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A collision of orbifold planes in 11 dimensions has been proposed as an explanation of the hot big bang

[1,2,10]. When the two planes are close to each other, the winding membranes become the lightest modes

of the theory, and can be effectively described in terms of fundamental strings in a ten-dimensional

background. Near the brane collision, the 11-dimensional metric is a Euclidean space times a 1þ
1-dimensional Milne universe. However, one may expect small perturbations to lead into a more general

Kasner background. In this paper we extend the previous classical analysis of winding membranes to

Kasner backgrounds, and using the Hamiltonian equations, solve for the wave function of loops with

circular symmetry. The evolution across the singularity is regular, and explained in terms of the

excitement of higher oscillation modes. We also show there is finite particle production and unitarity is

preserved.
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I. INTRODUCTION

The initial singularity problem remains an open question
in cosmology, and anymodel of the early Universe requires
a resolution of this paradigm. We know general relativity
breaks down close to it but there is hope that a theory of
quantum gravity can resolve the singularity. Recently,
interest has turned to the particular case of bouncing
models, where the question of how information propagates
across the big crunch/big bang transition has not been
completely solved. For example, in the ekpyrotic/cyclic
model this transition is assumed smooth with controlled
particle production [1,2]. In order to prove or disprove such
a statement, most people have used effective field theories,
constructed from string theory or other extensions of gen-
eral relativity. There is plenty of literature on this approach
to tackle the singularity problem (see for example [3]);
however, most of these effective theories break down near
the singularity, and perhaps one should be considering a
more fundamental description beyond general relativity,
such as string/M theory. One such approach is to directly
investigate the string equations of motion in a singular
background [4], with special attention being given to the
Milne universe [5,6]. Some authors have used this to argue
that this particular singularity cannot be resolved [6];
however, the results are not conclusive and in fact evidence
from a dual description such as investigated in [7] seems to
contradict the result. Furthermore, there is evidence that in
a big crunch/big bang transition in asymptotically anti-
de Sitter spacetime, the conformal field theory description
leads to a well-defined evolution of fields across the singu-
larity [8,9]. In [10], the authors proposed a novel approach

to explain the Milne singularity using 11-dimensional
membranes, which is a natural setup for the cyclic uni-
verse, as also discussed recently in [11]. In this paper, we
generalize this M-theory setup to more general back-
grounds, corresponding to the homogeneous and aniso-
tropic Kasner metrics. Such a background could well
result once we include the effects of small perturbations
in the background isotropic metric. Moreover, we also
make progress in the quantum evolution of such mem-
branes across the singularity.
In the M-theory model of [10], the singularity is de-

scribed by two orbifold planes that collide as the 11th
dimension, which separates them, disappears. The study
focuses on the evolution of membranes stretching from one
orbifold plane to the other, but, in particular, considers
winding membranes, which correspond to the lowest
Kaluza-Klein modes in ten dimensions. As argued in
[10], the winding membranes represent the lightest modes
and decouple from the bulk (heavy Kaluza-Klein) modes
when the 11th dimension is sufficiently small. From the
ten-dimensional point of view, these winding membranes
are described by perturbative string theory; hence, they
include perturbative gravity. The classical evolution has
been studied in the case of the Milne universe [12], and
some progress has been made to understand the quantum
theory of such modes, either by taking semiclassical ap-
proximations, such as the instanton calculations of [10] or
by prescriptions to linearize the classical equations of
motion, as in [12]. Furthermore, as shown in [13] the
classical evolution does not acquire finite-width �0 correc-
tions either far away from the singularity or very close to it.
Therefore, on either side of the singularity there are two
semiclassical regimes connected by a phase where quan-
tum corrections are important. In the present analysis the
story repeats, but in this case we quantize the action for
certain membranes—corresponding to circular strings
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from the ten-dimensional theory—and show how particle
production remains finite even though higher oscillation
modes are excited.

In the ekpyrotic/cyclic universe, the spacetime is well
described by the Milne universe near the orbifold collision
[1,2]. However, it is well known that as the singularity is
approached, any small perturbation to the Milne universe
can lead to a Kasner solution (see for example [14]).
Therefore, we believe it is important to show how these
winding membrane modes evolve across Kasner metrics.
The metric, g��, for an 11-dimensional Kasner spacetime

is given by

ds211 ¼ �dt2 þX10
i¼1

j�0tj2piðdxiÞ2; (1)

where �0 is a dimensionful positive constant, which for the
11th direction represents the rapidity at which the two
orbifold planes collide. The usual Kasner conditions hold
in 11 dimensions:

X10
i¼1

p2
i ¼ 1 ¼ X10

i¼1

pi: (2)

We have chosen the singularity to be at t ¼ 0, and we have
glued the manifolds before and after the singularity using
the absolute-value function. In general, t ¼ 0 is a curvature
singularity, and only for the particular case of pi ¼ 1 for a
given coordinate, does the solution become a direct prod-
uct of a nine-dimensional flat spacetime and the Milne
universe, with t ¼ 0 a coordinate singularity, which simply
represents the fact that we have made a bad choice of
coordinates in flat space. However, if the spatial coordinate
of the Milne metric is compact, then the singularity is a
conical singularity. This is the case of the cyclic universe
where the big crunch/big bang transition is modeled by an
orbifold collision, where the 11th dimension is compact
with a Z2 symmetry. The orbifold structure is not essential
for the present discussion, because our results only rely on
a very small compact 11th dimension, so we will forget
about this discrete symmetry. In other words, because we
are concentrating only on the Bosonic sector of the theory,
where all the string models have the same field content, our
results apply to either the heterotic or IIA limit of the M
theory.

When the 11th dimension, x10, is small enough we can
use a ten-dimensional description based on the Kaluza-
Klein reduction

ds211 ¼ e�2�=3ds210 þ e4�=3dðx10Þ2; (3)

where the dilaton is given by� ¼ 3
2p� lnj�0tj (with p10 �

p�), and the ten-dimensional metric reduces to

ds210 ¼ aðtÞ2ds2conf ¼ aðtÞ2
�
�dt2 þX9

i¼1

j�0tj2piðdxiÞ2
�
;

aðtÞ ¼ j�0tjp�=2; (4)

where we have assumed p� > 0, implying the 11th dimen-

sion disappears as t ! 0. As x10 ! 0 we can think of these
winding membranes as fundamental strings on the orbifold
planes feeling the metric (4). Alternatively, the winding
membranes can be thought of as strings with a time-
dependent tension living on the metric ds2conf , as will

become evident later. Since the string coupling is e�, for
really small times—close to the singularity—the strings
hardly interact, and one can take the free string action as a
good description. Therefore, we will focus our attention on
the propagation of free strings on the ten-dimensional
dilaton-Kasner background (4).
The paper is organized as follows: in Sec. II, we write

down the different actions for membrane excitations in 11
dimensions, and in the following section we solve the
classical equations of motion governing only winding
membranes with cylindrical symmetry. Section III is de-
voted to the quantum description of circular loops using a
Hamiltonian approach, before we finally conclude in
Sec. IV.

