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We consider the version of QCD in Euclidean Landau gauge in which the restriction to the Gribov

region is implemented by a local, renormalizable action. This action depends on the Gribov parameter �,

with dimensions of ðmassÞ4, whose value is fixed in terms of �QCD, by the gap equation, known as the

horizon condition, @�@� ¼ 0, where � is the quantum effective action. The restriction to the Gribov region

suppresses gluons in the infrared, which nicely explains why gluons are not in the physical spectrum, but

this only makes more mysterious the origin of the long-range force between quarks. In the present article

we exhibit the symmetries of �, and show that the solution to the gap equation, which defines the classical

vacuum, spontaneously breaks some of the symmetries of �. This implies the existence of massless

Goldstone bosons and fermions that do not appear in the physical spectrum. Some of the Goldstone bosons

may be exchanged between quarks, and are candidates for a long-range confining force. As an exact result

we also find that in the infrared limit the gluon propagator vanishes like k2.
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I. INTRODUCTION

We are reasonably confident that the interactions of
quarks and gluons are correctly described by the non-
Abelian gauge theory known as QCD. This confidence is
based on the success of perturbative calculations at high
energy and numerical calculations in lattice QCD.
However we lack a satisfactory continuum description
the phases of QCD, comparable to the Higgs model of
electroweak interactions, and it remains a challenge to
understand the confinement of quarks and gluons at the
nonperturbative level. There are several suggestive scenar-
ios, which involve the dual Meissner effect with conden-
sation of magnetic monopoles, the maximal Abelian
gauge, the maximal center gauge, and the Coulomb gauge.
There is also a scenario in Euclidean Landau gauge that
originated with Gribov [1] that is based on the insight that
there exist Gribov copies—that is to say gauge-equivalent
configurations that nevertheless satisfy the (Landau) gauge
condition—and moreover that the dynamics is strongly
affected if one cuts off the Euclidean functional integral
to avoid over-counting these copies.1

This cutoff is nonlocal in A space. However just as the
nonlocal Faddeev-Popov (FP) determinant may be repre-
sented in a local action by means of Faddeev-Popov ghosts,
so the nonlocal cutoff in A space may be represented in a
local action by means of additional fermionic and bosonic
ghosts [3,4]. The renormalizibility of this local action has
been established [4,5], and its consistency has been studied
[6–17].

Ideally one would like to cut off at the boundary of the
fundamental modular region, �, which may be taken to be
the set of absolute minima on each gauge orbit of the

minimizing functional in D Euclidean dimensions [18–20]

FAðgÞ �
Z

dDxjgAj2: (1)

Here gA� ¼ g�1A�gþ g�1@�g is the transform of the

non-Abelian gauge potential A�ðxÞ by the local gauge

transformation gðxÞ. However, we lack an explicit descrip-
tion of �, and we instead integrate over the Gribov region,
�, which is the set of relative minima on each gauge orbit
of the minimizing functional, a region that is convex and
bounded in every direction [20]. The Gribov region is
larger than the fundamental modular region, � � � and
� � � [19]. However, since the integral over � can be
represented as a functional integral with a local renorma-
lizable action, it provides an interesting quantum field
theory of non-Abelian gauge fields which is worthy of
study in its own right. Moreover the restriction to � has
dynamical consequences which substantiate the confine-
ment scenario originally proposed by Gribov, so this pro-
vides a valuable pathway to confinement. In the present
work we shall derive some exact dynamical consequences
starting from the local, renormalizable action by the op-
eration of the Goldstone mechanism.
The organization of this article is as follows. In Sec. II

we introduce the local action S and the horizon condition,
and we exhibit a Becchi-Rouet-Stora-Tyutin (BRST) op-
erator that is explicitly but softly broken. The one-loop
vacuum free energy is calculated in Appendix B. In
Sec.. III local sources and the quantum effective action �
are introduced, and we show that � enjoys the rich sym-
metries of the BRST-invariant part of S, provided that the
sources are suitably transformed. In Sec. IV we show that
the horizon condition spontaneously breaks the symme-
tries of �. The Slavnov-Taylor (ST) identity is derived in
Sec. V. Section VI is based on the results of Appendix A
where the Ward identities corresponding to the equations

1For a connection between scenarios in center and Abelian
gauge and the Gribov scenario, see [2].
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of motion of the auxiliary ghosts are solved, as is the Ward
identity corresponding to the integrated equation of motion
of the Fadeev-Popov ghost c. This allows us to replace the
quantum effective action by the reduced quantum effective
action ��, which depends only on a reduced set of varia-
bles. In Sec. VII the Slavnov-Taylor identity satisfied by ��
is derived. In Sec. VIII the global Ward identities satisfied
by �� are derived, which include supersymmetry trans-
formations. In sSec. IX the basic tensor invariants under
these symmetries are constructed. New on-shell symme-
tries are derived in Sec. X, and the surviving tensor invar-
iants are constructed. In Sec. XI, �� is expanded about the
symmetry-breaking vacuum determined by the horizon
condition, and the ‘‘flat’’ directions are found. In Sec. XII
the leading derivative terms in the flat directions are found.
In Sec. XIII the effective action in the infrared limit is
exhibited. In Sec. XIV the infrared limit of the propagators
of the Goldstone particles is found. In Sec. XVI the effec-
tive quark-quark interaction due to the exchange of one
Goldstone particle is found. Section XVII presents an
alternative interpretation of the results in terms of sponta-
neous breaking of the symmetry of the local Langrangian
density. Section XVIII contains our concluding remarks.

II. LOCAL ACTION AND HORIZON CONDITION

A local renormalizable action is defined by

S ¼ S0 þ S� ¼
Z

dDxðL0 þL�Þ; (2)

where

L 0 ¼ LFP þLaux; (3)

and

L FP ¼ ð1=4ÞF2
�� þ i@�bA� � @� �cD�c (4)

is the Faddeev-Popov Lagrangian density. The Yang-Mills
field tensor is written

F�� ¼ @�A� � @�A� þ gA� � A�; (5)

where ðA� � A�Þa � fabcAb
�A

c
�. The Lagrange-multiplier

field b imposes the Landau-gauge condition @ � A ¼ 0.
Without loss of generality we ignore the quark action
which plays no role in the discussion.

The second term in the Lagrangian density,

Laux ¼ @� ��ab
� ðD���Þab � @� �!ab

� ½ðD�!�Þab
þ ðgD�c���Þab�; (6)

involves a quartet of auxiliary bose and fermi ghosts, �ab
�

and !ab
� , and corresponding antighosts, ��ab

� and �!ab
� , that

carry a Lorentz index� and a pair of color indices a and b.
The gauge-covariant derivative and the Lie commutator act
on the first color index only, while the second color index is

mute, thus ðD���Þab ¼ @��
ab
� þ gðA� ���Þab where

ðA� ���Þab � fadcAd
��

cb
� .

The last term in the action involves the Gribov mass �,
with engineering dimension m4,

L � ¼ �1=2½D�ð�� � ���Þ � ðgD�c� �!�Þ�aa � f�;

(7)

where f � DðN2 � 1Þ is the number of components of the
gluon field Aa

�. If this term were absent, the integral over

the auxiliary bose and fermi ghosts would produce cancel-
ling factors of the Faddeev-Popov determinant detM,
leaving the Faddeev-Popov action. The term L� is of

dimension 2, whereas all other terms inL are of dimension
4. The system just defined has been studied and its renor-
malizability established by considering the symmetries of
the 4-dimensional action L0, and treating the 2-
dimensional term L� as a soft breaking of these symme-

tries [4–17].
The Gribov mass, �, is not a new, free parameter in

QCD, which would be unacceptable, but is determined in
terms of �QCD by the gap equation,

@�ð�Þ
@�

¼ 0; (8)

where �ð�Þ is the vacuum free energy,

exp½��ð�Þ� ¼
Z

d�exp½�Sð�; �Þ�; (9)

and �� ¼ ðA; c; �c; b;�;!; �!; ��Þ is the set of all fields.
This gap equation is called ‘‘the horizon condition’’ be-
cause it was derived from the condition that the functional
integral be cut off at the Gribov horizon. The gap equation
has no solution at tree level, because

