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We investigate the dynamical 3-form flux compactifications and their implications for cosmology in our

brane world in the six-dimensional Nishino-Salam-Sezgin model, which is usually referred to as the

Salam-Sezgin model. We take the background of the 3-form field acting on the internal space and timelike

dimensions without the Uð1Þ gauge field strength. The first class of solutions we discuss is the dynamical

generalization of the static solutions obtained recently. In this class, we find that the time evolution is

restricted only in the azimuthal dimension of the internal space and not in the ordinary three-dimensional

one, which does not give a cosmological evolution. The second class of solutions is obtained by

exchanging the roles of the radial coordinate and the time coordinate from the assumptions in the first

class. At the center of the internal space, there is a conical singularity which may be interpreted as our 3-

brane world, but it is difficult to realize a warped structure in the direction of the ordinary 3-space. Except

for the oscillating solutions, a dynamical evolution leads to expanding or contracting ordinary 3-space,

depending on the choice of time direction. Furthermore, in the expanding solutions, there are decelerating

and accelerating ones: In the latter solution, the evolution is sustained for a finite proper time and the scale

factor of the 3-space diverges.
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I. INTRODUCTION

Brane world models have attracted particular interest in
recent years. In the cosmological aspects, six-dimensional
brane world models may be useful for a resolution of the
cosmological constant problem [1] (see, however, [2]). A
six-dimensional model is also recognized as an important
playground to study cosmology and gravity with stabilized
extra dimensions by fluxes of antisymmetric tensor fields.
In the simplest realization of the flux compactifications in
six dimensions, the internal space has the shape of a rugby
ball [1,2], where codimension-two branes are placed at the
poles. The warped generalizations of the rugby ball solu-
tions were reported in the Nishino-Salam-Sezgin (NSS)
six-dimensional supergravity [3] and in the Einstein-
Maxwell theory [4]. See [5] for the NSS model. Note
that this model is usually referred to as the Salam-Sezgin
model especially when compactification is discussed.
However, the compactification on S2, which was found
by Salam and Sezgin, was constructed in the theory first
proposed by Nishino and Sezgin. Therefore, it is more
suitable for us to refer to the model as the NSS model. In
Ref. [6], a study of the cosmology was presented on the
analogy of the classical mechanics. It is also recognized
that a 3-brane in six or higher dimensions faces a problem
about the localization of the matter, because such a brane
generically produces a curvature singularity. A way to

circumvent this problem is to introduce a thickness of the
brane, as proposed in [7,8].
In order to explore the cosmology, one useful approach

is to use the dynamical solutions. In this direction, exact
dynamical solutions were obtained in [9–12]. The field
components of the bosonic part of the NSS model are the
gravity, theUð1Þ-gauge field, Kalb-Ramond 2-form (i.e., 3-
form field strength), and the dilaton. In Refs. [9,10],
warped time-dependent solutions with the Uð1Þ-field
strength, without the Kalb-Ramond 3-form field strength
in the NSS model, were explored. The solutions have all
six dimensions evolving in time. There are three types of
the exact time-dependent solutions: One of them is the
scaling solution, in which both the scale factors of the
external and internal spaces have the linear dependence
on the proper time. The other two solutions have more
complicated time dependence. In the earlier times, these
solutions can be seen as the generalizations of the solutions
obtained in Ref. [13], but in the later times both approach
the above scaling solution. The scaling solution is the
generalization of the static solution obtained in [3] and
becomes an attractor. In this sense, the static brane solution
in the 2-form background is always unstable. An extension
of the time-dependent 2-form solution in the NSS model to
more general Einstein-Maxwell-dilaton models was con-
sidered in Ref. [11]. The exact wave solution was also
obtained in [12].
The purpose of this work is to present the other classes

of time-dependent solutions in the NSS model in the
presence of the nonvanishing 3-form field strength [but in
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the absence of the Uð1Þ field strength], and discuss their
implications for the brane world cosmology. The first class
of solutions is the dynamical generalization of the static
solutions obtained recently in Ref. [14], where the internal
space has a torus topology with two cusps, along the line of
the similar generalization of brane solutions [15]. We will
find that our solutions are stable, in contrast to the 2-form
solutions. The second class is obtained by exchanging the
roles of the radial coordinate and the time coordinate in the
first class. We also discuss the dynamical generalization of
the black 1-brane solution in the NSS model.

The paper is constructed as follows. In Sec. II, we briefly
review the NSS model. In Sec. III, the time-dependent
generalization of the solutions and their application in
constructing the brane world model are discussed. In
Sec. IV, the S-brane-like solution, obtained by exchanging
the roles of space and time, and their cosmological prop-
erties are discussed. The final section is devoted to givng a
brief summary and conclusion. In the Appendix, we dis-
cuss the black 1-brane solution.

II. NISHINO-SALAM-SEZGIN MODEL

The action of the bosonic part of the NSS supergravity
[5] is given by

I ¼
Z

d6x
ffiffiffiffiffiffiffi�g

p �
1

2�2
ðR� ð@�Þ2Þ � 1

4
e��F2

��

� 1

12
e�2�H2

��� � 2g2

�4
e�

�
; (2.1)

where � is the dilaton, H ¼ dB is the field strength for
the Kalb-Ramond field B, and F ¼ dA is the field strength
for the Uð1Þ gauge field A. The parameters g and � are
gauge and gravitational coupling constants, respectively.
Variation of the action (2.1) gives the field equations

R�� ¼ @��@��þ �2e��

�
F2
�� � 1

8
F2g��

�

þ �2

2
e�2�

�
ðH2Þ�� � 1

6
H2g��

�
þ g2

�2
e�g��;

(2.2)

h�þ �2

4
e��F2 þ �2

6
e�2�H2 � 2g2

�2
e� ¼ 0; (2.3)

@�ð ffiffiffiffiffiffiffi�g
p

e�2�H���Þ ¼ 0; (2.4)

@�ð ffiffiffiffiffiffiffi�g
p

e��F��Þ ¼ 0: (2.5)

Most of the preceding works have discussed the Uð1Þ field
acting on the internal space dimensions, F � 0, with the
vanishing 3-formH ¼ 0. Instead, in this work, we consider
the nonvanishing 3-form field acting on the internal space
and timelike dimensions H � 0, with the vanishing Uð1Þ
field F ¼ 0.