II. WINDING MEMBRANES

Our starting point is a Polyakov type of action for a
bosonic membrane of tension �2 in 11 dimensions

Spol ¼ ��2

2

Z
d3�Lpol; (5)

¼ ��2

2

Z
d3�

ffiffiffiffiffiffiffiffi��
p ð���@�x�@�x

�g�� � 1Þ; (6)

where x� are fields representing the position of the mem-
brane in a target space with metric g��. The worldvolume

spanned by the coordinates �� has a metric ���, and the

variation of this action with respect to ��� yields the

constraint ��� ¼ @�x�@�x
�g��, which can be substituted

back into the action to obtain the Nambu-Goto action,

SNG ¼ ��2

Z
d3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Detð@�x�@�x�g��Þ

q
: (7)

The first action is more convenient to analyze the quantum
behavior, whereas the second is more useful to describe the
classical evolution, as we will show below. As explained in
[10], the Hamiltonian can be constructed from the action
(6), leading to the constraints

H � 	�	�g
�� þ�2

2Detð@�̂x�@�̂x�g��Þ ¼ 0;

P �̂ � 	�@�̂x
� ¼ 0;

(8)

where 	� � @Lpol

@ _x� are the canonical conjugate momenta to

x�, _x� � @x�

@�0 , and the hatted indices run over the spatial
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dimensions of the membrane’s worldvolume. Therefore,
the most general Hamiltonian is

H ¼
Z

d2�

�
A

2
H þ A�̂P �̂

�
; (9)

where the two functions A and A�̂ represent the gauge
freedom of the membrane’s metric diffeomorphisms. We
consider a partial gauge where the momentum is always
orthogonal to the membrane, which is equivalent of choos-
ing A�̂ ¼ 0, and we will use the remaining gauge freedom
to simplify the equations of motion and obtain either
classical or quantum solutions. A winding membrane is
obtained by demanding its coordinates x� be independent
of one of the spatial membrane worldvolume coordinates
(say �2), except for the 11th dimension, which should be
proportional to �2. We choose x10 ¼ �2 (where �2 runs
from 0 to 1), so that after integrating with respect to �2 in
(7) we get an overall factor of j�0tjp� in front of the
effective string action.

III. CLASSICAL EVOLUTION

To describe the classical evolution of a winding mem-
brane in a Kasner background we use the t ¼ 
 gauge in
the Nambu-Goto type of action (7). Then the action re-
duces to

S ¼ ��2

Z
d�d
j�0tjp�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1�X9

i¼1

j�0tj2pið _xiÞ2
�X9
i¼1

j�0tj2pið@�xiÞ2
vuut ; (10)

where 
 � �0 and � � �1. For simplicity we will assume
�0 ¼ 1 during the calculations and then restore a general
�0 at the end. The equations of motion, in units of �2 ¼ 1,
read

_xi ¼ 	ijtj�2pi

�
;

_	i ¼ jtj2ðp�þpiÞ@�
�
@�x

i

�

�
;

_�i ¼ ðp� þ 2piÞjtj2ðp�þ2piÞ ð@�xiÞ2
t�i

;

�2i ¼ 	2
i þ jtj2ðp�þ2piÞð@�xiÞ2;

(11)

where the string energy density 	0 � � is given by

�2 ¼ X9
i¼1

jtj�2pi�2i : (12)

Using the last expression we can rewrite the differential
equation for �i in the following way:

@t

�
�2i

jtj2ðp�þ2piÞ

�
¼ � 2ðp� þ 2piÞ

tjtj2ðp�þ2piÞ 	
2
i ; (13)

which will be useful later. From (11), divergent solutions
arise when at least one of the Kasner exponents in the ten-
dimensional spacetime is negative enough to lead to a
divergent term in the energy density � at t ¼ 0, as previ-
ously shown by Tolley [15]. On the other hand, regular
solutions across t ¼ 0 are obtained if all pi � �p�=2. To

avoid divergences we will assume

pi � �p�=2 for all i: (14)

The divergent cases correspond to situations where, before
the singularity, one spatial dimension expands faster than
the contraction of the ten-dimensional conformal factor
aðtÞ, as appreciated in (4). We are more interested in
situations that are small perturbations away from the
Milne universe, but still close to it.
To construct a perturbative solution around the singu-

larity, one can expand the equations of motion (11) in terms
of the string tension, as was done in [12]. Formally, one
introduces a parameter � in place of the tension (i.e.
� ! ��) and solves iteratively the equations of motion
as a series in �. At the end, one sets � ¼ 1. As shown in

[12], the only equation where � appears is _	i ¼
�jtj2ðp�þpiÞ@�ð@�xi� Þ, whose solution to zeroth order in � is

	i ¼ 	ið0Þ, where 	ið0Þ ¼ 	ið0; �Þ is the loop momen-
tum at t ¼ 0. Assuming (14) holds, one can integrate
Eq. (13) and insert the solution of � and 	i in the _xi
equation, to obtain the zeroth order solution

xiðtÞ ’ xið0Þþ
Z t

t0

dt

� 	ið0Þjtj�2piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j
jtj�2pj½	2

j ð0Þþ ð@�xjð0ÞÞ2jtj2p�þ4pj�
r þOð�Þ;

(15)

where xið0Þ ¼ xið0; �Þ is the string shape at the singularity.
The last integral is finite; hence, the solution is regular at
t ¼ 0. In general, this integral has to be done numerically,
but there are specific string geometries or configurations
where the solution can be found analytically; this is the
case of a circular string.

A. Circular loops

For the rest of the paper we will focus on the circular
loop, which as explained in [12], is the classical analogue
of the dilaton field. The simplification rests on the fact that
the only dynamical coordinate is the radius of the circle.
Furthermore, to preserve the circular symmetry, the two
Kasner exponents of the plane where the loop oscillates
should be equal. Without loss of generality, we assume the
circular loop oscillates in the xy plane and has a center of
mass velocity v in the z direction, with the ansatz xi ¼
ðRðtÞ cosð�Þ; RðtÞ sinð�Þ; v
; 0; . . . ; 0Þ, and the Kasner ex-
ponents in these directions are p � p1 ¼ p2 and p3 ¼ pz.
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Under these assumptions the equations of motion (11)
simplify to

v ¼ 	zjtj�2pzþp

~�
; _	z ¼ 0; _R ¼ 	Rjtj�p

~�
;

_	R ¼ �jtj2p�þ3p R

~�
; _~� ¼ ðp� þ 2pÞjtj2ðp�þ2pÞ R

2

t~�
;

~�2 ¼ 	2
R þ jtj2ðp�pzÞ	2

z þ jtj2ðp�þ2pÞR2; (16)

where 	2
R ¼ 	2

1 þ 	2
2 and ~� ¼ tp�. Again, we can rewrite

the differential equation for �i using the last constraint,
namely,

@t

�
~�2

jtj2ðp�þ2pÞ

�
¼ � 2ðp� þ 2pÞ

tjtj2ðp�þ2pÞ ð	2
R þ jtj2ðp�pzÞ	2

zÞ:
(17)

Moreover, in the case of a circular loop it is not hard to find
another constraint by combining the different equations in
(16), given by

ðv2 þ _R2Þjtj2p þ _	2
Rjtj�2ðp�þpÞ ¼ 1: (18)

Notice that the speed (squared) of any point in the loop is
V2 ¼ V2

z þ V2
R ¼ ðv2 þ _R2Þjtj2p, which is unaffected by

the contraction or expansion of the plane of oscillation.
After a careful analysis of the second term in the last
constraint, one can be convinced that every point in the
string reaches the speed of light (V2 ! 1) as t ! 0, if the
inequalities (14) hold. As a result of this, the solutions are
not time invariant, and the outgoing mode is different from
the incoming one. Quantum mechanically this time asym-
metry is the origin of particle production and excitation of
higher order oscillation modes, as we will show later. This
effect is enhanced when the center of mass momentum 	z

vanishes. Furthermore, in the case when the bound (14) is
saturated for the p Kasner exponent, the speed of the loop
will be finite and generically smaller than the speed of
light; hence, there will not be a time asymmetry in the
solution, and no particle production or higher oscillation
modes will be expected across the singularity. This should
be expected, since the effective metric on the xy plane [see
Eq. (4)] neither contracts or expands when the bound (14)
is saturated for p.