�ð0Þð�Þ
�f

¼ Sð�; �Þj�¼0

�f
¼ ��; (10)

where � is the Euclidean quantization volume, and the

equation @�ð0Þ
@� ¼ ��f ¼ 0 indeed has no solution. At one-

loop, the gap equation does have a solution, so it is an
inherently nonperturbative condition, and yet, remarkably,
it is compatible with perturbative renormalization. The

one-loop contribution to the vacuum free energy, �ð1Þð�Þ,
is calculated in Appendix B, with the result

�ð�Þ
�f

¼ Sð0; �Þ þ �ð1Þð�Þ
�f

¼ ��

�
1þ 3Ng2

8ð4�Þ2 ln

�
2Ng2�

�4

��
; (11)

where� is a renormalization mass, and g ¼ gð�=�QCDÞ is
the renormalized running coupling constant. For � > 0,
this function has a single stationary point2 at [1,3]

2This is true for all Euclidean dimension 1 � D< 4. See
Appendix B.
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0 ¼ 1

�f

@�

@�
¼ �1�

�
3Ng2

8ð4�Þ2
�
ln

�
2Ng2e�

�4

�
: (12)

This gap equation has been calculated to two-loop order
[7,8]. The last equation reads

0 ¼ 1

�f

@�

@�
¼ �3Ng2

128�2
ln

�
�

�ph

�
; (13)

where

�ph ¼ �4 1

2Ng2e
exp

��128�2

3Ng2

�
; (14)

and has the solution

� ¼ �ph: (15)

We define a BRST operator that acts on the Faddeev-
Popov fields in the usual way

sA� ¼ D�c; sc ¼ �ðg=2Þðc� cÞ;
s �c ¼ ib; sb ¼ 0

(16)

and that acts on the auxiliary ghosts according to

s�ab
� ¼ !ab

� ; s!ab
� ¼ 0;

s �!ab
� ¼ ��ab

� ; s ��ab
� ¼ 0:

(17)

It is nil-potent, s2 ¼ 0. This operator is a symmetry of the
local Lagrangian at � ¼ 0,

sL0 ¼ 0: (18)

Indeed L0 may be written in the standard form for BRST
gauge fixing,

L 0 ¼ ð1=4ÞF2
�� þ sð@� �cA� þ @� �!�D���Þ; (19)

so sL0 ¼ 0 follows from sF2 ¼ 0 and s2 ¼ 0. For � � 0,
this symmetry is explicitly but softly broken by the term
L� of mass dimension 2,

sL� ¼ �1=2½D�!� þ gðD�cÞ ����aa: (20)

III. THE SYMMETRYOF � IS THE SYMMETRYOF
S0

It is helpful to consider the theory just defined as a
special case of a more symmetric theory. As a first step,
we write the multiplet of auxiliary ghosts as �a

i , !
a
i , �!ai,

��ai, instead of �ab
� , !ab

� , �!ab
� , ��ab

� , so the index i on the

auxiliary ghosts substitutes for the previous pair of indices
i ¼ ðb;�Þ, where b is the second color index, and � the
Lorentz index. The Lagrangian density Laux reads

Laux ¼ s@� �!aiðD��iÞa
¼ @� ��aiðD��iÞa � @� �!ai½ðD�!iÞa

þ ðgD�c��iÞa�; (21)

and the BRST operator acts according to

s�a
i ¼ !a

i ; s!a
i ¼ 0;

s �!ai ¼ ��ai; s ��ai ¼ 0:
(22)

The mute index i takes on the values i ¼ 1 . . . f, where f ¼
ðN2 � 1ÞD, which is the number of components of the
gluon field Aa

�.

As a second step, we define the local extended action [4].

�ð�; QÞ � S0ð�Þ þ ðK�; sA�Þ þ ðL; scÞ þ ðMi
�;D��iÞ

þ ðD� �!i; N�iÞ þ ðUi
�; sD��iÞ þ ðsD� �!i; V�iÞ

þ ðMi
�; V�iÞ � ðUi

�; N�iÞ (23)

that depends upon local sources Q �
ðKa

�; L
a;Mai

� ; N
a
�i; U

ai
� ; V

a
�iÞ of composite operators, where

ðMi
�;D��iÞ �

R
dDxMai

� ðxÞðD��iÞaðxÞ, etc. The local
sources K and L are familiar from Faddeev-Popov theory.
The action, S0ð�Þ ¼ R

dDxL0, appears in the definition

of � instead of the full action, Sð�; �Þ ¼ R
dDxðL0 þ

L�Þ ¼ S0 þ S�, defined in (2). However the full action is

recovered from the extended action

Sð�; �Þ ¼ �ð�; Q1Þ; (24)

by setting the external sources to the particular values

Q1 � fMai
� ¼ Mab

�� ¼ �Va
�;i ¼ �Vab

�� ¼ �1=2����
ab;K

¼ L ¼ N ¼ U ¼ 0g; (25)

where we have reverted to the previous notation, i ¼
ðb;�Þ. The last two terms in the extended action, ðM;VÞ �
ðU;NÞ, depend only on the sources, and at Q ¼ Q1 the
term (M, V) takes the constant value ðM;VÞjQ1

¼ �f�

which is the last term of L�, Eq. (7). The term (U, N),

which vanishes atQ ¼ Q1 increases the symmetry of�, as
we shall see shortly.
The extended action �ð�; QÞ has all the symmetries of

the action S0ð�Þ, provided that the sources Q are suitably
transformed. This is a far richer set than the symmetries of
the action S. It includes the Slavnov-Taylor identity that
follows from the s invariance of S0, a UðfÞ symmetry that
acts on the index i, and additional symmetries found by
Maggiore and Schaden [5] which we will turn to shortly.
We repeat for emphasis. The full action Sð�; �Þ breaks

the symmetries of S0ð�Þ softly but explicitly. By introduc-
ing external sources Q, we have replaced Sð�; �Þ by the
extended action �ð�; QÞ that respects all the symmetries
of S0ð�Þ when the sourcesQ are suitably transformed. The
action Sð�; �Þ ¼ �ð�; Q1Þ is recovered at a point � ¼ 0,
Q ¼ Q1 that breaks the symmetries of �ð�; QÞ. We shall
see shortly that this symmetry-breaking point is spontane-
ously chosen by the horizon condition.
To complete this section we introduce the quantum

effective action �ð�; QÞ, that possess the symmetries of
�ð�; QÞ, and thus of S0. The partition function
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ZðJ;QÞ �
Z

d�exp½��ð�; QÞ þ ðJ;�Þ� (26)

depends on the sources J� of all elementary fields �� and
on the sources Q of composite fields. The free energy is
defined by

WðJ;QÞ � lnZðJ;QÞ; (27)

and the quantum effective action is obtained by the
Legendre transformation from WðJ;QÞ,

�ð�; QÞ ¼ ðJ�;��Þ �WðJ;QÞ; (28)

where the ‘‘classical’’ fields are given by

�� ¼ �W

�J�
; (29)

and

��

���

¼ 	�J�; (30)

��

�Q�

¼ � �W

�Q�

; (31)

where 	� is a sign factor that depends on whether �� is
bosonic or fermionic. Here and below we always take the
left fermionic derivative.

IV. SYMMETRY-BREAKING VACUUM

Having generalized the parameter � to the local sources
MðxÞ, VðxÞ, UðxÞ, NðxÞ, our next step will be to express the
horizon condition, @�ð�Þ@� ¼ 0, in terms of these sources.