III. GENERALIZED WARPED
COMPACTIFICATIONS BY THE 3-FORM

A. Ansatz and equations

In this section, we take the following metric ansatz [15]:

ds26 ¼ �e2u0ðt;yÞdt2 þ e2u1ðt;yÞ
X3
i¼1

ðdxiÞ2 þ e2vðt;yÞdy2

þ e2wðt;yÞd�2; (3.1)

where the coordinates t and xi describe our four-
dimensional worldvolume, and the remaining y and � are
transverse to it. The metric components u0, u1, v, w, and
the dilaton � are assumed to be functions of both t and y.
For convenience of our derivation, we also define

U � u0 þ 3u1 � vþ w: (3.2)

We assume that for the 3-form field strength there is only
the y dependence and also the Uð1Þ field strength vanishes:

H ¼ E0ðt; yÞdt ^ dy ^ d�; F ¼ 0: (3.3)

Throughout the main text in this paper, the dot and prime
denote derivatives with respect to t and y. The Einstein
equations. (2.2) become

e2ðu0�vÞðu000 þU0u00Þ � €Uþ €u0 � 2 €vþ _u0ð _U� _u0 þ 2 _vÞ
� 3 _u21 � _v2 � _w2

¼ _�2 þ �2

2
e�2��2v�2wE02 � g2

�2
e�þ2u0 ; (3.4)

� 3 _u01 � _w0 þ u00ð3 _u1 þ _wÞ � 3u01ð _u1 � _vÞ þ w0ð _v� _wÞ
¼ _��0; (3.5)

e2ðu1�vÞðu001 þU0u01Þ � e�2ðu0�u1Þ½ €u1 þ _u1ð _U� 2 _u0 þ 2 _vÞ�

¼ ��2

2
e�2��2v�2wE02 � g2

�2
e�þ2u0 ; (3.6)

U00 þ v00 þ u020 þ 3u021 þ w02 � v0ðU0 þ v0Þ
� e�2ðu0�vÞ½ €vþ _vð _U� 2 _u0 þ 2 _vÞ�

¼ ��02 þ �2

2
e�2��2u0�2wE02 � g2

�2
e�þ2v; (3.7)

e2ðw�vÞðw00 þU0w0Þ � e2ðw�u0Þ½ €wþ _wð _U� 2 _u0 þ 2 _vÞ�

¼ �2

2
e�2��2u0�2vE02 � g2

�2
e�þ2w: (3.8)

The dilaton Eq. (2.3) and the equation for the 3-form field
(2.4) give

ðeU�0Þ0 � ðeU�2u0þ2v _�Þ� � �2e�u0þ3u1�v�w�2�E02

� 2g2

�2
e� ¼ 0; (3.9)
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ðeU�2u0�2w�2�E0Þ0 ¼ 0; (3.10)

ðeU�2u0�2w�2�E0Þ� ¼ 0: (3.11)

The latter Eqs. (3.10) and (3.11) give

eU�2u0�2w�2�E0 ¼ c; (3.12)

where c is an integration constant. Substituting (3.12) into
Eqs. (3.4), (3.6), (3.8), and (3.9), we obtain�
eUu00 �

�2

2
cE

�0 ¼ eUþ2ðv�u0Þ½ €U� €u0 þ 2 €v

� _u0ð _U� _u0 þ 2 _vÞ þ 3 _u21 þ _v2 þ _w2

þ _�2� � g2

�2
e�þ2vþU; (3.13)

�
eUu01 þ

�2

2
cE

�0 ¼ ð _u1eUþ2ðv�u0ÞÞ� � g2

�2
e�þ2vþU;

(3.14)

�
eUw0 � �2

2
cE

�0 ¼ ð _weUþ2ðv�u0ÞÞ� � g2

�2
e�þ2vþU;

(3.15)

ðeU�0 � �2cEÞ0 ¼ ð _�eUþ2ðv�u0ÞÞ� þ 2g2

�2
e�þ2vþU:

(3.16)

Let us assume that the solutions satisfy the following
equations:�

eUu00 �
�2

2
cE

�0 ¼ � g2

�2
e�þ2vþU þ ‘0; (3.17)

�
eUu01 þ

�2

2
cE

�0 ¼ � g2

�2
e�þ2vþU þ ‘1; (3.18)

�
eUw0 � �2

2
cE

�0 ¼ � g2

�2
e�þ2vþU þ ‘w; (3.19)

ðeU�0 � �2cEÞ0 ¼ 2g2

�2
e�þ2vþU � 2‘�; (3.20)

where ‘i (i ¼ 0, 1, w, �) are constants corresponding to
the time-derivative parts in Eqs. (3.13), (3.14), (3.15), and
(3.16). Relaxing these separability conditions is a very
interesting issue, but we find it difficult to do so. As in
Ref. [15], we also assume that U is independent of y. In
fact, it is known that some nontrivial time-dependent so-
lutions can be obtained even with this restriction. Then
using v0 ¼ u00 þ 3u01 þ w0 obtained from U0 ¼ 0 and

Eqs. (3.17), (3.18), and (3.19), we find

ð2vþ�Þ00 ¼ � 8g2

�2
e2vþ� þ 2ð‘0 þ 3‘1 þ ‘w � ‘�Þe�U:

(3.21)

It is hard to find a solution unless we assume

‘0 þ 3‘1 þ ‘w � ‘� ¼ 0: (3.22)

When this is obeyed, the solution to Eq. (3.21) is

e�ð2vþ�Þ ¼ 4g2

�2f21
cosh2½f1ðy� y1Þ�; (3.23)

where f1 and y1 are constants. Although relaxing the
condition Eq. (3.22) would be also an interesting issue,
we leave it for future study.
It follows from Eqs. (3.17), (3.18), (3.19), and (3.20) that

u00 ¼
�2

2
ce�UE� f1

4
tanh½f1ðy� y1Þ� �G0 þ ‘0e

�Uy;

(3.24)

u01 ¼ ��2

2
ce�UE� f1

4
tanh½f1ðy� y1Þ� �G1

þ ‘1e
�Uy; (3.25)

w0 ¼ �2

2
ce�UE� f1

4
tanh½f1ðy� y1Þ� �Gw þ ‘we

�Uy;

(3.26)

�0 ¼ �2ce�UEþ f1
2

tanh½f1ðy� y1Þ� þ 2G�

� 2‘�e
�Uy; (3.27)

where we have chosen Gi to be constant for simplicity. We
then find from (3.23) and (3.27)

v0 ¼ ��2

2
ce�UE� 5f1

4
tanh½f1ðy� y1Þ� �G�

þ ‘�e
�Uy: (3.28)

The condition U0 ¼ 0 imposes

G0 þ 3G1 þGw �G� ¼ 0: (3.29)

For convenience, we define

Y � 2�2ce�UE: (3.30)

By substituting the above relations into Eq. (3.7), we find

0 ¼ 1
2ðY2 � Y0Þ � f21 þ e�Uð‘� � ‘vÞ þ 3A2

1 þ A2
w

þ 3A2
� þ ð3A1 þ Aw � A�Þ2 þ Yð3A1 þ A�Þ;

(3.31)

where we have assumed ð _veU�2u0þ2vÞ� ¼ ‘v (‘v is a con-
stant), and have defined

