generalization of
‘‘Einstein’s other gravity.’’
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