The only restriction on our statement of the horizon
condition in this more general situation is that it reduce

to @�ð�Þ
@� ¼ 0 at Q ¼ Q1, where Q1 is defined in (25). For

other values of Q, we may write any condition we wish,
provided we reject any solution (if any there are) besides
the one of the form Q ¼ Q1. At Q ¼ Q1, only the sources
M and V depend on �, and at Q ¼ Q1 we write M

ab
��ðx; �Þ

and Vab
��ðx; �Þ. We have

@�ðMð�Þ; Vð�ÞÞ
@�

¼
Z

dDx

�
��ðM;VÞ
�Mab

��ðxÞ
@Mab

��ðx; �Þ
@�

þ ��ðM;VÞ
�Vab

��ðxÞ
@Vab

��ðx; �Þ
@�

�
; (32)

where all other fields and sources are set to 0. At Q ¼ Q1,
we have, by (25),

@Mab
��ðx; �Þ
@�1=2

¼ �@Vab
��ðx; �Þ
@�1=2

¼ ����
ab: (33)

This yields, for the horizon condition @�ð�Þ
@� ¼ 0,

0 ¼
Z

dDx����
ab

�
��

�Mab
��ðxÞ

� ��

�Vab
��ðxÞ

�

�
���������¼U¼N¼K¼L¼0

: (34)

It is shown in Appendix C that the two terms in the last
equation are equal at Q1,

Z
dDx����

ab ��

�Mab
��

���������¼0;Q¼Q1

¼ �
Z

dDx����
ab ��

�Vab
��

���������¼0;Q¼Q1

; (35)

so, using the freedom to impose arbitrary conditions away
from Q1, we impose both conditions,

Z
dDx����

ab ��

�Mab
��

���������¼U¼N¼K¼L¼0
¼ 0 (36)

and

Z
dDx����

ab ��

�Vab
��

���������¼U¼N¼K¼L¼0
¼ 0: (37)

Moreover at Q ¼ Q1, space-time invariance, Lorentz, and
global gauge invariance are respected, so we may replace
the last equations by the more stringent conditions,

��

�Mab
��

���������¼U¼N¼K¼L¼0
¼ ��

�Vab
��

���������¼U¼N¼K¼L¼0
¼ 0:

(38)

Finally, we note that since N and U are both fermionic, we
may give a more symmetric expression to these conditions
by also getting U ¼ N ¼ 0 as a consequence of two more
stationary conditions, so we have altogether

��

�Mab
��

���������¼K¼L¼0
¼ ��

�Vab
��

���������¼K¼L¼0
¼ 0;

��

�Nab
��

���������¼K¼L¼0
¼ ��

�Uab
��

���������¼K¼L¼0
¼ 0:

(39)

(We could also derive the condition � ¼ 0 from the sta-

tionary condition ��
���

¼ J� ¼ 0, that follows from the

Legendre transformation and the absence of sources J�.)
The only solution to these equations that is of interest to

us is of the form

Qph � fMai
� ¼ Mab

�� ¼ �Va
�;i ¼ �Vab

�� ¼ �1=2
ph ����

ab;K

¼ L ¼ N ¼ U ¼ 0g; (40)

where �ph has a definite value, as in the one-loop calcu-

lation given above. If there are other solutions they are
rejected.
Observe that the classical vacuum, � ¼ 0, Q ¼ Qph,

that is the solution to the horizon condition (39), has less
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symmetry than the quantum effective action �ð�; QÞ. In
particular theUðfÞ symmetry on the index i ¼ ðb;�Þ noted
above is broken and, as we shall see, so are other symme-
tries. Thus, there are flat directions of � at the classical
vacuum, � ¼ 0, Q ¼ Qph, that correspond to Goldstone

particles. We shall see that Goldstone bosons and
Goldstone fermions both occur.

To identify the Goldstone particles and evaluate their
propagators, we must determine theWard identities and the
symmetries of �ð�; QÞ, and the pattern of symmetry break-
ing at the symmetry-breaking vacuum � ¼ 0, Q ¼ Qph.

This will occupy the bulk of the present article.

V. SLAVNOV-TAYLOR IDENTITY

The Slavnov-Taylor identity that results from the ex-
plicit but soft breaking of the BRST operator s has been
presented before [4]. We shall rederive it here by a some-
what simpler method with a different separation of terms.

We first derive the Slavnov-Taylor identity satisfied by
�. We use sS0 ¼ 0, which gives

s� ¼ ðM��; sD���Þ þ ðsD� �!�;N��Þ

¼
�
M;

��

�U
þ N

�
þ

�
N;

��

�V
�M

�

¼
�
M;

��

�U

�
þ

�
N;

��

�V

�
: (41)

The action of s on � may be expressed in terms of the
sources,

s� �
Z

dDx

�
��

�K�

��

�A�

þ ��

�L

��

�c
þ ib

��

� �c

þ!ab
�

��

��ab
�

þ ��ab
�

��

� �!ab
�

�
: (42)

The last two equations yield the ST identity satisfied by the
local extended action,

S ð�Þ ¼ 0; (43)

where

Sð�Þ �
�
��

�K�

;
��

�A�

�
þ

�
��

�L
;
��

�c

�
þ

�
ib;

��

� �c

�

þ
�
!�;

��

���

�
þ

�
���;

��

� �!�

�
�

�
M��;

��

�Uab
��

�

�
�
N��;

��

�V��

�
: (44)

The Slavnov-Taylor identity for Z follows from the fact
that the operator s is a derivative, and the integral of a
derivative vanishes,

0 ¼
Z

d�s exp½��þ ðJ;�Þ�

¼
Z

d�½�s�þ 	�ðJ�; s��Þ� exp½��þ ðJ;�Þ�;
(45)

where 	� ¼ 	1 is a sign factor that depends on whether
J� is bosonic or fermionic. We use (41) for s�, which
comes outside the integral,

Z
d�s� . . . ¼

Z
d�

��
M;

��

�U

�
þ

�
N;

��

�V

��
. . .

¼ �
��

M;
�

�U

�
þ

�
N;

�

�V

��
Z: (46)

Likewise we have

Z
d�	iðJi; s�iÞ . . . ¼

�
�
�
JA;

�

�K

�
þ

�
Jc;

�

�L

�

� i

�
J �c;

�

�Jb

�
þ

�
J�;

�

�J!

�

�
�
J �!

�

�J ��

��
Z: (47)

We thus obtain the Slavnov-Taylor identity satisfied by the
partition function,

�Z ¼ 0; (48)

where � is the linear differential operator

� ¼ �
�
JA;

�

�K

�
þ

�
Jc;

�

�L

�
� i

�
J �c;

�

�Jb

�
þ

�
J�;

�

�J!

�

�
�
J �!

�

�J ��

�
þ

�
M;

�

�U

�
þ

�
N;

�

�V

�
: (49)

The free energy WðJ;QÞ � lnZðJ;QÞ satisfies the same
equation,

�
�
JA;

�W

�K

�
þ

�
Jc;

�W

�L

�
� i

�
J �c;

�W

�Jb

�
þ

�
J�;

�W

�J!

�

�
�
J �!

�W

�J ��

�
þ

�
M;

�W

�U

�
þ

�
N;

�W

�V

�
¼ 0: (50)

It follows from the Legendre transformation (30) and
(31) that the quantum effective action � satisfies the same
Slavnov-Taylor identity as the local action �,

S ð�Þ ¼ 0; (51)

where Sð�Þ is defined in (44).

VI. REDUCED QUANTUM EFFECTIVE ACTION

In Appendix A we solve the Ward identities that corre-
spond to the equations of motion of the fields �c, b,�,!, �!,
��. This gives the complete dependence of the quantum
effective action � on these fields [4]. Also in Appendix A,
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the Ward identity corresponding to the integrated equation
of motion of the Faddeev-Popov ghost field c is solved.
This is believed to be a new result.

According to Eqs. (A36), (A42), (A47), (A48), and
(A50), � is expressed in terms of the reduced quantum
effective action ��,

� ¼ �inv þ ��ðA; @c; k; L;m; n; u; vÞ; (52)

that depends on a reduced number of variables defined by3

m�� � M�� þ @� ��� � gc� ðU�� � @� �!�Þ;
n�� � N�� � @�!� � gc� ðV�� þ @���Þ;
u�� � U�� � @� �!�; v�� � V�� þ @���;

kd� � Kd
� � @� �c

d � gð �!� � V��Þd
� ½gðU�� � @� �!�Þ ����d; (53)

and

�inv � ði@�b; A�Þ þ ðM�� þ @� ���; gA� ���Þ
þ ðgA� � ���;V��Þ þ ðgA� � �!�;N��Þ
þ ðU�� � @� �!�; gA� �!�Þ þ ðk�; gA� � cÞ
þ ðL; ð�g=2Þðc� cÞÞ: (54)

This gives the complete dependence of � on b, �c and on the
4 auxiliary ghosts �, !, �!, ��. Moreover �� depends only
on the derivatives @�c of c, but not on c itself.