Ai ¼ Gi � ‘ie
�Uy; ði ¼ 1; w;�Þ: (3.32)
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At this stage, except for the cases where ‘i ¼ 0, it is still
not easy to find analytically tractable solutions. Thus, in
this paper, we focus on the case ‘i ¼ 0, leaving study of
more general cases for the future. Then, without loss of
generality, we may set 3G1 þG� ¼ 0. Now Eq. (3.31)

reduces to

Y2 � Y0 � f22 ¼ 0; (3.33)

where we have defined

f22 ¼ 2f21 � 4ðG� �GwÞ2 � 32
3G

2
�: (3.34)

f22 can take either a positive, zero, and negative value, and
the solutions for YðyÞ can be classified into the three types,
depending on the sign of f22. We will give the solutions
shortly. Once YðyÞ is obtained, by integrating Eqs. (3.24),
(3.25), (3.26), (3.27), and (3.28), we can find the metric
components and dilaton as

u0 ¼ �1
4PðyÞ � 1

4 lncosh½f1ðy� y1Þ�
� ð2G� �GwÞyþ h0ðtÞ; (3.35)

u1 ¼ 1
4PðyÞ � 1

4 lncosh½f1ðy� y1Þ� þ 1
3G�yþ h1ðtÞ;

(3.36)

v ¼ 1
4PðyÞ � 5

4 lncosh½f1ðy� y1Þ� �G�yþ hvðtÞ;
(3.37)

w ¼ �1
4PðyÞ � 1

4 lncosh½f1ðy� y1Þ� �Gwyþ hwðtÞ;
(3.38)

� ¼ �1
2PðyÞ þ 1

2 lncosh½f1ðy� y1Þ� þ 2G�yþ h�ðtÞ;
(3.39)

where the function PðyÞ depends on the sign of f22; hence,
the type of solutions, and hi (i ¼ 0, 1, v, w, �) could be
functions of t. When all hi vanish, the solution becomes
static.

Now the three types of solutions are given as follows:
The sinh solutions: For a positive f22, the solution to

Eq. (3.33) is given by

YðyÞ ¼ �f2 coth½f2ðy� y2Þ�: (3.40)

After integration, we obtain

PðyÞ ¼ lnj sinh½f2ðy� y2Þ�j: (3.41)

The sin solutions: For a negative f22, the solution to
Eq. (3.33) is given by

YðyÞ ¼ �jf2j cot½jf2jðy� y2Þ�: (3.42)

After integration, we obtain

PðyÞ ¼ lnj sin½jf2jðy� y2Þ�j: (3.43)

The linear solutions: For f22 ¼ 0, the solution to
Eq. (3.33) is given by

YðyÞ ¼ � 1

y� y2
: (3.44)

After integration, we obtain

PðyÞ ¼ lnjy� y2j: (3.45)

These give the dynamical generalization of the static
solutions found in [14]. The correspondence is given by the
following reparameterizations of f1 $ �2, f2 $ �1, and
q $ c. Note, however, that Eq. (3.34) does not completely
agree with Eq. (2.10) of [14], in some factors.

B. General time-dependent solutions

Now our task is to solve the remaining time-derivative
parts of (3.14), (3.15), (3.16), and (3.7). The remaining
time-dependent parts of these equations give

€h i ¼ ð _h0 � 3 _h1 � _hv � _hwÞ _hi; (3.46)

where i ¼ 1, v, w, �. They lead to

_h ie
�h0þ3h1þhvþhw ¼ ci; (3.47)

where all ci are constants. The off-diagonal components of
the Einstein equation (3.5) imposes the constraints among
the time-dependent functions

_hv ¼ �3 _h1; _h� ¼ 6 _h1;

ð11G� � 3GwÞ _h1 ¼ ðGw �G�Þ _hw:
(3.48)

It is straightforward to confirm that except for the case of
Gw ¼ G� all hi cannot have any nontrivial time depen-

dence. To show this, for the moment let us set h0ðtÞ ¼ 0,
which is always possible by an appropriate rescaling for
the time coordinate. From Eq. (3.48), we have cv ¼ �3c1
and c� ¼ 6c1.

In the case of 11G� � 3Gw, Eq. (3.47) tells us that

_h1 ¼
Gw �G�

ð11G� � 3GwÞt ;
_hv ¼ �3

Gw �G�

ð11G� � 3GwÞt ;

_hw ¼ 1

t
; _hv ¼ 6

Gw �G�

ð11G� � 3GwÞt : (3.49)

It follows from Eq. (3.13) that

0 ¼ 48ðG� �GwÞ2
ð11G� � 3GwÞ2t2

: (3.50)

Thus, the consistency requires Gw ¼ G�. In the case of

11G� ¼ 3Gw, _hw ¼ 0. We may set hw ¼ 0 and then 3h1 þ
hv ¼ const. From Eq. (3.47), we have h1 ¼ Ct, hv ¼
�3Ct, and h� ¼ 6Ct, where C is a constant. We then

find from Eq. (3.13)

C2 ¼ 0; (3.51)

which leads to a trivial solution. Thus, Gw ¼ G� must be

satisfied to have nontrivial solutions.

MINAMITSUJI, OHTA, AND UZAWA PHYSICAL REVIEW D 81, 126005 (2010)

126005-4



For Gw ¼ G�,

f22 ¼ 2f21 �
32

3
G2

w: (3.52)

Then, _hv ¼ _h� ¼ _h1 ¼ 0 but _hw � 0. Thus, we obtain

h1 ¼ k1; hv ¼ kv; h� ¼ k�; (3.53)

where k1, kv, and k� are integration constants. Therefore,

the ordinary 3-space metric and the dilaton do not depend
on time. From Eq. (3.23), we obtain

k� ¼ �2

�
kv þ ln

�
2g

�f1

��
: (3.54)

h0 and hw are still undetermined except for the relation
(3.47), which gives ðehwÞ� ¼ cwe

kvþ3k1eh0 . The two-
dimensional metric in the t and � directions now becomes

ds2 ¼ e2FðyÞð�e2h0dt2 þ e2hwd�2Þ

¼ e2FðyÞ

c2we
2ðkvþ3k1Þ ð�ððehwÞ�dtÞ2 þ c2we

2ðkvþ3k1Þe2hwd�2Þ

¼ e2FðyÞ

c2we
2ðkvþ3k1Þ ð�dT2 þ c2we

2ðkvþ3k1ÞT2d�2Þ; (3.55)

where FðyÞ is the common y-dependent part, and T ¼
ehwðtÞ is the proper time. Thus, the time dependence only
appears in the � direction and not in the ordinary 3 direc-
tions, which cannot present any cosmological evolution.
These results imply that the solution is dynamically un-
stable for the evolution along the � direction, but stable for
the others. In terms of the four-dimensional effective the-
ory, the effective potential would contain one flat direction
associated with the motion in the � direction.

One might guess that more generalized time-dependent
solutions could be obtained by allowing for the time var-
iations of fi and Gj. However, in such cases, the time

dependence of the Einstein and dilaton equations cannot
be separated out from the dependence on y. Thus, it seems
to be impossible to find consistent time-dependent
solutions.

C. Comparison with 2-form flux compactification

It would be interesting to compare our result with the
dynamical solutions with the 2-form background in the
NSS model. In the case of the Uð1Þ background, there is
the so-called scaling solution [9,10], which can be the
attractor. In this solution, both the internal and external
dimensions have the time dependence linear in time and
evolve uniformly. It means that the static solutions in the
Uð1Þ background are not stable. Thus, the scaling symme-
try always requires some additional mechanism to stabilize
the extra dimensions, for example, as discussed in [16,17].