Although the set of Eqs. (16) cannot be solved analyti-
cally everywhere, they can be solved approximately in
different regions, and these results can then be compared
to the full numerical solutions. The solutions evolve simi-
larly to those in [12], so we refer the reader to this previous
work for details. However, we would like to stress a few
general points, especially when more general Kasner ex-
ponents are considered and not only the Milne case, as it
was done in [12].

Far away from the singularity, the string does not feel the
contraction or expansion of the universe, and therefore, it
oscillates as if it lived in the ds2conf metric of Eq. (4), which

reduces to flat spacetime for the Milne universe. Following

the notation of [12], at a time t0 the winding membrane in
11 dimensions can be effectively described by perturbative
string theory in ten dimensions. Furthermore, the string

coupling e� ¼ j�0tj3p�=2 tends to zero as the singularity is
approached, hence the free string action becomes more
accurate closer the orbifold collision. By definition, t0
corresponds to the time where the string coupling hits
unity, namely,

t0 ¼ ��1
0 : (19)

The string tension is therefore�1 ¼ j�0t0jp�=2 ¼ 1, and its
length is ls ���1

1 ¼ 1. In terms of a quantum analysis we
would expect this regime to be well described by a semi-
classical solution, which can be obtained using the WKB
approximation. However, classically we start with a string
configuration in the metric ds2conf at time t ¼ �t0 and

evolve it toward the singularity. The solution crosses the
singularity and after it has reached a large enough positive
time (comparable with t ¼ þt0), we can trust the descrip-
tion of strings living on the metric ds2conf again. We aim to

compare both states, the ingoing and the outgoing states at
t ¼ �t0, respectively, to determine whether there was
particle production or excitation of higher vibrational
states. Quantum mechanically, it corresponds to calculat-
ing a mini S matrix, defined by the evolution of the
quantum ingoing states at t ¼ �t0 to the outgoing ones
at t ¼ þt0.
Starting from a large negative time in this adiabatic

vacuum (t ¼ �t0), the string evolves into the singularity
increasing its size, according to the contraction of the
conformal factor of the universe. By a simple rescaling
of the coordinates it is possible to show that the loop scales

as a power of 1=aðtÞ � t�p�=2. Once the size of the loop is
comparable to the averaged conformal Hubble radius
(� 1=jtj), the ‘‘stringy’’ quantum corrections become
really important, and the evolution can no longer be de-
scribed by a semiclassical analysis. Remember the string
coupling goes to zero as t ! 0; hence, only the �0 correc-
tions become important as the solution approaches the
singularity. As shown in [13], these �0 corrections modify
the semiclassical evolution, but in a finite way. Finally,
close to the singularity, there is another semiclassical phase
in which the modes freeze, stop oscillating, and cross the
singularity. In detail, the string ‘‘breaks’’ into string bits
that evolve independently of each other. In other words, the
spatial gradients that tie the string together become negli-
gible, and the evolution only depends on time. This phe-
nomenon is a consequence of the ultralocal behavior that
one expects near a cosmological singularity (see for ex-
ample [14]). At t ¼ 0, however, the string receives an
energy kick, because it has to travel at the speed of light,
which either increases or decreases the amplitude of the
outgoing mode, leading to classical gain or loss of energy.
Quantum mechanically this translates into particle produc-
tion, as we will discuss in the next section.
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Different Kasner exponents can dramatically change the
outcome because they play an important role close to the
singularity. In order to simplify the discussion, wewill only
consider the 	z ¼ 0 case, but the analysis can be easily
generalized for a nonzero center of mass momentum.
Therefore, from the equations of motion (16) one may
consider the exponents p and p� as two free parameters

of the model; however, the 11-dimensional constraints (2)
relate these parameters, together with the exponents of the
orthogonal directions. To simplify the argument, one may
think of the orthogonal exponents as being split into
two sets, the first being all the same (m of them) and the
other set being zero (6�m of them), i.e. pi ¼ �p (i ¼
3; . . . ; mþ 3) and pj ¼ 0 (j ¼ mþ 4; . . . ; 9). Then,

after solving for p� in terms of p and m using the con-

straints (2), one obtains

p� ¼ ½ð1� 2pÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 4p� 2ðmþ 3Þp2Þ

q
�=ðmþ 1Þ:

(20)

To get real exponents, p should lie between ð1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmðmþ3Þ=2p Þ=ðmþ3Þ�p�ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þmðmþ3Þ=2p Þ=
ðmþ3Þ. There is therefore a wider range of allowed values
for p as m increases, but also divergent solutions are more
likely to arise since p� may be smaller than �2p, and

especially for the negative branch of the p� solution above

(see Fig. 1).
To have a feeling of how sensitive the solutions are to the

Kasner exponents let us vary p around the Milne solution
(p ¼ 0 and p� ¼ 1). Figure 2 shows a slight variation

around the Milne universe, and even though the general
behavior remains similar, the amplitude and periodicity of
the outgoing modes strongly depends on the precise value
of the Kasner exponents. Figure 3 shows a more dramatic
change near the singularity when the Kasner exponents
are taken to be far away from the Milne universe. If

p

p

FIG. 1 (color online). Kasner exponent p� as a function of the
Kasner exponents in the xy plane (p) and the m equal-valued
Kasner exponents in the orthogonal directions. The blue solid
straight line is for m ¼ 0, the solid line ellipsis is for m ¼ 1 and
the blue dotted one for m ¼ 6. Divergent solutions which cannot
be followed across the singularity correspond to values of p�

below the red dashed line which only exist for m> 1.

t

t

FIG. 2. The radial coordinate R and the energy density ~�
evolving in time t for different Kasner exponents around the
Milne solution (p� ¼ 1 and p ¼ 0). The evolution is regular

across t ¼ 0, when the energy density takes its lowest value. The
solutions are not time reversal and strongly depend on the
Kasner exponents. We have assumed 	z ¼ 0, and the initial
conditions are Rð�t0Þ ¼ 1 and _Rð�t0Þ ¼ 0, with t0 ¼ 20.

t

R

FIG. 3. The radial coordinate R evolving in time t for different
Kasner exponents far away from the Milne solution (p� ¼ 1 and

p ¼ 0). For positive p the kick around the singularity is stronger
and the outgoing solution is drastically modified. On the other
hand, negative values for p, close to saturating the bound (14),
lead to relatively little modification of the outgoing solution,
resulting in less particle production, as will be explained in the
quantum model. We have assumed 	z ¼ 0, and the initial
conditions are Rð�t0Þ ¼ 1 and _Rð�t0Þ ¼ 0, with t0 ¼ 20.
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p��p�=2, the energy density has a very mild depen-

dence on jtj, so the modes do not feel the contraction or
expansion of the Universe. Therefore, there is no classical
energy production, and as we will see later, there is also a
mild particle production in the quantum theory, which
consistently tends to zero for p ¼ �p�=2. The opposite

case, when p is positive and relatively large, the string feels
effectively a larger contraction/expansion of the scale fac-
tor, which produces a big effect around t ¼ 0, and thus a
greater quantum production of particles.

As mentioned before, we can describe the evolution of
these strings as an expansion in the string tension around
t ¼ 0. Formally, we introduce a parameter � where the
string tension is and then truncate the expressions to the
desired order in �. Finally, we set � ¼ 1. This was done
above explicitly for a general string configuration to zeroth
order in the string coupling, and in the case of circular loop
(with 	z ¼ 0) the integral (15) can be solved analytically
to give

R ¼ R0 þ t
Signð	0

RÞ
ð1� pÞjtjp 2F1

�
1� p

2ðp� þ 2pÞ ;
1

2
; 1þ 1� p

2ðp� þ 2pÞ ;
R2
0

	0
R

jtj2ðp�þ2pÞ
�
þOð�Þ; (21)

where R0 and 	0
R are the values of R and 	R at t ¼ 0, and

2F1 is the Gauss hypergeometric function, defined as the
series

2F1½a; b; c; z� ¼
X1
n¼0

ðaÞnðbÞn
ðcÞnn! zn; (22)

with ðwÞn � wðwþ 1Þ . . . ðwþ n� 1Þ for any complex
number w. The hypergeometric function is well behaved
for all values of the Kasner exponents that satisfy the
bound (14). Solution (21) reduces to that found in [12]
for p� ¼ 1 (and p ¼ 0).