Each term in �inv contains at least one ghost field (c, �,
��, !, �!) that is not differentiated whereas, according to
(53), only the derivatives of these ghost fields appear in the
reduced action ��, but not the ghost fields themselves.
Consequently �� contains no radiative corrections to the
terms in�inv, and they are invariant under renormalization.
This includes, in particular, the gluon-ghost mixing term
ðMi

�; gðA� ��iÞÞ þ ðgðA� � ��iÞ; V�iÞ which has the value
�1=2gfabcAb

�ð�� ��Þca� at the values of the sources Q ¼
Q1.

The local extended action� has the same decomposition
as �,

� ¼ �inv þ ��ðA; @c; k; L;m; n; u; vÞ; (55)

where the reduced local action is given by

�� ¼
Z

dDx½ð1=4ÞF2
�� þ k�@�cþm��v�� � u��n���:

(56)

When the sources Q are given the values Q1, Eq. (25), that
correspond to the action Sð�; �Þ ¼ �ð�; Q1Þ, one has

�invðQ1Þ ¼ ði@�b;A�Þ þ ð�1=2���Iþ @� ���;gA� ���Þ
��1=2ðgA� � ���;���IÞ � ð@� �!�;gA� �!�Þ
þ ðk�;gA� � cÞ þ ðL; ð�g=2Þc� cÞ; (57)

where Iab ¼ �ab. Thus,�invðQ1Þ contains the gauge-fixing
term, (i@�b, A�), all ghost-ghost-gluon vertices, and the

quadratic terms
R
dDx�1=2gfabcAb

�ð�� ��Þca� that are re-
sponsible for gluon-ghost mixing. These terms are all
invariant under renormalization.
Expressions (52) and (53) for the quantum effective

action � severely restrict possible counter terms. For ex-
ample, no mass terms such as m2 ����� are allowed.

VII. SLAVNOV-TAYLOR IDENTITY SATISFIED BY
REDUCED QUANTUM EFFECTIVE ACTION

We shall derive the Slavnov-Taylor identity satisfied by
the reduced quantum effective action in two steps.
Step 1—We substitute expression (A36) for � into the

ST identity (51) to obtain an identity satisfied by the
partially reduced quantum effective action �0. We first
rewrite (51) as

S ð�Þ ¼
�
��

�K
;
��

�A

�
þ

�
��

�L
;
��

�c

�
þL� ¼ 0; (58)

where we have separated out the part that is linear in �,

L� �
��

ib;
�

� �c

�
þ

�
!�;

�

���

�
þ

�
���;

�

� �!�

�

�
�
M��;

�

�Uab
��

�
�

�
N��;

�

�V��

��
�; (59)

and we find

��p

�K
¼ ��p

�c
¼ ��p

�L
¼ L�p ¼ 0; (60)

and

��p

�A�

¼ �Y�; (61)

where

Y� � �i@�bþ gðU�� � @� �!�Þ �!� � g �!� � N��

þ gM0
�� ��� � g ��� � ðV�� � �1=2���IÞ;

(62)

so the contribution to Sð�Þ from �p is given by

�
�
��0

�K
; Y

�
: (63)

We also evaluate the partial derivatives,

��0

� �c
¼ @�

��0

�K0
�

; (64)

3A more consistent notation for the reduced variables would
be M�, N�, U�, V�, K� instead of m, n, u, v, k, but this would
give the equations a rather baroque appearance.
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��0

�U��
¼ ��0

�U0
��

� g�� � ��0

�K0
�

; (65)

��0

�V��
¼ ��0

�V 0
��

þ g �!� � ��0

�K0
�

; (66)

��0

���
¼ �@�

��0

�V 0
��

þ gðU�� � @� �!�Þ � ��0

�K0
�

; (67)

��0

� �!�

¼ @�
��0

�U0
��

� @�

�
g�� � ��0

�K0
�

�

� gðV�� � �1=2���IÞ � ��0

�K0
�

; (68)

which yields

L�0 ¼ �
�
M0

��;
��0

�U0
��

�
�

�
N0

��;
��0

�V 0
��

�
þ

�
Y�;

��0

�K0
�

�
:

(69)

The terms in Y� cancel, and the Slavnov-Taylor identity
simplifies to

S0ð�0Þ �
�
��0

�K0 ;
��0

�A

�
þ

�
��0

�L
;
��0

�c

�
�

�
M0

��;
��0

�U0
��

�

�
�
N0

��;
��0

�V 0
��

�
¼ 0: (70)

Step 2—We make the change of variable (A47) and
(A48) with the result that the reduced quantum effective
action satisfies the Slavnov-Taylor identity

S �ð��Þ � S�
0ð��Þ þ ðL�

1 þL�
2Þ�� ¼ 0; (71)

where S�
0ð��Þ is bilinear in ��,

S�
0ð��Þ �

�
���

�k�
;
���

�A�

�

þ
�
���

�L
;
���

�c
� gu� � ���

�m�

� gv� � ���

�n�

�
;

(72)

and

L �
1 � �

�
m;

�

�u

�
�

�
n;

�

�v

�
�

�
gk� � A�;

�

�L

�
; (73)

L�
2 � �g

�
c; A� � �

�A�

þ k� � �

�k�
þ ð1=2Þc� �

�c

þ L� �

�L
þmi

� �
�

�mi
�

þ n�i � �

�n�i

þ ui� �
�

�ui�
þ v�i � �

�v�i

�
: (74)

The linearized form of S�ð��Þ, defined by

�S�ð��Þ ¼ B����� (75)

is given by

B�� ¼
Z

dDx

�
���

�k

�

�A
þ ���

�A

�

�k
þL�

1 þL�
2 þL�

3

�
;

(76)

where

L�
3 �

�
���

�L
;
�

�c
� gu� � �

�m�

� gv� � �

�n�

�

þ
�
���

�c
� gu� � ���

�m�

� gv� � ���

�n�
;
�

�L

�
: (77)

This operator is nil-potent,

B2
�� ¼ 0; (78)

by virtue of the ST identity S�ð��Þ ¼ 0.
The reduced ST identity and the linear operator B�� are

independent of � and g. They express the geometric char-
acter of a quantum gauge theory, which is the same for � ¼
0 and � � 0.

VIII. GLOBALWARD IDENTITIES

An extensive set of Ward identities for the quantum
effective action � is provided in [5]. Here we shall express
them as identities satisfied by the quantum effective action
��.
In Appendix A it is shown that the generator of trans-

lation of the ghost c by a constant,

G �a ¼
Z

dDx
�

�ca
; (79)

is a symmetry of ��, G�a�� ¼ 0. If we commute G�a with
S�, we get the generator of rigid gauge transformations,

G �aS�ð��Þ � B��G�a�� ¼ H �a
rig�

�; (80)

H �a
rig � �g

�
A� � �

�A�

þ k� � �

�k�
þ c� �

�c

þ L� �

�L
þmi

� �
�

�mi
�

þ n�i � �

�n�i

þ ui� �
�

�ui�
þ v�i � �

�v�i

�
a
; (81)

as is obvious from (74). It is a symmetry of ��,

H �a
rig�

� ¼ 0: (82)

The fermionic operator,

Rj
i �

Z
dDx

�
�a

i

�

�!a
j

� �!aj �

� ��ai
�Va

�i

�

�Na
�j

þUaj
�

�

�Mai
�

�
;

(83)
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is a supersymmetry of the extended local action

R j
i� ¼ 0: (84)

Here we have used the notation �a
i � �ab

� , where i ¼
ð�; bÞ takes the values i ¼ 1; . . . f where f � DðN2 � 1Þ,
and similarly for ��ja � �ab

� , where j ¼ ð�; bÞ, etc. In S0
the indices i and j are mute internal indices that carry a
UðfÞ symmetry.