In our 3-form background, the analyses in the previous
subsection indicate that there may be no time-dependent
generalizations of the static solutions in the case of Gw �

G�. For the case Gw ¼ G�, the time evolution is allowed

only in the � direction and is forbidden into the other
directions. Thus, in either case, this seems to imply that
the 3-form compactification is stable in comparison with
the case of the Uð1Þ-background. Here, one remark is in
order. In deriving the solutions, we made some assump-
tions on the time dependence, and relaxation of themmight
lead to additional possible evolutions of space. At the
moment, we do not have the complete proof on the stability
of such general solutions.

D. Application to brane world model

1. Singularity

Reference [14] investigated the construction of the brane
world by using the static solution in the background of the
3-form field strength. A curvature singularity exists at y ¼
y2, irrespective of the type of solutions. Note that this is a
real curvature singularity, which is more severe than a
conical one and may not be identified as our 3-brane world.
To see this, we define �y :¼ y� y2, and the approximate
spacetime metric near the singularity �y ¼ 0 is given by

ds2 � c2y �y
1=2d �y2 þ c2�

d�2

�y1=2
� c2t

dt2

�y1=2
þ c2x �y

1=2
X3
i¼1

ðdxiÞ2;

(3.56)

where ci (i ¼ y, �, t, x) are unimportant coefficients. This

metric leads to a divergent scalar curvature R� �y�5=2 near
�y ¼ 0. Thus, as we will discuss in the next subsection, to
construct a brane world, the singularity is firstly removed
from the original spacetime in [14]. Then, an identical
copy of the remaining piece of the spacetime is attached
to the opposite side across the codimension-one boundary
at y ¼ y2 þ �, where � > 0, which wraps the axis of the
rotational symmetry of the internal space. This boundary
may be identified as our brane world. There are jumps of
the physical quantities across the boundary.

2. Construction of the brane world

We now construct the brane world by employing the
dynamical solution in the 3-form background. First, the
original spacetime is cut at y ¼ y0 > y1ð>y2Þ, and the
singular part of y2 < y< y0 is removed. Then, an identical
copy of the remaining piece is glued with the original one,
at the codimension-one boundary y ¼ y0.
The induced metric on the boundary is given by

ds25 ¼ e2wðt;y0Þd�2 � e2u0ðt;y0Þdt2 þ e2u1ðt;y0Þ
X3
i¼1

ðdxiÞ2:

(3.57)

The extrinsic curvature to the boundary is given by

Kab ¼ �

2ev
ðgabÞ0jy0 ; (3.58)
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where � ¼ þ1 or �1 denotes the direction of the normal
vector toward increasing or decreasing y, respectively. In
our case, we choose � ¼ þ1. Now the extrinsic curvature
is discontinuous across the boundary and its jump is de-
termined by the Israel junction condition:

½gab� ¼ 0; ½ �Kab� ¼ ½Kab � gabK� ¼ ��2Sab;

(3.59)

where [A] denotes the jump of a physical quantity A across
y ¼ y0, and Sab is the stress-energy tensor of the matter
localized on the boundary. This codimension-one bound-
ary can be identified as our brane world.

For our background metric, we obtain

�K�
� ¼ �e�vðu00 þ 3u01Þ; �Kt

t ¼ �e�vðw0 þ 3u01Þ;
1
3
�Ki

i ¼ �e�vðu00 þ w0 þ 2u01Þ: (3.60)

Sab also can be decomposed into the components Stt ¼
��, S�� ¼ p� and ð1=3ÞSii ¼ p. The junction condition at

y ¼ y0 is given by

ðe�vðu00 þ 3u01ÞÞjy¼y0 ¼
�2

2
p�; (3.61)

ðe�vðw0 þ 3u01ÞÞjy¼y0 ¼ ��2

2
�; (3.62)

ðe�vðw0 þ u00 þ 2u01ÞÞjy¼y0 ¼
�2

2
p: (3.63)

They can be rewritten as

ðe�vðu01 � w0ÞÞjy¼y0 ¼
�2

2
ðp� � pÞ; (3.64)

ðe�vðu01 � u00ÞÞjy¼y0 ¼ ��2

2
ð�þ pÞ; (3.65)

ðe�vðu00 þ 3u01ÞÞjy¼y0 ¼
�2

2
p�: (3.66)

Our discussion in this subsection can be applied to the
sinh and linear solutions discussed in the previous section,
and the form of PðyÞ in Eqs. (3.35), (3.36), (3.37), (3.38),
and (3.39) is not specified. It is now clear that the zero-
thickness limit of y0 ! y2 is not well behaved, since the
left-hand side of the junction Eqs. (3.64), (3.65), and (3.66)
becomes singular. Note that the sin solution contains an-
other curvature singularity at y ¼ 	=jf2j þ y2 and is ex-
cluded from our consideration. In addition, for the sinh or
linear solutions, the finiteness of bulk volume is not en-
sured. Thus, following Ref. [14], here we put the second
brane world at some y ¼ L > y0. Note that the second
brane takes � ¼ �1. The junction condition at y ¼ L is
given in a similar way with the opposite sign of the right-
hand side of Eqs. (3.61), (3.62), and (3.63).

In order to obtain a dynamical solution, we must choose
Gw ¼ G�. Also, we may choose the integration constants

as

k1 ¼ 0; kv ¼ 0; k� ¼ �2 ln

�
2g

�f1

�
: (3.67)

and thus ðehwÞ� ¼ c�1
w eh0 . By introducing the proper coor-

dinate T ¼ cwe
hw , after some computations, we obtain

u1 � w ¼ 1
2PðyÞ þ 4

3G�y� lnT; (3.68)

u1 � u0 ¼ 1
2PðyÞ þ 4

3G�y; (3.69)

3u1 þ u0 ¼ 1
2PðyÞ � lncosh½f1ðy� y1Þ�: (3.70)

The junction conditions are reduced to�
e�v

�
1

2
P0ðy0Þ þ 4

3
G�

��
¼ �2

2
ðp� � pÞ; (3.71)

�
e�v

�
1

2
P0ðy0Þ þ 4

3
G�

��
¼ ��2

2
ðpþ �Þ; (3.72)

fe�vðP0ðy0Þ � f1 tanh½f1ðy0 � y1Þ�Þg ¼ �2

2
p�: (3.73)

Noting that v is not an explicit function of T, the left-hand
side of the junction equations becomes static, and �, p, and
p� remain constant. In the static case without the condition
Gw ¼ G�, generically the three quantities �, p, and p�

satisfy the different equations of state from the tension.
Now, however, from Eqs. (3.71) and (3.72), the inclusion of
the time dependence, i.e., the condition Gw ¼ G�, induces

the relation � ¼ �p�.
Furthermore, the requirement of the recovery of the

Lorentz symmetry at the brane y ¼ y0, i.e., u
0
1 ¼ u00, to-

gether with Eq. (3.69) leads to

3P0ðy0Þ ¼ �8G�: (3.74)