IV. QUANTUM DESCRIPTION

We now turn our attention to the more complicated
problem of quantization. If one tries to naı̈vely quantize
the classical Eqs. (11), all sorts of problems arise, because
of the square root present in the action. However, one can
take a different approach, by considering the Polyakov
type action and using the Wheeler-de Witt formalism,
namely,

Ĥ� ¼ 0; (23)

where � is the wave function of the string. However, it is
hard to proceed from here, because the Hamiltonian in-
cludes a term proportional to @�x

0 � @�t, so it is difficult
to synchronize the different points on the string and to talk
about a common time for the string. Fortunately, if we
restrict ourselves to circular strings where the only degree
of freedom is the radius of the loop, R, then the Hamil-
tonian simplifies enough for the problem to be tackled. In
order to preserve the circular symmetry in time, we also
need the Kasner exponents of the plane where the loop
oscillates to be equal, as we assumed in the previous
section. Moreover, a circular loop can have an initial center
of mass momentum perpendicular to the plane of oscilla-
tion. We take the circular winding membrane ansatz x�¼
ðtð
;�1Þ;Rð
Þcosð�1Þ;Rð
Þsinð�1Þ;v
;0; . . . ;0;�2Þ, where
without loss of generality we allow the string to oscillate
in the xy plane, with p1 ¼ p2 ¼ p, and a constant center of

mass velocity v in the z direction with Kasner exponent
p3 ¼ pz. Notice that the circular symmetry forces @�t ¼
0, which implies t is a function of 
 only. Then the
Hamiltonian (9), reduces to

H ¼
Z

d2�
A

2
½�ð	0Þ2 þ j�0tj�2p	2

R þ j�0tj�2pz	2
z

þ j�0tj2ðp�þpÞR2�; (24)

where, as mentioned before, we have chosen the partial
gauge A�̂ ¼ 0. To simplify this expression we can perform
a canonical transformation to a new time coordinate given
by ~t� t1þp, up to a constant factor. Finally, because the
Hamiltonian density does not depend on the spatial world-
volume variables, we can choose the extra gauge freedom
to fix A ¼ 2t2p=ðR d2�Þ, simplifying the Hamiltonian to

H ¼ �ð ~	0Þ2 þ 	2
R þ j�0~tj2ð~p�~pzÞ	2

z þ j�0~tj2ð~p�þ2~pÞR2;

(25)

where ~	0 ¼ tp	0 is the canonical momentum of ~t, and the
new Kasner exponents are

~p� ¼ p�=ð1þ pÞ; ~p ¼ p=ð1þ pÞ; (26)

where we assume p � �1 [which is consistent with (14)].
In fact, it is possible to rescale ~t and R (preserving the
Poisson brackets) in such a way that �0 only appears in the
	z term. Then, one can redefine the center of mass mo-
mentum to absorb the information of both, the orbifold
rapidity �0 and the loop’s center of mass momentum 	z,
into a single combined parameter, 	c, in the following
way:

	c ¼ �ð2�pþsÞ=ðsþ2Þ
0 	z; (27)

where

s � ~p� þ 2~p; �p � ~p� ~pz: (28)

Notice that making �0 larger increases 	c if �p >�s=2,
which is true within some open set of the allowed parame-
ter space of the Kasner exponents. Evidently, this open set
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includes the Milne universe (~p ¼ ~pz ¼ 0 and ~p� ¼ 1). So

in order to understand the physics of the cyclic model with
respect to the orbifold rapidity, in what follows, we will
consider Kasner combinations, which obey 2�p >�s=2.

However, solutions of the wave function using the
Hamiltonian (25) are messy when the term with 	c is
present; thus, we will focus our attention to the limit 	c !
0 first and then present the results for a nonvanishing 	c.
One can neglect 	c in two different limits: either when the
orbifold rapidity is very small compared to the loop’s
momentum, or when the center of mass velocity is small
enough on its own.1

A. Zero center of mass momentum

When dropping the center of mass momentum term,
some observables, such as the amount of particle produc-
tion, do not depend explicitly on the orbifold rapidity,
which is given by �0. This statement may sound like a
contradiction because we would expect more particles
being produced for larger collision rapidities, but if one
looks in more detail, the result is consistent with quantum
field theory in curved space. The basic idea of particle
production is to measure the ‘‘difference’’ between two
vacuum states, which in our case correspond to one in the
far past, before the singularity, and another in the far future.
However, a change in �0 not only changes the orbifold
rapidity but also the two vacua we are comparing, and for
the case of 	c ! 0 the changes are such that their effects
cancel each other.

Therefore, knowing that we can absorb �0 by a constant
rescaling of the variables in the case of negligible 	c, we
will set �0 ¼ 1 and then restore it in the final expressions.
Thus, for the present discussion we consider the simpler
Hamiltonian

H ¼ �ð ~	0Þ2 þ 	2
R þ j~tj2sR2: (29)

A canonical quantization (~	0 ! i@~t and 	R ! i@R) im-
plies that the Wheeler-de Witt equation (23) reduces to

½@2t � @2R þ jtj2sR2��ðt; RÞ ¼ 0; (30)

where we have dropped the tilde over the time variable for
simplicity, but the reader should remember that we are
actually still referring to ~t defined earlier. Equation (30)
corresponds to the Klein-Gordon equation with the poten-
tial of a harmonic oscillator with a time-dependent fre-
quency !ðtÞ � jtjs. There is a parallel line of thought to
understand this result: as was mentioned earlier, an alter-
native description of a string evolving across the metric (4)
is to think of a string oscillating in the spacetime ds2conf
with a tension that varies with respect to time (i.e. �1 ¼

�2j�0tjp�). From this point of view, a natural wave equa-
tion for the string is that of a harmonic oscillator in the
metric ds2conf with a time-dependent mass, which after a

change of variables can be recast into a time-dependent
frequency problem (see for example [16]). Furthermore,
when solving string equations in singular backgrounds, we
generally find harmonic oscillator equations with a time-
dependent frequency (see for example [17]).

1. Asymptotic solution

The first step to construct a solution to Eq. (30) is to
understand the asymptotic behavior, where the adiabatic or
WKB approximation provides a good approximation to the
true solution. Naı̈vely we would expect this to be in the
adiabatic regime when jtj is large enough; however, as
we will see later, the story is a bit more complicated, and
the adiabatic regime holds only for large T time

(T � tð2þsÞ=2).2 Nevertheless, we can still get a feeling of
the asymptotic solution if we set the frequency to be
constant, namely,

½@2t � @2R þ t2s0 R
2��ðt; RÞ ¼ 0; (31)

where t0 	 1. The wave function that solves this simpli-
fied equation is related to the usual harmonic oscillator
form, and is given by

�ðt; RÞ ¼ X1
n¼0

Hnðts=20 RÞ expð�ts0R
2=2Þ½A expðiEntÞ

þ B expð�iEntÞ�; (32)

where E2
n � ð2nþ 1Þts0 ¼ ð2nþ 1Þ!ðtÞ and HnðxÞ is the

Hermite polynomial of degree n. Notice that the energy
levels En are actually the square root of the usual harmonic
oscillator levels. To understand this, one can think of the
classical string analysis previously done, where in fact, the
Hamiltonian ~� [see Eq. (16)] is the square root of the
harmonic oscillator for constant time.
The asymptotic solution (32), provides a hint as to the

best ansatz we can adopt to obtain the general solution to
(30). Using the harmonic oscillator as a basis and replacing
t0 by t, we consider an ansatz of the form

�ðt; RÞ ¼ X1
n¼0

AnðtÞHnðjtjs=2RÞ expð�jtjsR2=2Þ; (33)

where the An’s are considered to be functions of time and
determine the evolution of the harmonic oscillator states
from the incoming vacuum at negative times to the out-
going modes far after the singularity. We can then use the

1Note that �0 < 1 is needed to start with loops inside the
Hubble horizon during the contracting phase, as shown in [12],
so that in this case 	z ’ 0 implies 	c ’ 0 (where we have also
assumed 2�p >�s=2).