Because Rj
i acts linearly on the fields, it is also a

supersymmetry of the quantum effective action

R j
i� ¼ 0: (85)

We write � ¼ �inv þ ��, where �� is a reduced action, and
make the change of variables, defined in (52) and (53). We
have

R j
i�inv ¼ 0; (86)

and we obtain the reduced Ward identity

R �j
i �

� ¼ 0; (87)

where

R �j
i �

Z
dDx

�
�va

�i

�

�na�j
þ uaj�

�

�mai
�

�
: (88)

If we anticommute R�j
i with S�,

R �j
i S

�ð��Þ þ B��R�j
i �

� ¼ U�j
i ð��Þ; (89)

we get the generator of global UðfÞ transformations that
acts on the i and j indicies,

U �j
i �

Z
dDx

�
�maj

�

�

�mai
�

þ na�i
�

�na�j
� uaj�

�

�uai�

þ va
�i

�

�va
�j

�
: (90)

The bosonic operator,

F j �
Z

dDx

�
ca

�

�!a
j

� �!aj �

� �ca
�Uaj

�

�

�Ka
�

�
; (91)

is another symmetry of the extended local action

F j� ¼ 0: (92)

It also acts linearly on the fields, and is a symmetry of the
quantum effective action

F j� ¼ 0: (93)

We have � ¼ �inv þ ��, where �� is the reduced action,
and find

F j�inv ¼ 0: (94)

Under the change of variable (52) and (53) we obtain the
reduced Ward identity

F �j�� ¼ 0; (95)

where

F �j �
Z

dDx

�
�@�c

a �

�na�j
� uaj�

�

�ka�

�
: (96)

If we commute F �i with S�,

F �jS�ð��Þ � B��F �j�� ¼ T �jð��Þ; (97)

we get the new functional,

T �jð��Þ �
Z

dDx

�
� ���

�La

�
@�

���

�na�j
þ gðA� � uj�Þa

�

þ @�c
a ���

�va
�j

�maj
�

���

�ka�

�
; (98)

which provides a new Ward identity by virtue of the
preceding identities,

T �jð��Þ ¼ 0: (99)

IX. INVARIANTS UNDER LINEAR SYMMETRIES

The UðfÞ symmetry is a global symmetry under which
the fields transform linearly. This symmetry is realized in
�� by summing over upper and lower indices i or j such as,
for example, @
u

ai
� @�n

b
�i or u

ai
� v

b
�i, and �� is a function of

the tensor invariant obtained by this sum over i.

The symmetries generated by R�j
i and F �j are also

global symmetries under which the variables transform
linearly, and we wish to form invariants under these sym-

metries also. Because R�j
i is a supersymmetry operator,

the basic tensor invariant of which all others are con-
structed is obtained from contracting two supermultiplets.

From the form of R�j
i , given in (88), we see that m and n

must appear together, multiplied, respectively, by v and u,
and from the form ofF �j, given in (96), we see that n and k
must appear together, multiplied, respectively, by u and @c.
This suggests grouping these fields into the supermultiplets

c a
�A � ðva

�i; n
a
�j; @�c

aÞ; �c aA
� � ðmai

� ;�uaj� ; ka�Þ;
(100)

which contain f bosonic and fþ 1 fermionic components,
and the index A ¼ ði; jþ f; 2fþ 1Þ takes on 2fþ 1 val-
ues. The requirement that quantities with derivatives, such
as @
 �c aA

� @�c
b
�A be R and F invariants determines that

the multiplets be formed as stated and not, for example, as

(mai
� , n

a
�j, @�c

a) and (va
�i, �uaj� , ka�). The fields or sources

n, m, and k can only appear in combinations where upper
and lower indices A are contracted. For example, the local
extended action

� ¼ �inv þ��; (101)

is expressed by
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�� ¼
Z

dDx½ð1=4ÞðFa
��Þ2 þ �c aA

� c a
�A�; (102)

where

�c aA
� c a

�A ¼ mai
�v

a
�i � uai�n

a
�i þ ka�@�c

a: (103)

In Faddeev-Popov theory we have �c aA
� c a

�A ¼ ka�@�c
a,

and we note in passing that (102) shows that the present
theory with auxiliary bosons has the same number of
independent renormalization constants as Faddeev-Popov
theory in Landau gauge, namely, 2. We call invariants that
are formed by contraction on the A indices
‘‘ �c c -invariants.’’ They have fermi-ghost number 0.

In our analysis of symmetry breaking to find the
Goldstone and non-Goldstone modes we shall be interested
in possible nonderivative terms in ��, for they are dominant
in the infrared. They may be formed from the basic invari-
ant tensor

Tab
�� � �c aA

� c b
�A: (104)

Allowed nonderivative terms must also be Lorentz and
global color invariant, and are formed by contraction on
the Lorentz and color indices. Possible invariant terms in �
are thus

Taa
��; ðTaa

��Þ2; Tab
��T

ab
��; T

ab
��T

ba
��; . . . : (105)

The linear symmetries R� and F �, leave u and v
invariant,

R �j
i u

ak
� ¼ R�j

i v
a
�k ¼ F �juak� ¼ F �jva

�k ¼ 0; (106)

so we may also make invariants under these symmetries
and UðfÞ by contracting the i indices of ui and vi, such as
for example

@
u
ai
� @�v

b
�i: (107)

Furthermore c and L are separately invariant under the
linear symmetries, as is A, and moreover c appears only as
the derivative @�c. There are no other invariants under the

linear symmetries UðfÞ, R�, and F �.
We now consider the consequences of conservation of

the total fermi-ghost number. The invariant of uv-type,
such as (107), has fermi-ghost number �1, so it appears
in � only in association with an invariant that has fermi-
ghost number þ1. The only invariant under the linear
symmetries with fermi-ghost þ1 is @�c. So the uv invari-

ant must appear in the combination uv@c, for example

@
u
ai
� @�v

b
�i@�c

d: (108)

We call these ‘‘uv@c-invariants.’’ The only other invariant
with fermi-ghost number 0 is of L@c@c-type, such as

La@�c
b@�c

d: (109)

These are the only invariants under the linear symmetries
with fermi-ghost number 0. Since the reduced quantum

effective action �� has fermi-ghost number zero, the only
invariants that appear in it are of the 3 types we have found,

�c c ; uv@c; L@c@c; (110)

which may be freely combined with A.
We assign a separate Faddeev-Popov and auxilliary

fermi-ghost number to the various fields and sources as
shown.

A c K L m n u v

FP 0 1 �1 �2 0 0 0 0

aux 0 0 0 0 0 1 �1 0

Of the 3 possible invariant types with fermi-ghost number
0, the �c c - and L@c@c-types separately conserve the
Faddeev-Popov and auxiliary fermi-ghost number,
whereas uv@c-type has Faddeev-Popov fermi-ghost num-
ber þ1 and auxiliary fermi-ghost number �1. Thus,
although the Faddeev-Popov and auxiliary fermi-ghost
number are not separately conserved, there is no invariant
with a negative Faddeev-Popov ghost number.
Consequently when we decompose �� into terms with
definite Faddeev-Popov fermi-ghost number n, no negative
terms appear in the sum

�� ¼ X1
n¼0

��n: (111)

This will simplify the calculation of the propagators.
To obtain invariants under the Slavnov-Taylor identity is

more difficult because it is nonlinear. The following state-
ment is useful in this regard, but it is not as strong as one
would like because it does not solve the problem of A
dependence.
Statement—an action formed from linear combinations

of the tensor invariants given in (105) satisfies all the Ward
identities and the Slavnov-Taylor identity (71) of the re-
duced quantum effective action ��.
We shall prove this for a particular example, but the

proof is easily generalized to any linear combination of the
tensor invariants. For our example we take

I �
Z

dDxð1=2ÞðTaa
�� þ f�phÞ2; (112)

where Taa
�� � �c aB

� c a
�B. It is straightforward to verify that

the global Ward identities are satisfied,

R �j
i I ¼ F �jI ¼ T �jI ¼ 0: (113)

To show that I satisfies the ST identity (71)

S �ðIÞ ¼ 0; (114)

we observe that

�I

�A
¼ �I

�L
¼ 0; (115)
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so S�
0ðIÞ ¼ 0. We also have

�I

�uaj
¼ �ð1=2Þnaj ðTaa

�� þ f�phÞ; (116)

�I

�va
j
¼ ð1=2Þmj

aðTaa
�� þ f�phÞ; (117)

so �
m;