By combining this with the previous relations, u00 ¼ u01 ¼
w0 is obtained. This relation suggests that � ¼ �p ¼
�p�. Thus, we are lead to the conclusion that the brane
with the ordinary four-dimensional spacetime with the
Lorentz symmetry is supported only by the tension. Note
that this conclusion is derived with some assumptions
concerning time dependence, and without them we might
be able to construct the brane world with the Lorentz
symmetry, supported by some matter other than the
tension.
Before closing this section, following Ref. [14], the four-

dimensional effective theory on the brane world should be
discussed. In the standard warped solutions, the four-
dimensional Planck mass is obtained by integrating over
the two-internal space. However, in our case, in general,
the warp function in the timelike direction is different from
that of the ordinary 3-space. Then, the six-dimensional
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Einstein-Hilbert term now reduces to

M4
6

Z
d6x

ffiffiffiffiffiffiffi�g
p

R� 2ð2	ÞM4
6

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð4Þ

q

�
�Z L

y0

dye�u0þ3u1þvþwgð4ÞttRð4Þ
tt

þ
Z L

y0

dyeu0þu1þvþwgð4ÞijRð4Þ
ij

�
; (3.75)

where M6 :¼ ð 1
2�2Þ1=4 is the six-dimensional Planck mass.

Note that the factor 2 in front of the integration come from
the Z2 symmetry, and (2	) is from the integration over the
azimuthal direction. To define the unique four-dimensional
effective Planck mass Mp, we need to require that

2ð2	ÞM4
6

Z L

y0

dye�u0þ3u1þvþw

¼ 2ð2	ÞM4
6

Z L

y0

dyeu0þu1þvþw ¼: M2
p; (3.76)

or more explicitly

Z L

y0

dy
PðyÞe2ðG��GwÞy

cosh2½f1ðy� y1Þ�
¼

Z L

y0

dy
e�ð8=3ÞG�y

cosh2½f1ðy� y1Þ�
:

(3.77)

In the case of G� � Gw there is no time-dependent solu-

tion. The cutoff parameter y0 appears in the definition of
M2

p. In other words, the effect of the brane thickness is

renormalized into the four-dimensional Planck mass. In the
case of G� ¼ Gw, e

w / T and henceM2
p / T. In this case,

we should move to the Einstein frame. Then, the conformal

transformation to the Einstein frame, gðEÞ�� ¼ Tgð4Þ��, leads to

the cosmic expansion of 
1=3, where 
 is the cosmic proper
time defined in the Einstein frame. However, this power in
the expansion law is not sufficient for obtaining realistic
cosmology. Realistic cosmological evolutions may be ob-
tained by considering the time-dependent matter on the
brane, through the induced motion of the brane in the bulk.

IV. S-BRANE-LIKE SOLUTIONS

A. Field equation

Assuming the same metric ansatz (3.1) as in the previous
section, we investigate another class of the time-dependent
solutions by exchanging the roles of the t coordinate with
the y coordinate as well as those of u0 with v. The way of
constructions of solutions are very similar to the case of S
branes, see e.g., [18–21]. We also assume that the 3-form
field strength is the function of time

H ¼ _Eðt; yÞdt ^ dy ^ d�: (4.1)

The equations of motion for the flux are given by

ðeU�2u0�2w�2� _EÞ0 ¼ 0; (4.2)

ðeU�2u0�2w�2� _EÞ� ¼ 0: (4.3)

Equations (4.2) and (4.3) give

e��2v�2w�2� _E ¼ c; (4.4)

where c is a constant and

� :¼ Uþ 2v� 2u0:

In this section, we assume� ¼ 0 is independent of t, _� ¼
0. Employing (4.4), the Einstein and dilaton equations are
now given by

ðeUu00Þ0 ¼ e�ð €u0 � _u20 þ 3 _u21 þ _v2 þ _w2 þ _�2Þ þ 1

2
�2c _E

� g2

�2
e�þ2vþU; (4.5)

ðeUu10Þ0 ¼
�
_u1e

� � 1

2
�2cE

�� � g2

�2
e�þ2vþU; (4.6)

eUðv00 þU00 � v02 � v0U0 þ 3u1
02 þ w02 þ u0

02 þ�02Þ

¼
�
_ve� þ 1

2
�2cE

�� � g2

�2
e�þ2vþU; (4.7)

ðeUw0Þ0 ¼
�
_we� þ 1

2
�2cE

�� � g2

�2
e�þ2vþU; (4.8)

ðeU�0Þ0 ¼ ð _�e� þ �2cEÞ� þ 2g2

�2
e�þ2vþU: (4.9)

Let us look for the solutions with the following assump-
tions that

0 ¼ e�ð €u0 � _u20 þ 3 _u21 þ _v2 þ _w2 þ _�2Þ þ 1

2
�2c _E

� g2

�2
e�þ2vþU; (4.10)

0 ¼
�
_u1e

� � 1

2
�2cE

�� � g2

�2
e�þ2vþU; (4.11)

0 ¼
�
_ve� þ 1

2
�2cE

�� � g2

�2
e�þ2vþU; (4.12)

0 ¼
�
_we� þ 1

2
�2cE

�� � g2

�2
e�þ2vþU; (4.13)

0 ¼ ð _�e� þ �2cEÞ� þ 2g2

�2
e�þ2vþU: (4.14)

By combining Eqs. (4.11), (4.12), (4.13), and (4.14), with
_� ¼ 0 and hence _u0 ¼ _vþ 3 _u1 þ _w, we find

ð2u0 þ�Þ�� ¼ 8g2

�2
e2u0þ�: (4.15)
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For Eq. (4.15), there are three classes of solutions, namely,
the sinh, sin and linear solutions. We discuss these solu-
tions in order.

The sinh solutions: A solution to Eq. (4.15) is given by

e�ð2u0þ�Þ ¼ 4g2

�2f21
sinh2½f1ðt� t1Þ�; (4.16)

where f1 and t1 are constants. Assuming that the right-
hand sides of Eqs. (4.5), (4.6), (4.7), (4.8), and (4.9) vanish,
we obtain

_v ¼ ��2

2
ce��E� f1

4
coth½f1ðt� t1Þ� �Gv; (4.17)

_u 1 ¼ �2

2
ce��E� f1

4
coth½f1ðt� t1Þ� �G1; (4.18)

_w ¼ ��2

2
ce��E� f1

4
coth½f1ðt� t1Þ� �Gw; (4.19)

_� ¼ ��2ce��Eþ f1
2

coth½f1ðt� t1Þ� þ 2G�; (4.20)

where Gi (i ¼ v, 1, w, �) are also constants. Because of

the assumption that _� ¼ 0, we obtain

_u 0 ¼ �2

2
ce��E� 5f1

4
coth½f1ðt� t1Þ� �G�; (4.21)

and

3G1 �G� þGv þGw ¼ 0: (4.22)