2Remember the effective (2þ 1) metric where the string
oscillates is given by Eq. (4), namely, ds23d ¼ jtjp� ð�dt2 þ
jtj2pdx2 þ jtj2pdy2Þ ¼ ~jtjð~p�þ2~pÞð�d~t2 þ dx2 þ dy2Þ, where ~t�
tpþ1 and ~p� and ~p are given by (26). Therefore, the ‘‘ten-
dimensional’’ time T is simply given by T ¼ R

dT � R
~ts=2d~t,

with s ¼ ~p� þ 2~p.
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orthogonality of the Hermite polynomials

Z
HnðxÞHmðxÞe�x2=2dx ¼ ffiffiffiffi

	
p ð2nn!Þmn (34)

and the relations H0
nðxÞ ¼ 2nHn�1ðxÞ and Hnþ1ðxÞ ¼

2xHnðxÞ � 2nHn�1ðxÞ to decompose Eq. (30) into an infi-
nite system of coupled ordinary differential equations for
the An’s, which are given by the following recursive equa-
tion:

0 ¼ €An � s

2t
_An þ ½4s� s2ð1þ 2nþ 2n2Þ þ 16ð1þ 2nÞjtj2þs� An

16jtj2 þ ðnþ 1Þðnþ 2Þ s
t
_Anþ2

� ð2þ sÞðnþ 1Þðnþ 2Þ s

4jtj2 Anþ2 � s

4t
_An�2 þ ð2þ sÞ s

16jtj2 An�2 þ ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þ s2

4jtj2 Anþ4

þ s2

64jtj2 An�4: (35)

One should note that these equations are not regular at t ¼
0, so one cannot find solutions that interpolate between
negative times and positives ones. This implies nothing
else than using the harmonic oscillator basis is not a good
approximation around the singularity. However, as we will
see in the next section the evolution across the singularity
is simpler than one could possibly have expected.

Consider the zeroth mode A0 equation,

€A0 � s

2t
_A0 þ ð4s� s2 þ 16jtj2þsÞA0 þ 2s

t
_A2

� sð2þ sÞ
2t2

A2 þ 6s2

t2
A4 ¼ 0: (36)

If we assume the higher modes are negligible, An ¼ 0 for
n > 0 (which should be the case if the incoming state is the
vacuum and will be justified later), then Eq. (36) can be
solved in closed form for either positive or negative times,
resulting in

A0 ¼ jtjð2þsÞ=4ð�0Þs=4½c1Kð1Þ
l ð2k�s=20 jtjð2þsÞ=2Þ

þ c2K
ð2Þ
l ð2k�s=20 jtjð2þsÞ=2Þ�; (37)

where Kð1Þ
l ðxÞ and Kð2Þ

l ðxÞ are the Hankel functions of the

first and second kind, respectively, c1 and c2 are integration

constants, k � 1=ð2þ sÞ, l � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2=2

p
, and we have

restored �0 in the expression. Using the asymptotic

expansion of the Hankel functions Kð1;2Þ
� ðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	=ð2xÞp
expð�iðx� ð2�� 1Þ	=4ÞÞ, we obtain an asymp-

totic solution for the ground state given in terms of positive
and negative frequency components, namely,

�ðt; RÞ ¼ expð�j�0tjsR2=2Þ½C1 expðiE0jtjÞ
þ C2 expð�iE0jtjÞ�; (38)

where C1 ¼
ffiffiffi
	
2

p
c1 expð�ið2�þ 1Þ	=4Þ, C2 ¼

ffiffiffi
	
2

p
c2 �

expðið2�� 1Þ	=4Þ, and now the frequency is time depen-

dent and given by E0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
!0ðtÞ

p ¼ 2
2þs j�0tjs=2.

To justify dropping the higher order modes (An with
n > 0) in Eq. (36) for large times one can rewrite the

recursive differential equation in terms of the T time (T ¼
2

2þs �
s=2tð2þsÞ=2) and then see which are the leading terms

for large T. Equation (35), in T time and with �0 ¼ 1, reads

0 ¼ d2An

dT2
þ ð1þ 2nÞAn þO

�
1

T

�
; (39)

and has a large T solution,

AnðtÞ ¼ expði ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
TÞ ¼ expðiEntÞ;

EnðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
2þ s

jtjs=2:
(40)

The picture is then the following: asymptotically (large T),
all the harmonic oscillator modes decouple from each other
and as one approaches the singularity they start interacting.
If one starts with the ground state as the incoming vacuum,
then higher order modes become excited in order to resolve
the singularity, and one ends up with a tower of states as the
outgoing state in the far future, when again the interaction
of harmonic oscillator modes stops, and we can use this
basis to describe the resulting state. Furthermore, since the
An Eq. (35) is a ‘‘double-step’’ recursive equation, if one
starts with the ground state in the far past, then only even n
levels will be excited across the singularity.

2. Solution near the singularity

If we consider the vacuum positive energy mode (38) as
the incoming state for t ! �t0 (with t0 	 1), then we can
evolve numerically the solution to the full Eq. (30). The
numerical solution behaves regularly everywhere, particu-
larly at t ¼ 0. In order to picture the evolution of the wave
function across the singularity, we can use the integrated
wave equation

�ðtÞ ¼
Z þ1

�1
�ðt; RÞdR: (41)

The numerical solution of such an integrated function is
shown in Fig. 4, and notice, in particular, that around t ¼ 0
the solution is simply given by a straight line, as we shall
shortly describe. This result provides a simple explanation
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of how the modes evolve in terms of the absolute-value
function. The fact that the wave function (41) is well
approximated by �ðtÞ ¼ atþ b around t ¼ 0, can be

understood as follows: assume � behaves like �ðt; RÞ ¼
e�jtjsR2=2fðtÞ near the singularity.3 After substituting it into
the Hamiltonian equation (23), and assuming a simple
polynomial function for fðtÞ of the form fðtÞ ¼ atm þ c,
then the only solution with a well-defined limit as t ! 0
has c ¼ 0 and m ¼ s=2, ð2þ sÞ=2. Therefore, the solution
near t ¼ 0, which is valid on both sides of the singularity, is

�ðt; RÞ ¼ e�jtjsR2=2ðatþ bÞjtjs=2= ffiffiffiffiffiffiffi
2	

p
; (42)

which after integrating over R implies �ðtÞ ¼ atþ b. If
we think of the harmonic oscillator basis, the functions An

should all behave as ðantþ bnÞjtjs=2 for small times on
either side of the singularity. However, it does not mean we
can simply solve for the individual coefficients an and bn,
because from (33) and (41) we require knowledge of all the
modes that cross the singularity, thus no individual mode
can be evolved across using this description for the inte-
grated wave function around the singularity. Fortunately,
from the numerical solution, we can always calculate the
An coefficients using the orthogonally property (34) of the
Hermite polynomials. Therefore, we can show the agree-
ment between the numerical solution and the expected

behavior (ðantþ bnÞjtjs=2). For example, Fig. 5 shows
the case of the zeroth mode A0 before the singularity.