�I

�u

�
þ

�
n;

�I

�v

�
¼ 0; (118)

and we concludeL�
1I ¼ 0. The only slightly nontrivial part

of the calculation of L�
2I involves

2
Z
dDxc �

�
k� � �I

�k�
þ ð1=2Þc� �I

�c

�

¼
Z

dDxc � ððk� � @�cÞðTaa
�� þ f�phÞ

þ ð1=2Þðc� @�½k�ðTaa
�� þ f�phÞ�Þ

¼
Z

dDx½ðc� @�cÞ � ð1=2Þ@�ðc� cÞ�
� k�ðTaa

�� þ f�phÞ ¼ 0: (119)

We conclude that L�
2I ¼ 0, so the ST identity, S�ðIÞ ¼ 0,

is satisfied. j

X. ON-SHELL SYMMETRIES

We shall not attempt to further exploit BRST symmetry.
Instead we shall go on-shell and consider on-shell symme-
tries. The only appearance of �c in the action S occurs in the
Faddeev-Popov ghost action (@� �c, D�c). We cancel all

other terms in the action that are linear in c, and thus of the
form (L, c), by the shift

�c ! �c�M�1L: (120)

This cancels the third term in

Saux ¼
Z

dDxf@� ��aiðD��iÞa

� @� �!ai½ðD�!iÞa þ ðgD�c��iÞa�g; (121)

which simplifies to

Saux ¼
Z

dDx½@� ��aiðD��iÞa � @� �!aiðD�!iÞa�: (122)

This allows us to ignore off-diagonal correlators of the type
�!c, which correspond to n 
 1 in (111).
We form the real and imaginary parts of the bose ghost,

Xa
i � ð�a

i þ ��aiÞ= ffiffiffi
2

p
; Ya

i � ð�a
i � ��aiÞ= ffiffiffi

2
p

i;

(123)

and, after integrating by parts, we obtain

Saux ¼
Z

dDx½ð1=2Þ@�Xa
i ðD�XiÞa þ ð1=2Þ@�Ya

i ðD�YiÞa

� Xa
i Y

c
i gf

abc@�A
b
� � @� �!aiðD�!iÞa�: (124)

We now integrate out the Lagrange-multiplier field b, so
the transversality condition @�A� ¼ 0 is satisfied identi-
cally (on-shell gauge condition). This makes the Faddeev-
Popov operator symmetric, M ¼ �@�D� ¼ �D�@� ¼
My, and we obtain

Saux ¼
Z

dDx½ð1=2Þ@�Xa
i ðD�XiÞa þ ð1=2Þ@�Ya

i ðD�YiÞa

� @� �!aiðD�!iÞa�: (125)

To display the symmetries of the bosonic part of the
action, we form the vector

Za
p ¼ ðXa

i ; Y
a
j Þ; (126)

where p ¼ 1; . . . 2f, so the action reads

Saux ¼
Z

dDx½ð1=2Þ@�Za
pðD�ZpÞa � @� �!aiðD�!iÞa�:

(127)

The bosonic part displays an Oð2fÞ symmetry that acts on
the index p. This symmetry group has fð2f� 1Þ real
parameters whereas the UðfÞ symmetry group previously
displayed has only f2 real parameters. Thus the Oð2fÞ
symmetry group is more restrictive, which reduces the
number of invariant tensors.
The only bilinear invariants that may be formed are

given by Za
pZ

b
p, which may be expressed in terms of the

original fields,

Za
pZ

b
p ¼ Xa

i X
b
i þ Ya

i Y
b
i ¼ ��ai�b

i þ ��bi�a
i : (128)

The last term corresponds to the symmetric part of the
tensor invariant (104) when external sources are intro-
duced. The reduced variables involve the derivatives of
the fields, so we replace ��a

i and �b
i by @� ��a

i and @��
b
i

in the above analysis. Our analysis of invariants may be
applied to the Oð2fÞ symmetry, with the conclusion that
only the symmetric part of the tensor invariant (104) found
previously,

Tab
�� þ Tba

�� ¼ �c aA
� c b

�A þ �c bA
� c a

�A; (129)

is a tensor invariant under the larger symmetry group.

XI. EXPANSION OF �� ABOUT THE SYMMETRY-
BREAKING VACUUM

There remains to express the horizon condition in terms
of the reduced quantum effective action �� and the reduced
variables. By (54), we see that
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��inv

�M

���������¼0
¼ ��inv

�V

���������¼0
¼ ��inv

�N

���������¼0
¼ ��inv

�U

���������¼0

¼ 0; (130)

so in terms of �� the horizon condition reads, by (53),

���

�mab
��

���������¼K¼L¼0
¼ ���

�vab
��

���������¼K¼L¼0
¼ 0;

���

�nab��

���������¼K¼L¼0
¼ ���

�uab��

���������¼K¼L¼0
¼ 0:

(131)

This defines the symmetry-breaking vacuum.
As in the Higgs model, to identify the Goldstone parti-

cles we expand the reduced effective action �� about the
symmetry-breaking stationary point, keeping terms that are
quadratic. We are concerned with the infrared behavior,
and as a first task we consider that part of �� in which there
are no derivatives of the reduced variables, A, @c, k, L, m,
n, u, v, and which we call ��

0.

We temporarily ignore the dependence of the reduced
quantum effective action �� on A, which we may do

because the global symmetries Rj
i and F j leave A invari-

ant. Then �� is a function of the bilinear invariant we have
just found. To expand �� about the stationary point� ¼ 0,
Q ¼ Qph, Eq. (40), we need a tensor invariant that vanishes

at this point, so it is a small quantity nearby. At this
stationary point, the tensor invariant we have just found
has the value

ð1=2ÞðTab
�� þ Tba

��Þj�¼0;Q¼Qph
¼ ��ph����

ab: (132)

By subtracting out this term, we obtain the desired tensor
invariant

sab�� � ð1=2ÞðTab
�� þ Tba

��Þ þ �ph����
ab (133)

that satisfies

sab��j�¼0;Q¼Qph
¼ 0: (134)

It is symmetric upon interchange of both indices

sab�� ¼ sba��: (135)

We expand ��
0 (the part of the reduced effective action

�� that involves no derivatives of the reduced variables) in
powers of this invariant tensor,

��
0 ¼

Z
dDx½�saa�� þ �ðsaa��Þ2 þ �sab��s

ab
�� þ 
sab��s

ba
���;
(136)

where terms of order s3 and higher are neglected. At the
stationary point (131), we have �s

�m � 0, so the first coeffi-

cient must vanish, � ¼ 0, and we obtain

��
0 ¼

Z
dDx½�ðsaa��Þ2 þ �sab��s

ab
�� þ 
sab��s

ba
���; (137)

where we have neglected terms that are higher order in s.

To find the infrared limit of the propagators, we express
the reduced variables in terms of the fields. At the sta-
tionary point Qph, Eq. (40), they are given by

mai
� ¼ mab

�� ¼ �1=2
ph ����

ab þ @� ��ab
� ;

va
�i ¼ vab

�� ¼ ��1=2
ph ����

ab þ @��
ab
� ;

uai� ¼ uab�� ¼ �@� �!ab
� ;

na�i ¼ nab�� ¼ �@�!
ab
� ;

ka� ¼ �@� �c
a; (138)

by (40) and (53), where the term �1=2gfdab �!ab
� in ka� has

been dropped because of the shift (120). This gives

sab��¼ð1=2Þðmai
�v

b
�iþmbi

� v
a
�iÞþ . . .þ�ph����

ab

¼ð1=2Þð�1=2
ph ����

acþ@� ��ac
� Þð��1=2

ph ����
bcþ@��

bc
� Þ

þðð�;aÞ$ ð�;bÞÞþ . . .þ�ph����
ab

¼ð�1=2
ph =2Þð@��ba

� �@� ��ab
� þ@��

ab
� �@� ��ba

� Þ
þ . . .

¼ði�1=2
ph =

ffiffiffi
2

p Þð@�Yab
� þ@�Y

ba
� Þþ . . . ; (139)

where the dots in the last line represent terms that are
quadratic in the fields. The leading term is linear in the

fields, with coefficient �1=2
ph .