Substituting these into Eq. (4.5), we find

1
2ðY2 þ _YÞ � ð3G1 þG�ÞY � f21 þ ð�3G1 þG� �GwÞ2

þ 3G2
1 þG2

w þ 3G2
� ¼ 0; (4.23)

where Y is defined as in the previous section:

Y � 2�2cEe��: (4.24)

Without loss of generality, we may impose the further
condition that

3G1 þG� ¼ 0: (4.25)

Then Eq. (4.23) reduces to

Y2 þ _Y þ f22 ¼ 0; (4.26)

where we defined

f22 ¼ �2f21 þ 4ðG� �GwÞ2 þ 32
3G

2
�: (4.27)

Note that f22 can be either positive, negative or zero.
For a positive, negative and vanishing f22, the solution to

Eq. (4.26) is given by

Y ¼ f2 cot½f2ðt� t2Þ�; jf2j coth½jf2jðt� t2Þ�;
1

t� t2
; (4.28)

respectively. The corresponding solutions with the possible
y dependence are given by

u0 ¼ 1
4QðtÞ � 5

4 lnj sinh½f1ðt� t1Þ�j �G�tþ h0ðyÞ;
(4.29)

u1 ¼ 1
4QðtÞ � 1

4 lnj sinh½f1ðt� t1Þ�j þ 1
3G�tþ h1ðyÞ;

(4.30)

v ¼ �1
4QðtÞ � 1

4 lnj sinh½f1ðt� t1Þ�j
� ð2G� �GwÞtþ hvðyÞ; (4.31)

w ¼ �1
4QðtÞ � 1

4 lnj sinh½f1ðt� t1Þ�j �Gwtþ hwðyÞ;
(4.32)

� ¼ �1
2QðtÞ þ 1

2 lnj sinh½f1ðt� t1Þ�j þ 2G�tþ h�ðyÞ;
(4.33)

where for a positive, negative or vanishing f22, QðtÞ is
defined by

QðtÞ :¼ lnj sin½f2ðt� t2Þ�j; lnj sinh½jf2jðt� t2Þ�j;
lnjt� t2j; (4.34)

respectively.
The sin solutions: Another solution to Eq. (4.15) is the

oscillatory type:

e�ð2u0þ�Þ ¼ 4g2

�2f21
sin2½f1ðt� t1Þ�: (4.35)

Then, defining the new parameter

f22 ¼ 2f21 þ 4ðG� �GwÞ2 þ 32
3G

2
�; (4.36)

which is always positive for a positive f21, we get the
corresponding solutions with the possible y dependence:

u0 ¼ 1
4 lnj sin½f2ðt� t2Þ�j � 5

4 lnj sin½f1ðt� t1Þ�j
�G�tþ h0ðyÞ; (4.37)

u1 ¼ 1
4 lnj sin½f2ðt� t2Þ�j � 1

4 lnj sin½f1ðt� t1Þ�j
þ 1

3G�tþ h1ðyÞ; (4.38)

v ¼ �1
4 lnj sin½f2ðt� t2Þ�j � 1

4 lnj sin½f1ðt� t1Þ�j
� ð2G� �GwÞtþ hvðyÞ; (4.39)

w ¼ �1
4 lnj sin½f2ðt� t2Þ�j � 1

4 lnj sin½f1ðt� t1Þ�j
�Gwtþ hwðyÞ; (4.40)
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� ¼ �1
2 lnj sin½f2ðt� t2Þ�j þ 1

2 lnj sin½f1ðt� t1Þ�j
þ 2G�tþ h�ðyÞ: (4.41)

The linear solutions: The last solution to Eq. (4.15) takes
the form

e�ð2u0þ�Þ ¼ 4g2

�2
ðt� t1Þ2: (4.42)

Then, by defining

f22 ¼ 4ðG� �GwÞ2 þ 32
3G

2
�; (4.43)

which is always positive, we get the corresponding solu-
tions with the possible y dependence:

u0 ¼ 1
4 lnj sin½f2ðt� t2Þ�j � 5

4 lnjt� t1j �G�tþ h0ðyÞ;
(4.44)

u1 ¼ 1
4 lnj sin½f2ðt� t2Þ�j � 1

4 lnjt� t1j þ 1
3G�tþ h1ðyÞ;

(4.45)

v ¼ �1
4 lnj sin½f2ðt� t2Þ�j � 1

4 lnjt� t1j � ð2G� �GwÞt
þ hvðyÞ; (4.46)

w ¼ �1
4 lnj sin½f2ðt� t2Þ�j � 1

4 lnjt� t1j �Gwtþ hwðyÞ;
(4.47)

� ¼ �1
2 lnj sin½f2ðt� t2Þ�j þ 1

2 lnjt� t1j þ 2G�t

þ h�ðyÞ; (4.48)

where

f22 ¼ 2f21 þ 4ðG� �GwÞ2 þ 32
3G

2
�: (4.49)

In all the three types of solutions, setting all hi ¼ 0 leads
to purely time-dependent solutions.

B. Generalization to the y-dependent cases

Following the similar arguments as done in the previous
section, we find that the y dependence can be included only
for the choice ofG� ¼ Gw. In any case of the sinh, sin, and

linear solutions shown in the previous subsection, the
y-dependent functions satisfy

h0 ¼ k0; h� ¼ k�; h1 ¼ k1;

ðehwÞ0 ¼ cwe
�k0�3k1ehv ;

(4.50)

where k0, kv and k1 are integration constants satisfying

k� þ 2k0 ¼ �2 ln

�
2g

�f1

�
: (4.51)

Thus, even taking into account the y dependence, the
spacetime structure in the ordinary four dimensions does
not contain a warped structure. The internal space metric
can be written as

ds22 ¼ FðtÞ2ðe2hvdy2 þ e2hwd�2Þ

¼ e2ðk0þ3k1ÞFðtÞ2
c2w

�
ððehwÞ0dyÞ2 þ c2w

e2ðk0þ3k1Þ ðe
hwÞ2d�2

�

¼ e2ðk0þ3k1ÞFðtÞ2
c2w

�
dR2 þ c2w

e2ðk0þ3k1Þ R
2d�2

�
; (4.52)

where R ¼ ehw is the proper radial coordinate. Assuming
the standard periodicity 2	 for the angular coordinate,
there is generically a conical singularity at the center

� ¼ 2	

�
1� cw

ek0þ3k1

�
: (4.53)

This conical singularity at R ¼ 0 can be seen as our brane
world. The ordinary 3-space metric cannot depend on the
internal space coordinate and therefore it is impossible to
realize a warped structure.