On the other hand, after t ¼ 0 the R-integrated wave
equation �ðtÞ no longer looks periodic (see Fig. 4).
However, all of this complicated structure can be decom-
posed as a tower of higher harmonic oscillator modes,
which were excited during the transition through t ¼ 0
and converge as we increase the mode number (see
Fig. 6). The choice of Kasner exponents has an effect on
the tower of excited states, as will be shown later when
calculating the particle production.
Furthermore, if we follow the whole evolution of the

vacuum state, the adiabatic regime is well approximated by
the analytical solution (37), even as we approach the
singularity. However, such an agreement inevitably breaks
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FIG. 4 (color online). Evolution of the integrated wave func-
tion �ðtÞ in time for the Kasner exponent combination p� ¼
0:793 521 and p ¼ 0:4. The positive frequency mode in (38),
with C1 ¼ 1 and C2 ¼ 0, at t ¼ �20 was chosen. Different
initial times do not change the behavior but the overall scale.
Around t ¼ 0 the wave function evolution follows a straight line,
and after the singularity, higher order modes contribute to the
overall wave function, leading to a nonperiodic and complicated
structure.

FIG. 5 (color online). Using the orthogonality property (34)
one can extract the coefficients of the harmonic oscillator modes
An from the numerical solution of the wave function [see
Eq. (33)]. Here, we plot ReðA0Þ for p� ¼ 1 and p ¼ 0. The

dashed line represents the analytic solution (37) which follows
the numerical solution (solid line) up to the place where the t ¼
0 behavior, given by solution (42) becomes more accurate
(dotted line). We normalize the wave function so A0 � 1 initially.
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FIG. 6 (color online). Using the orthogonality property (34)
we plot the An’s for different mode numbers n. One can see how
higher modes get excited after t ¼ 0, and the amplitude of higher
states decrease with n as expected. We use p� ¼ 0:793 521 and

p ¼ 0:4.

3If one plots the wave function near t ¼ 0 as a function of R,
one finds a good fit using the Gaussian profile expð�jtjR2=2Þ,
which justifies our assumption.
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down very close to the singularity, as the expansion in
terms of uncoupled harmonic oscillator states breaks
down. That is, all higher modes begin to get excited in
order to solve through the singularity; hence, we cannot
neglect the A2 or A4 terms in the A0 equation near t ¼ 0.
However, notice that these higher order terms never domi-
nate, as can be seen in Fig. 6. As the adiabatic approach
fails, the above mentioned polynomial behavior near t ¼ 0
takes over, and the solution can be followed all the way to
and across the singularity. Some time after t ¼ 0, the story
repeats, and we can use the adiabatic description again,
leading to a decomposition of a higher oscillation state,
which can be described in terms of Bogoliubov transfor-
mations, as we will show in the following section.

3. Particle production

One has to be careful when constructing the Hilbert
space, since a C1 and globally hyperbolic manifold is
needed. In our case the string metric is not well defined
at t ¼ 0; therefore, we can split the space of solutions into
two sections: for t < 0 and t > 0. Based on the regularity of
the classical and quantum solutions around t ¼ 0 it is
natural to assume unitarity at t ¼ 0, which allows us to
use the Bogoliubov transformations to relate the two sec-
tions of the Hilbert space and calculate particle production.
Our numerical results will act to justify this assumption.
Moreover, a natural inner product in this Hilbert space is
defined by [18]

ð�1;�2Þ � �i
Z 1

1
dR

�
�1

@�

2

@t
�

�
@�1

@t

�
�


2

�
: (43)

One can expand the wave function �ðR; tÞ in terms of
two basis sets, one for asymptotically negative times and
one for the corresponding positive times, namely,

�ðR; tÞ ¼ X
n

aðinÞn UðinÞ
n þ ðaðinÞn ÞyðUðinÞ

n Þ
 t ! �1

¼ X
n

aðoutÞn UðoutÞ
n þ ðaðoutÞn ÞyðUðoutÞ

n Þ
 t ! þ1

(44)

where ayn and an are the creation and annihilation operators
associated with the harmonic oscillator expansion, and
which obey the usual commutation relationships (i.e.

½an; aym� ¼ mn, etc.). We would expect the negative time

vacuum (aðinÞn j0iin ¼ 0) to be different from that of positive

times (aðoutÞn j0iout ¼ 0), leading to particle production. The

functions UðinÞ
n and UðoutÞ

n are the positive frequency modes

UðinÞ
n ¼ N n expðþiEntÞ expð�jtjsR2=2ÞHnðjtjs=2RÞ
t < 0;

UðoutÞ
n ¼ N n expð�iEntÞ expð�jtjsR2=2ÞHnðjtjs=2RÞ

t > 0;

(45)

with the normalization factor N n given by

N n ¼ ð2nþ1n!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ	

p
Þ�1=2; (46)

in such a way that ð�n;�mÞ ¼ nm.
Actually, since we are interested in having the vacuum as

our incoming state, the wave function for t ! �1 takes
the form

� ¼ N 0½ðaðinÞ0 þ ðaðinÞ0 ÞyÞ cosðE0jtjÞ � iðaðinÞ0 � ðaðinÞ0 ÞyÞ
� sinðE0jtjÞ� expð�jtjsR2=2Þ; (47)

where N 0 ¼ 1
ð4	Þ1=4 . Now, we can write explicitly the

wave function for t ! þ1 as

� ¼ X
n

N n½ðaðoutÞn þ ðaðoutÞn ÞyÞ

� cosðEntÞ � iðaðoutÞn � ðaðoutÞn ÞyÞ sinðEntÞ�
�Hnðts=2RÞe�tsR2=2

¼ X
n

N 0½ðaðinÞ0 þ ðaðinÞ0 ÞyÞDn

� cosðE0jtj þ ’nÞ � iðaðinÞ0 � ðaðinÞ0 ÞyÞ �Dn

� sinðE0jtj þ �’nÞ�Hnðts=2RÞe�tsR2=2;

(48)

where Dn and ’n ( �Dn and �’n) are the amplitude and
phase—with respect to t ¼ 0—of the outgoing mode n
after sending an incoming cosine (sine) piece of the in-
coming wave function (47). Since the two lines in the
previous equation are equal, the coefficients should be
related in the following way:

aðoutÞn ¼ �

n0a

ðinÞ
0 þ �


n0ðaðinÞ0 Þy; (49)

where the Bogoliubov coefficients are defined as

�n0 ¼ N 0

2N n

ðDne
i’n þ �Dne

i �’nÞ;

�n0 ¼ N 0

2N n

ðDne
i’n � �Dne

i �’nÞ:
(50)

Particle production at a given energy level can then be
understood in terms of the expectation value of the particle

number operator N̂n ¼ ðaðinÞn ÞyaðinÞn over the out vacuum
j0iout, which simplifies to the following:

h0jN̂nj0iout ¼ �n0�


n0

¼ 2n�2n!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p ðD2
n þ �D2

n �Dn
�Dn

� cosð’n � �’nÞÞ: (51)

Figure 7 shows the particle production for different Kasner
exponents. A fit of this plot shows that the particle produc-
tion decays exponentially with mode number, n, satisfying

a fit of the form �2
00 expð�C1n

3=4Þ, where �00 and C1

depend on the particular choice of Kasner exponents. Of
particular note is that for large n where the energy per
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mode, En satisfies E
2
n � n, [see Eq. (40)], we then obtain an

exponential decay of the form �2
00 expð�C1E

3=2
n Þ, a result

that agrees with the semiclassical instanton calculation in
[10] for the Milne universe, but remains to be compared for
other Kasner exponents.