We substitute this expression for sab�� into (137) and

obtain

��
0 ¼

��ph

2

Z
dDxð4�ð@�Yaa

� Þ2 þ �ð@�Yab
� þ @�Y

ba
� Þ2

þ 
ð@�Yab
� þ @�Y

ba
� Þð@�Yba

� þ @�Y
ab
� ÞÞ; (140)

where �, �, 
 are unknown constants. We decompose Yab
�

into its color-symmetric and antisymmetric parts,

YðabÞ
� � ð1=2ÞðYab

� þ Yba
� Þ; Y½ab�

� � ð1=2ÞðYab
� � Yba

� Þ;
(141)

which gives

��
0 ¼ ð1=2Þ

Z
dDxð�ð@�YðabÞ

� þ @�Y
ðabÞ
� Þ2

þ ð�=2Þð@�Y½ab�
� � @�Y

½ab�
� Þ2 þ �ð@�Yaa

� Þ2Þ; (142)

where �, �, � are (renamed) constants, and repeated
indices are summed over. For SUð2Þ the further decom-
position of these parts into irreducible representations
labeled by their dimension is given by

YðabÞ ¼ 1 � 5; Y½ab� ¼ 3; (143)

and for SUð3Þ it is
YðabÞ ¼ 1 � 8 � 27; Y½ab� ¼ 8 � 10 � 10: (144)

To decompose into longitudinal and transverse parts, we
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write

ð@�YðabÞ
� þ @�Y

ðabÞ
� Þ2 ¼ ð@�YðabÞ

� � @�Y
ðabÞ
� Þ2

þ 4@�Y
ðabÞ
� @�Y

ðabÞ
� ; (145)

and obtain, after integration by parts, the final form of ��
0,

��
0 ¼ ð1=2Þ

Z
dDxðð�=2Þð@�Y½ab�

� � @�Y
½ab�
� Þ2

þ �½ð@�YðabÞ
� � @�Y

ðabÞ
� Þ2 þ 4ð@�YðabÞ

� Þ2�
þ �ð@�Yaa

� Þ2Þ: (146)

The only components of @�Y
ab
� that are absent are the

longitudinal part that is antisymmetric in color indices,

@�Y
½ab�
� .

The terms that appear in the last expression are the
nonflat directions, provided that the coefficients are non-
zero. The ghost fields that do not appear are flat directions
and represent Goldstone bosons and fermions. These are c,

�c, !, �!, X, and @�Y
½ab�
� . If there are additional constraints

in addition to those found here (and it should be noted that
we have not implemented BRST symmetry exactly), there
could be more flat directions corresponding to more
Goldstone ghosts.

XII. DERIVATIVE TERMS IN REDUCED
EFFECTIVE ACTION

Recall that the effective action ��
0 contains all nonder-

ivative quadratic terms in the reduced quantum effective
action �� that are allowed by the symmetries of ��. To
evaluate the infrared limit of the propagators of fields that
do not appear in ��

0, we must evaluate the quadratic terms

that involve first derivatives of the reduced variables, and
that are invariant under the symmetries of ��.

They are obtained by applying derivatives to the super-
multiplets, out of which the bilinear invariant (104) was
constructed, that possesses the global Oð2fÞ symmetry,
namely,

@
 �c aB
� @�c

b
�B: (147)

This is quadratic in the fields because the derivatives kill

the constant term �1=2
ph that appears in (138). In principle we

should take the symmetric part, as in (129), however, only
the symmetric part will contribute. The most general color
and Lorentz invariant that can be constructed from this
tensor is given by

��
1 ¼

Z
dDxð
�
���� þ ��
����Þ@
 �c aB

� @�c
a
�B; (148)

where 
 and � are unknown constants for which only
perturbative calculations are available. In principle there
could be a third term �
����@
 �c aB

� @�c
a
�B, but it may be

brought into the form of the second term by partial inte-

gration. We substitute (138) and obtain

��
1 ¼

Z
dDxð
�
���� þ ��
����Þ

� ð@
mai
� @�v

a
�i � @
u

ai
� @�n

a
�i þ @
k

a
�@�@�c

aÞ
¼

Z
dDxð
�
���� þ ��
����Þð@
@� ��ai@�@��

a
i

� @
@� �!ai@�@�!
a
i � @
@� �c

a@�@�c
aÞ

¼
Z

dDx	ð@2 ��ai@2�a
i � @2 �!ai@2!a

i � @2 �ca@2caÞ

¼
Z

dDx	½ð1=2Þð@2Xab
� Þ2 þ ð1=2Þð@2Yab

� Þ2

� @2 �!ai@2!a
i � @2 �ca@2ca�; (149)

where 	 � 
þ � , and we have written i ¼ ð�; bÞ for the
index i on Xa

i and Y
a
i . We have obtained second derivatives

of the fields, because the reduced variables m, v, u, n are
themselves first derivatives of the field variables.

XIII. EFFECTIVE ACTION IN THE INFRARED
LIMIT

According to (54), the quantum effective action is given
by � ¼ �inv þ ��. We keep the quadratic parts of each
term,

�q ¼ �inv;q þ ��
q: (150)

The b field has been integrated out, so the only remaining
quadratic term in �inv is, by (57),

�inv;q �
Z

dDx�1=2
ph gA� � ð�� ��Þ��aa

¼
Z

dDxi
ffiffiffi
2

p
�1=2
ph gfabcAb

�Y
ca
� ; (151)

In the reduced action �� we also expect terms of the
form

@ �c Bc BA; �c B@c BA; �c Bc B@A: (152)

However, when the physical values of the reduced varia-
bles (138) are substituted, they are at most of order

@2 ��A; @2�A; fabc@�ab@Ac; fabc@ ��ab@Ac;

(153)

and they are subleading in momentum compared to �inv;q,

and we neglect them.
Finally, there is a term quadratic in A, which we write as

��
2 ¼ ð1=2ÞðA; 
AÞ; (154)

where 
 has not been determined, but is restricted to either


 ¼ M2 or 
 ¼ �b@2: (155)

The complete quadratic action in the neighborhood of
the classical vacuum that spontaneously breaks the sym-
metry is given by
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�q ¼ �inv;q þ ��
0 þ ��

1 þ ��
2; (156)

where the individual terms are given in (145), (149), (151),
and (154).

XIV. INFRARED LIMIT OF PROPAGATORS OF
GOLDSTONE PARTICLES

Having obtained the quadratic part of the reduced quan-
tum effective action �� in the neighborhood of the classical
vacuum, we can calculate the infrared asymptotic limit of
the propagators.

The fields X,!, �!, c, �c, and @�Y
½ab�
� , do not appear in ��

0

or �inv;q. These flat directions define the Goldstone parti-

cles. From (149) we can immediately write the asymptotic,
infrared propagators in momentum space,

hca �cbi ¼ �ab

	ðk2Þ2 ; h!a
i �!

bji ¼ �ab�j
i

	ðk2Þ2 ; (157)

hXab
� Xcd

� i ¼ ����
ac�bd

	ðk2Þ2 : (158)

They exhibit a double pole, as originally found by Gribov
for the c �c propagator in a one-loop calculation [1]. Here we
find that this double pole is an exact consequence of the
Goldstone mechanism which is nonperturbative. This ac-
cords with the intuitive picture, substantiated by numerical
studies [2], according to which the restriction to the interior
of the Gribov horizon entropically favors population close
to the Gribov horizon where the Faddeev-Popov operator
M has its first (nontrivial) zero eigenvalue, and thus for the
fermi-ghost propagator Dc �cðx� yÞ ¼ hðM�1Þxyi to be en-

hanced in the infrared. The Goldstone mechanism is doing
the job it should.