C. Cosmological behaviors on the brane

Let us now discuss the cosmological behaviors of our
solutions. In our real Universe, the scale factor is not
oscillating. Thus, in this subsection we do not consider
the solutions with oscillating scale factor and focus only on
the sinh solutions of Gw ¼ G� with f22 � 0. Without loss

of generality, we may assume f1 > 0. For simplicity, we
discuss the behaviors in the large t limit:

u0 � 1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1� 16

3
g2�

�s
� 5� 4g�

�
f1t ¼: p0f1t;

u1 � 1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1� 16

3
g2�

�s
� 1þ 4

3
g�

�
f1t ¼: p1f1t;

v ¼ w � � 1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1� 16

3
g2�

�s
þ 1þ 4g�

�
f1t ¼: pvf1t;

(4.54)

where we also define g� :¼ G�=f1. Note that jg�j �ffiffiffi
3

p
=4 � 0:433. For �0:196< g� < 0:410, p1 > 0 and

for g� >�0:395, pv < 0 (see Figs. 1 and 2).

In one choice of the proper time coordinate, dT ¼
�eu0dt, the approximate spacetime metric is given by

ds2 ¼ ð�TÞ2qv
�
dR2 þ R2

�
1� �

2	

�
2
d�2

�
� dT2

þ ð�TÞ2q1 X3
i¼1

ðdxiÞ2; (4.55)

where unimportant constants are eliminated by the proper
rescalings of R and xi and � is defined in Eq. (4.53). We
also defined the powers

q1 :¼ � p1

jp0j ; qv :¼ � pv

jp0j : (4.56)

In the other choice of the proper time coordinate, dT ¼
eu0dt, the approximate spacetime metric becomes
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ds2 ¼ T2qv

�
dR2 þ R2

�
1� �

2	

�
2
d�2

�
� dT2

þ T2q1
X3
i¼1

ðdxiÞ2: (4.57)

In Fig. 3, we show the behavior of q1 and qv. For
�0:196< g� < 0:410, q1 < 0. For g� >�0:395, qv >

0. For � ffiffiffi
3

p
=4< g� <�0:335, q1 > qv, while for the

rest q1 < qv.
For �0:196< g� < 0:410, q1 < 0 and qv > 0. Thus, in

the metric (4.55), in the T ! 0� limit, the size of the
ordinary 3-space increases and diverges within a finite
time, while that of the internal space is shrinking to zero.

For� ffiffiffi
3

p
=4< g� <�0:335, q1 > qv and q1 > 0. Thus,

for this range of g�, the metric (4.57) describes the ordi-

nary 3-space which is expanding faster than the internal
space dimensions. In particular, for g� <�0:395, the

internal space is contracting. But since q1 � 0:406, an
accelerating expansion, as in the inflationary or dark en-
ergy Universe, cannot happen.

The Einstein frame: Let us briefly discuss how our
solution behaves in the Einstein frame. Rewriting the
original metric in this form,

ds2 ¼ gð4Þ��dx�dx� þ e2vdy2 þ e2wd�2; (4.58)

we obtain

R ¼ Rð4Þ þ 2 _v2 þ 2 _w2 þ � � � ; (4.59)

where Rð4Þ is the Ricci scalar associated with the metric

gð4Þ��. The gravity action can reduce to

Z
d6x

ffiffiffiffiffiffiffiffi�G
p

R� V2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi�gð4Þ
p

evþwRð4Þ

� V2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi�gðEÞ
p

RðEÞ; (4.60)

where V2 ¼
R
dvdw is the comoving volume of the inter-

nal space, which is assumed to be finite for instance by
introducing a cutoff. The Einstein frame metric is given by

ds2E :¼ gðEÞ��dx�dx� ¼ evþwgð4Þ��dx�dx�

¼ �evþwþ2u0dt2 þ evþwþ2u1
X3
i¼1

ðdxiÞ2: (4.61)

Using the solutions, we find

vþ wþ 2u1 ¼ 1
3ðvþ wþ 2u0Þ

¼ � lnj sinh½f1ðt� t1Þ�j � 4
3G�t: (4.62)

Thus, in the proper time coordinate system d
 ¼
	evþwþ2u0dt, the Einstein frame metric can be written as

ds2E � �d
2 þ ð

Þ2=3 X3
i¼1

ðdxiÞ2; (4.63)

which corresponds to a contracting or expanding Universe
filled by the stiff matter.

0.4 0.2 0.2 0.4

2.0

1.5

1.0

0.5

FIG. 1. The plots for p0 are shown as a function of g� for
f1 > 0.

0.4 0.2 0.2 0.4

0.2

0.2

0.4

0.6

FIG. 3. The plots for q1 (the solid curve) and qv (the dashed
curve) are shown as a function of g� for f1 > 0.

0.4 0.2 0.2 0.4

0.8

0.6

0.4

0.2

0.2

FIG. 2. The plots for p1 (the solid curve) and pv (the dashed
curve) are shown as a function of g� for f1 > 0.
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V. CONCLUSIONS

We have investigated the dynamical 3-form flux com-
pactifications and their implications for brane world cos-
mology in the six-dimensional Nishino-Salam-Sezgin
model. We take the background of the 3-form field acting
on the internal space and timelike dimensions without the
Uð1Þ gauge field strength.

The first class of solutions we discussed was the dy-
namical generalization [15] of the static solutions, recently
obtained in [14]. It turned out that the dynamical general-
ization is possible only for the special case. In this class, we
found that the time evolution is restricted in the azimuthal
dimension of the internal space. The ordinary three-
dimensional space is not dynamical and hence does not
give rise to a cosmological evolution. There is a curvature
singularity at the boundary of the internal space, which is
more severe than the conical one. To construct the brane
world model, following [14], we first removed the singular
part from the original solution and then glued the remain-
ing piece of the spacetime with an identical copy at the
codimension-one boundary wrapping the axis of the rota-
tional symmetry. This boundary may be regarded as our 3-
brane world. Generically, because of the presence of the 3-
form field the Lorentz symmetry in the ordinary four-
dimensional spacetime is broken. In general, such a brane
can be supported by the matter with the energy density �,
the pressure in the ordinary 3-space p and that in the
azimuthal dimension p�, which would be different from
the pure tension. Since the inclusion of the time depen-
dence reduces the number of the parameters, the brane can
be embedded by the matter with p� ¼ �� (but still p �
��). However, at the place where the Lorentz symmetry is
recovered, the boundary brane world can be supported only
by the pure tension, i.e., p ¼ p� ¼ ��. Note the solutions
reported here and related implications for the brane world
model were obtained under several assumptions. It is very
interesting to explore the time-dependent solutions and
associated brane world models without these assumptions.