B. Nonzero center of mass momentum

If one starts with a nonvanishing center of mass momen-
tum, 	z, at t ¼ �t0, and if the orbifold rapidity �0 is not
negligible with respect to 	z, then one cannot drop its
contribution in the Hamiltonian (25). The Wheeler-
de Witt equation associated with the Hamiltonian (25)
can be solved numerically, again yielding a regular solu-
tion, in particular, at t ¼ 0, which is very similar to the
	c ¼ 0 case shown in Fig. 4. Furthermore, to describe the
t > 0 behavior, we can once again use the harmonic oscil-
lator basis as an ansatz, but with a frequency that now
depends on both time and 	c; details are given in the
Appendix. Here, we only summarize our findings.
Asymptotically, the wave function can again be described
in terms of decoupled harmonic oscillator modes, while
near the singularity the straight-line behavior (after inte-
grating over R) remains as a characteristic feature. Thus,
we can send in the vacuum state and read off the harmonic
oscillator components in the outgoing solution, to find the
Bogoliubov coefficients for such a transition.

From the definition in Eq. (27), we know that the orbi-
fold rapidity should play a role in the physical observables,

via the combination 	o ¼ �ð2�pþsÞ=ðsþ2Þ
0 	z. Thus, if as

mentioned above we assume �p >�s=2, increasing the
orbifold rapidity is equivalent to increasing the center of

mass momentum. Now the question is how do the
Bogoliubov coefficients change due to 	c? On the one
hand, we know that classically the presence of a singularity
forces the loop to increase its velocity until it reaches the
speed of light at t ¼ 0. As we have already seen, this
speeding up is achieved by exciting higher order oscillation
modes. Therefore, one would naively expect that a larger
	c should help the loop to reach the speed of light at t ¼ 0
without exciting higher order modes. On the other hand,
one should expect that increasing the orbifold rapidity
makes the orbifold collision more violent, thus increasing
particle production. These two effects compete against
each other and indeed, we see both of them at different
scales. For small 	c, particle production is suppressed

exponentially as expð�c1	
2
c � c2n

3=4Þ, where c1 > 0 and
c2 > 0 depend on the Kasner exponents, and c2 has a mild
dependence on 	c. However, for larger 	c particle pro-
duction grows as a power law of 	c, while exponentially
decreases with n. This power law growth is in agreement
with the instanton calculation of [10], where it was found

that h0jN̂0j0iout / �ðd�1Þ=3
0 for a (dþ 1)-dimensional

spacetime. In agreement, we find for the case d ¼ 4; three
spatial dimensions corresponding to the effective space in
which the loop oscillates plus the M-theory dimension.
Figure 8 shows how particle production decays with n,
and Fig. 9 depicts how the particle number of the ground

level, h0jN̂0j0iout, changes with 	c. At first sight, it may be
troubling to think that the particle production diverges for
large 	c, but actually one should have in mind that the
orbifold rapidity should be small, in order to have modes
created well inside the comoving Hubble horizon where
the adiabatic regime can be trusted [10,12]. Furthermore,
the transverse velocity of any loop cannot be the speed of
light, otherwise it could not oscillate in the xy plane.
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FIG. 7 (color online). Bogoliubov coefficients �2
n0 and �2

n0 as
functions of the mode number n for three Kasner exponent
combinations: p ¼ 0:4, p ¼ 0:0 (Milne) and p ¼ �0:37, with
p� obtained using (20) for m ¼ 7. In the last case, the effective

(3þ 1) metric where the string oscillates is almost flat, thus the
particle production j�j2 is negligible. A fit shows that both
Bogoliubov coefficients decay as C1 expð�C2n

3=4Þ, where C1

and C2 are positive constants that depend on the Kasner ex-
ponents only.
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FIG. 8 (color online). Bogoliubov coefficients �2
n0 and �2

n0 as
functions of the mode number n for four different initial mo-
menta, 	z, measured at t ¼ �t0 ¼ �10. The Milne universe
(p ¼ 0, p� ¼ 1) is assumed for all cases. Fits show that both

coefficients decay as c2 expð�c1n
3=4Þ, where c1 has a mild

dependence on 	c, but c2 strongly depends on 	c as shown in
Fig. 9.
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For a gas of loops, the average velocity should be close

to 1=
ffiffiffi
2

p
, as shown in [19] for flat space.4 We can then

imagine a single loop with such a velocity at t ¼ �ts [see
Eq. (19)], and calculate the corresponding value of 	c

using the first equation in (16) and (27). Assuming the
loop is initially static ( _Rð�tsÞ ¼ 0) and of unit size
(Rð�tsÞ ¼ 1), one obtains

	c ¼ v�ð2�pþ2Þ=ðsþ2Þ
0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p : (52)

If �0 is small and the velocity dispersion around the mean
value is not large, then the particle production should be
small. For example, for �0 � 1=5 and a velocity dispersion
of around�0:25 ([20]), the corresponding values of 	c lie
on the range � 2 ð0:3; 1:93Þ (at t ¼ �ts ¼ �5), which
maps to the exponentially decaying region of Fig. 9.

Finally, an important check of the quantum model is to
verify unitarity, which implies that the canonical commu-
tation relationships should be preserved over time. This
translates into the following property for the Bogoliubov
coefficients

1 ¼ X
n

�n0�


n0 � �n0�



n0: (53)

One would need to sum over all states to get unity, how-
ever, one can see that using the first ten excited modes the
number is close to unity (in Fig. 10).

V. CONCLUSIONS

The nature of the big bang is one of the biggest problems
facing cosmology. No one fully understands the physics
that occurred in this crucial period. One of the more
interesting recent proposals for the origin of the big
bang, is through the collision and re-emergence of two
orbifold planes in 11 dimensions [1,2,10]. As the two
planes approach each other, the light states of the theory
consist of windingM2 branes, which are described in terms
of fundamental strings in a ten-dimensional background.
Near the brane-collision region, the full 11-dimensional
metric considered is that of Euclidean space times a com-
pactified 1þ 1-dimensional Milne universe. In [12], two of
us considered the classical evolution of winding mem-
branes in such a background, showing that they suffered
no blueshift as the M-theory dimension collapses, and their
equations of motion remained regular across the transition
from big crunch to big bang. However, one may expect
there to really be small perturbations to the background
metric, leading to a more general Kasner background for
the light membranes to evolve in. If this is the case, an
obvious question is what happens to collapsing light M2
branes as they pass through the singularity? In this paper
we have gone beyond to original classical analysis of
winding membranes in [12] to include general Kasner
backgrounds. By considering the corresponding Hamil-
tonian equations, we have been able to solve for the
wave function of loops with circular symmetry and dem-
onstrate the sensitivity of the solutions to the values of the
Kasner exponents p around the Milne solution (p ¼ 0 and
p� ¼ 1). As is evident from Figs. 2 and 3, although the

general behavior remains similar, in particular, the loop
solutions remain perfectly finite, there is clear evidence
that the amplitude and periodicity of the outgoing modes
depend strongly on the precise value of the Kasner expo-
nents. In the regime p��p�=2, the energy density has a
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FIG. 9. Bogoliubov coefficient �2
00 for different initial momen-

tum 	c chosen at ts ¼ 5, and assuming the Milne universe (p ¼
0, p� ¼ 1). For small center of mass momentum the loop needs

less excited modes to reach the speed of light at t ¼ 0, but a large
	c is equivalent to a large orbifold rapidity, which increases the
particle production due the more violent brane collision. The
fitting curve has a form c2 expð�c1	

2
cÞ þ c3	

3
c, where the ci’s

are positive constants.
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FIG. 10 (color online). Plot of
P

n ¼ P
n
i¼0ð�2

i0 � �2
i0Þ as a

function of the mode number n, for the same three Kasner
metrics of Fig. 7, and for two nonzero values of 	c at ts ¼ 5.
Unitarity is preserved if

P
n ! 1 as n ! 1.