The second class of models was obtained by exchanging
the roles of the radial coordinate and the time coordinate
from the first class one. At the center of the internal space,
there is a conical singularity which may be interpreted as
codimension two our 3-brane world. But it does not seem
to be possible to realize a warped structure in the external
dimensions, as expected in analogy with the previous case.
Except for the oscillating dynamical solutions, the solu-
tions led to the expanding or contracting ordinary 3-space,
depending on the choice of time direction. Among the
expanding solutions, there are decelerating and accelerat-
ing ones: In the latter solution, the scale factor in the
ordinary 3-space diverges within a finite time. In the
Einstein frame, however, the Universe always followed
the expansion law of the one filled by the stiff matter,
irrespective of the choice of parameters.
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APPENDIX: DYNAMICAL BLACK 1-BRANES

In this Appendix, we discuss another class of the dy-
namical solutions with the nonvanishing 3-form field
strength. The solution represents the black 1-brane ex-
tended along the y direction in the presence of a cosmo-
logical constant. We now take the following ansatz for the
metric

ds26 ¼ e2uðt;y;rÞð�dt2 þ dy2Þ þ e2vðt;y;rÞðdr2 þ r2d�2
3Þ;
(A1)

the dilaton � ¼ �ðt; y; rÞ and the 3-form field strength

H ¼ Eðt; y; rÞ;rdt ^ dr ^ dy: (A2)

The ðt; yÞ coordinates cover the worldvolume of the 1-
brane, while the rest does the transverse spatial dimen-
sions. The equations for the 3-form field are given by

ðe�2uþ2v�2�r3E;rÞ� ¼ ðe�2uþ2v�2�r3E;rÞ;y
¼ ðe�2uþ2v�2�r3E;rÞ;r ¼ 0: (A3)

Defining V � 2uþ 2v, the integration of Eq. (A3) gives

r3eV�4u�2�E;r ¼ c; (A4)

where c is an integration constant. Then, the diagonal
components of Einstein equations and the dilaton equation
of motion are given by

e�2uð�u;yy � 4u;yv;y � €uþ 2 €vþ €V � 2 _u _v� _u _V

þ 2 _u2 þ 4 _v2Þ þ e�2v

�
�u;rV;r � u;rr � 3

r
u;r

�

¼ �e�2u _�2 � �2c

2r3
e�V�2vE;r þ g2

�2
e�; (A5)
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e�2uðu;yy � 2v;yy � V;yy þ 2u;yv;y þ u;yV;y � 2u2;y � 4v2
;y

þ €uþ _uð _V � 2 _vþ 2 _uÞÞ
þ e�2v

�
�u;rV;r � u;rr � 3

r
u;r

�

¼ e�2u�2
;y � �2c

2r3
e�V�2vE;r þ g2

�2
e�; (A6)

e�2uð €vþ _vð _V � 2 _uþ 2 _vÞ � v;yy

� v;yðV;y � 2u;y þ 2v;yÞÞ
þ e�2v

�
�V;rr � v;rr � 3

r
v;r þ v;rV;r � 2ðu2;r þ v2

;rÞ
�

¼ e�2v�;r
2 � �2c

2r3
e�V�2vE;r þ g2

�2
e�; (A7)

e�2uð €vþ _vð _V � 2 _uþ 2 _vÞ � v;yy

� v;yðV;y � 2u;y þ 2v;yÞÞ
þ e�2v

�
�v;rr � 3

r
v;r �

�
v;r þ 1

r

�
V;r

�

¼ �2c

2r3
e�V�2vE;r þ g2

�2
e�; (A8)

e�2uð� €�� ð _V � 2 _uþ 2 _vÞ _�þ�;yy

þ ðV;y � 2u;y þ 2v;yÞ�;yÞ

þ e�2v

�
�;rr þ

�
V;r þ 3

r

�
�;r

�
� �2c

r3
e�V�2vE;r

� 2g2

�2
e� ¼ 0: (A9)

We require in Eqs. (A5) and (A6)

u;r ¼ �2

2r3
ce�VE: (A10)

Similarly in Eqs. (A8) and (A9),

v;r ¼ � �2

2r3
ce�VE; �;r ¼ �2

r3
ce�VE; (A11)

where we assume that V does not depend on r. Eliminating
r-derivative terms in Eq. (A7), by Eqs. (A10) and (A11),
we obtain

e2v�2u½ €vþ _vð _V � 2 _uþ 2 _vÞ � v;yy

� v;yðV;y � 2u;y þ 2v;yÞ� � g2

�2
e�þ2v

¼ � 1

r3

�
~E;r � 2 ~E2

r3

�
; (A12)

where we defined ~E :¼ �2ce�VE. Setting the right-hand
side of Eq. (A12) to be zero, we obtain

~E ¼ Q

Hðt; y; rÞ ; Hðt; y; rÞ � hðt; yÞ þ Q

r2
; (A13)

whereQ is a constant. Then Eqs. (A10) and (A11) give that
the metric functions and dilaton can be written as

u ¼ �1
4 lnHðt; y; rÞ; v ¼ 1

4 lnHðt; y; rÞ;
� ¼ �1

2 lnHðt; y; rÞ; (A14)

where the integration constants are set to be zero. It is
straightforward to check that the off-diagonal components
of the Einstein equation

4u;r _v� _u;r � 3 _v;r ��;r
_� ¼ 0;

4u;rv;y � u;ry � 3v;ry ��;r�;y ¼ 0;
(A15)

are satisfied. We find that the time-dependent parts of
Eqs. (A5)–(A7) reduce to

h;yy þ 3 €h ¼ 4g2

�2
; (A16)

� €h� 3h;yy ¼ 4g2

�2
; (A17)

€h� h;yy ¼ 4g2

�2
; (A18)

respectively. Both of Eqs. (A8) and (A9) reduce to the
same equation as Eq. (A18). The solution of Eqs. (A16)–
(A18) is given by

hðt; yÞ ¼ g2

�2
ðt2 � y2Þ þ attþ ayyþ a0; (A19)

where ai (i ¼ t, y, 0) are integration constants. Then, the
left-hand side of the remaining off-diagonal component of
the Einstein equation

� 4v;y _v� 4 _v;y þ 4u;y _vþ 4 _uv;y � _��;y ¼ 0; (A20)

is proportional to _h;y, which vanishes because of Eq. (A19).

As seen from Eq. (A19), h is no longer linear in the
worldvolume coordinates but quadratic in them, which
also happens in p-brane solutions with trivial or vanishing
dilaton [22].
Let us summarize the solutions obtained here:

uðt; y; rÞ ¼ �vðt; y; rÞ

¼ � 1

4
ln

�
Q

r2
þ g2

�2
ðt2 � y2Þ þ attþ ayyþ a0

�
;

(A21)

�ðt; y; rÞ ¼ � 1

2
ln

�
Q

r2
þ g2

�2
ðt2 � y2Þ þ attþ ayyþ a0

�
:

(A22)

Because of the dependence on the spatial worldvolume
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coordinate y as well as on the time coordinate t, the brane
direction is not compact, and this solution may not be
suitable for constructing the brane world. One might imag-
ine that there may be a solution with a quadratic order
dependence on time in the case of the 2-form field (i.e., 0-
brane). For the dilaton coupling parameters in the NSS
model, such a dynamical solution does not exist. But it
does for the other special coupling parameters. Our solu-
tion can be interpreted as one of the dynamical p-brane

solutions, in a class of the theory with a cosmological
constant. These solutions will be discussed in detail in
[23]. In particular, among these solutions, the 0-brane
solution in the four-dimensional spacetime behaves as a
black hole embedded into a Friedmann-Robertson-Walker
universe filled by the matter with the equation of state w ¼
� 1

3 , where w is the ratio of the pressure with the energy

density.
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