4We can assume a flat background initially, since for a small �0
the size of the loops is small compare to the Hubble radius.
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mild dependence on jtj, and the modes do not feel the
contraction or expansion of the Universe, leading to no
classical energy production. On the other hand, for large
positive values of p, the string does feels the effects of the
evolving scale factor, which produces a large effect around
t ¼ 0, and a greater classical production of energy. To
confirm the particle interpretation of this classical result,
we adopt the Wheeler-de Witt formalism to quantize the
system of the evolving circular loop in the Kasner back-
ground. Circular symmetry of the loop is crucial in order to
help us solve the system of equations as it allows us to
assume @�t ¼ 0, implying the time coordinate of the loop
is a function of 
 only. Remarkably, we are able to solve
the Wheeler-de Witt equation both far from and close to
the singularity t ¼ 0. Asymptotically, the loop is well
described through a WKB approximation, given by
Eqs. (33)–(38) in the case of very small orbifold rapidity
compared to the center of mass momentum, or by
Eqs. (A2)–(A4) for the general case. Of particular note
though is the fact that near the singularity, the solution
simplifies to such an extent that the integrated wave func-
tion (41) is given by a straight line in t through the
singularity which allows a simple understanding of the
solution on either side of t ¼ 0, made evident through
Figs. 4 and 5. The complicated nonperiodic evolution
seen in Fig. 4 just after the singularity provides evidence
that there could well be particle production as a loop
evolves through a singularity. This is confirmed in our
analysis of the particle production, as seen in Figs. 7 and
8 where we plot the particle production number for three
separate values of the Kasner parameter, including the
usual Milne case, and three different center of mass mo-
menta. In all cases, particle production is exponentially
suppressed with the oscillation mode number n, and in the
case of zero center of mass momentum	z it is independent
of the orbifold rapidity �0. However, for a nonvanishing
center of mass momentum, particle production depends on
the simple function 	c ¼ 	cð�0; 	zÞ, defined in (27).
Production of particles is exponentially suppressed for
small 	c, but has a power law growth for large 	c. The
two effects are expected: the first one corresponds to the
fact that a small initial velocity helps the loop to reach the
speed of light at the singularity without exciting higher
order modes. In contrast, the second effect corresponds to
the fact that a large orbifold rapidity induces a more violent
big crunch/big bang, which results in more particles been
produced.

As we have seen, as the loop passes through the singular
point, higher order modes become light and excited, the
string reaches the speed of light everywhere along it, and
the effect is either an increase or decrease in the amplitude
of the outgoing mode leading to classical gain or loss in
energy and the production of particles while maintaining
unitarity.

There are of course caveats to what we have done in this
paper. In reality the Kasner metric is not flat away from the

singularity and thus it can receive corrections when inter-
acting with the membrane. It is not clear how this would
affect the background and subsequent analysis. Assuming
we are only slightly away from Milne case, we believe that
the analysis should be similar to what we have done here.
It is very encouraging that we have seen how it is

possible to have finite particle production in through a
singular region in a Kasner background. It is now worth
seeing quite how much reheating occurs in such a scenario.
An obvious, if somewhat difficult calculation is to extend
this work beyond the case of a simple circular loop. Finally,
it will be interesting to see how these results can be
interpreted from the conformal theory description of [9].
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APPENDIX: NONVANISHING �c SOLUTION

To solve the Wheeler-de Witt equation derived from the
Hamiltonian (25) for a nonvanishing 	c term, one can use
the same ideas as in the 	c ¼ 0 case. First and to get a
feeling of the solution, one could study the wave equation
derived from (25) for a constant time t ¼ t0, namely,

Ĥ� ¼ ð@2t � @2R þ ~t2�p0 	2
c þ ~t2s0 R

2Þ� ¼ 0; (A1)

where 	c, �p and s are defined in (27) and (28). A
solution to this equation is given again by the harmonic

oscillator solution (32), but with an energy E2
n ¼ ð2nþ

1Þts0 þ 	2
ct

�p
0 . Therefore, we can use the same ansatz (33)

and the properties of the Hermite polynomials to get a
recursive differential equation for the function AnðtÞ, which
is similar to (35) but with extra terms containing 	c.
Actually, in the T-time variable, the An equation reads

0 ¼ d2An

dT2
þ ð1þ 2nÞAn þ 	2

c

�
sþ 2

2
jTj2=ðsþ2Þ

�
2�p�s

An

þO
�
1

T

�
; (A2)

which does not have a simple analytical solution for a
generic Kasner exponent combination, unlike the 	c ¼ 0
case. In the particular case of the Milne universe, the
solution to this equation is given in terms of Whittaker
functions, which are related to the polylogarithm functions.
The appearance of these functions suggests a consistent
description with the 1=�0-series solution of classical evo-
lution near t ¼ 0, where polylogarithm functions were
found to second order in the string tension [12].
Since we are searching the asymptotic spectrum

of states, it is enough to find a series solution of
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Eq. (A2). The expansion parameter is Q �
	2

cðsþ2
2 jTj2=ðsþ2ÞÞ2�p�s ¼ 	2

cjtj2�p�s, and the solution be-

comes more accurate for large jTj because (14) implies
�2�pþ s ¼ p� þ 2pz � 0. This series solution can be

constructed using the ansatz

An ¼ expðiEnTÞ; (A3)

where

E n � EnðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �Qþ �Q2

q
: (A4)

The following constants

� ¼ 2nþ 1; � ¼ sþ 2

2� sþ 2�p
;

� ¼ 2
s� 2�p

2� sþ 2�p
;

(A5)

solve Eq. (A2), with an error of order T�ð4�pþsþ2Þ=ðsþ2Þ �
t�ð4�pþsþ2Þ=2. So, we can use this approximate solution and
calculate the particle production using the same expres-
sions as in section IVA3. We assume the two vacua are
given by

�ðR; tÞ ¼ X
n

aðinÞn UðinÞ
n þ ðaðinÞn ÞyðUðinÞ

n Þ
 t ! �1

¼ X
n

aðoutÞn UðoutÞ
n þ ðaðoutÞn ÞyðUðoutÞ

n Þ
 t ! þ1

(A6)

where

UðinÞ
n ¼ N n expðþiEntÞ expð�jtjsR2=2ÞHnðjtjs=2RÞ
t < 0;

UðoutÞ
n ¼ N n expð�iEntÞ expð�jtjsR2=2ÞHnðjtjs=2RÞ

t > 0;

(A7)

and En ¼ 2
sþ2 Enjtjs=2. The normalization factor N n is

given by

N n ¼ ½2nþ1n!
ffiffiffiffi
	

p ðE0
nT þ EnÞ��1=2; (A8)

with E0
n � d

dT EnðTÞ. Therefore, by writing the vacuum

solution as

� ¼ N 0½ðaðinÞ0 þ ðaðinÞ0 ÞyÞ cosðE0jtjÞ � iðaðinÞ0 � ðaðinÞ0 ÞyÞ
� sinðE0jtjÞ� expð�jtjsR2=2Þ; (A9)

we can read off the outgoing solution in terms of the
Bogoliubov coefficients (50), and calculate the particle
production in the same way we did for the 	c ¼ 0 case.
The results are shown in Fig. 8 and summarized in
Sec. IVB.
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