According to (146), the only remaining Goldstone par-

ticle is the longitudinal part of Y½ab�
� . We decompose Y½ab�

�

into its transverse and longitudinal parts,

Y½ab�
� ¼ Y½ab�

T;� þ Y½ab�
L;� ; (159)

where

Y½ab�
L;� � @�ð@2Þ�1@�Y

½ab�
� ; Y½ab�

T;� � Y½ab�
� � Y½ab�

L;� :

(160)

The propagator of Y½ab�
L;� is found from the restriction of ��

1

to Y½ab�
L;� , namely, by (149)

��
1a �

Z
dDxð	=2Þð@2Y½ab�

L;� Þ2; (161)

which gives for the propagator

hY½ab�
L;� Y

½cd�
L;� i ¼

1

	ðk2Þ2 �
½ab�;½cd�L��ðkÞ; (162)

where

L��ðkÞ �
k�k�

k2
(163)

is the longitudinal projector, and

�½ab�;½cd� � ð1=2Þð�ac�bd � �bc�adÞ (164)

is the identity in the color antisymmetric subspace. As we
shall discuss shortly, this propagator is a candidate for a
carrier of a long-range force.
This completes the evaluation of the propagators of the

Goldstone particles. They all have double poles 1=ðk2Þ2.

XV. PROPAGATORS OF GLUON NON-
GOLDSTONE GHOSTS

The non-Goldstone particles consist of A, YðabÞ
� , the

color-symmetric part of Yab
� , and Y½ab�

T;� , the transverse

part of the color-antisymmetric part of Yab
� .

All components of the symmetric part, YðabÞ
� , appear in

��
0, the nonderivative part of �

�, so the YðabÞ
� correspond to

nonflat directions, and are not Goldstone particles. The
infrared limit of their propagators may be read off from
��
0. They have simple poles,

hYðabÞ
� YðcdÞ

� i � 1

k2
; (165)

with a color and Lorentz structure that is easily obtained by
inverting the color-symmetric part of (146), that is, the
terms with coefficient � and �. Because the reduced
variables depend on the derivatives of the ghost fields,
the Goldstone particles have double poles instead of simple
poles and the non-Goldstone particles that appear only in
the reduced quantum effective action have simple poles.

There remains to evaluate the propagators of A and Y½ab�
T;� .

The color-adjoint part of Y½ab�
T;� , defined by

Yb
T;� � ð1= ffiffiffiffi

N
p ÞfabcY½ca�

T;� (166)

mixes with A in �inv;q, and the orthogonal components of

Y½ab�
T;� will have simple 1=k2 poles. To find these propaga-

tors, we separate out the part of the effective action that
contains the gluon and ghost modes that mix,

�m ¼
Z

dDx½i�1=2
ph gð2NÞ1=2Ab

�Y
b
T;� þ ð�=2Þð@�Ya

T;�Þ2

þ ð1=2ÞðA; 
AÞ�; (167)

where � comes from (146). In momentum space this action
corresponds to the matrix


 i�1=2
ph gð2NÞ1=2

i�1=2
ph gð2NÞ1=2 �k2

0
@

1
A;

where 
 ¼ M2 or 
 ¼ bk2. The determinant of this matrix
is given by
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det¼ 
�k2 þ 2Ng2�ph; (168)

but for either value of 
, it is dominated in the infrared
limit by the second term. This gives for the transverse
adjoint propagators of Aa

� and Ya
T;� in the infrared asymp-

totic limit,

hAa
�A

b
�i ¼

�
��� �

k�k�

k2

�
�ab �k2

2Ng2�ph

; (169)

hAa
�Y

b
�i ¼

�
��� �

k�k�

k2

�
�ab �i

ð2Ng2�phÞ1=2
; (170)

hYa
T;�Y

b
T;�i ¼

�
��� �

k�k�

k2

�
�ab 


2Ng2�ph

: (171)

These three propagators are short range.
The gluon propagator vanishes like k2 at k ¼ 0. This

nonperturbative result comes from the nonrenormalization
of the A-Y mixing term and, by the magic of the inverse of
a 2� 2 matrix, from the term �k2 in the quantum effective
action of the Y ghost.

We use the projector onto the color-adjoint part,

Pab;cd � ð1=NÞX
e

faebfced; (172)

Pab;cdPcd;ef ¼ Pab;ef; (173)

to find the propagator in the original basis,

hY½ab�
T;� Y½cd�

T;� i ¼
�
��� �

k�k�

k2

��
Pab;cd 


2Ng2�ph

þ ð�½ab�;½cd� � Pab;cdÞ 1

�k2

�
; (174)

hAa
�Y

½bc�
T;� i ¼

�
��� �

k�k�

k2

�
fabcffiffiffiffi
N

p �i

ð2Ng2�phÞ1=2
; (175)

where � comes from (146).

XVI. GOLDSTONE GHOSTS AS CARRIERS OF
LONG-RANGE FORCE

The X-bose ghost appears only in closed loops, like the
fermi ghosts, so it cannot be exchanged between quarks. In
fact, if the X field is integrated out, one obtains the factor,

ðdetMÞ�f=2, which partially cancels the factor ðdetMÞf
produced by the f auxiliary fermi-ghost pairs �!i!i, where
detM is the Faddeev-Popov determinant.

On the other hand, the Y-bose ghost mixes with the
gluon field, so although it does not couple directly to a
quark line, it couples to a quark line indirectly through
vertex diagrams ��ðp; kÞ, where p and k are the quark and

Y-ghost momentum, respectively. For example, a Y can
convert to a gluon A and another Y at the elementary
vertex, gfabcYbd

� Ab
�@�Y

cd
� . The new Y then converts to a

second gluon A by a DAY propagator. Both gluons are then
absorbed by a quark line. Thus the Y’s have an effective
coupling to the color charge of quarks. We have found that

a double pole occurs in the Y½ab�
L;� channel which has a piece,

Yb
L;� ¼ ð1= ffiffiffiffi

N
p ÞfabcY½ca�

L;� , in the adjoint representation. The

result is an effective quark-quark interaction given by

�q�a��ðp; kÞq
k�k�

k2
1

	ðk2Þ2 �q0�a��ðp0; kÞq0: (176)

At first sight it appears that the double pole corresponds
to a linearly rising potential between quarks. However in
Landau gauge, an external ghost k momentum factors out
of every vertex diagram with an external ghost line,4 so the
Y-ghost quark vertex is of the form

��ðp; kÞ ¼ H��ðp; kÞk�; (177)

where

H0;��ðpÞ � H��ðp; 0Þ (178)

is finite at k ¼ 0. Thus the quark-quark interaction due to
exchange of a single Y quantum is given, at small k, by

�q�aH0;��ðpÞq
k�k�

k2
1

k2
k�k�
k2

�q0�aH0;��ðp0Þq0: (179)

The on-shell form factor, with p2 ¼ m2 and p02 ¼ m02, and
with Dirac spinors satisfying

� � pqðpÞ ¼ mqðpÞ;
�qðpþ kÞ� � ðpþ kÞ ¼ m �qðpþ kÞ; (180)

is given at small k, by

�q�aH0;��ðpÞqk�k� ¼ �q�aq½c1ðp � kÞ2 þ c2k
2�: (181)

Thus, the exchange of a Y-type Goldstone boson between
quarks results in the effective quark-quark interaction

�q�aq
½c1ðp � kÞ2 þ c2k

2�½c01ðp0 � kÞ2 þ c02k2�
ðk2Þ3 �q0�aq0:

(182)

This interaction is of order 1=k2 and does not represent a
linearly rising potential between quarks. Nevertheless it
does correspond to one-particle exchange between quarks
of a massless quantum in the color-adjoint representation.
A further nonperturbative analysis, which we do not at-
tempt here, would be required to determine if it can be the
origin of a confining force. Moreover, as we have noted,
there could be additional flat directions corresponding to
additional Goldstone bosons in the YT channel, which
would modify this effective quark-quark interaction. We
shall return to this possibility in the concluding section. A

4This may be seen from (53) where only the derivatives @�
and @ �� appear in the reduced variables m and v.
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one-loop calculation of the effective potential between
quarks using the present action is reported in [13].

XVII. SYMMETRIES OF THE LAGRANGIAN
DENSITY

This section offers a possible interpretation of the spon-
taneous symmetry breaking we have found, but it does not
modify the calculation reported here.

Recall that the symmetry breaking we have found occurs
spontaneously in the quantum effective action �ð�; QÞ
when the sources Q are transformed appropriately.
Indeed, we have seen in Sec. III that �ð�; QÞ obeys

Ward identities that express the global symmetries Rj
i

and F j, and the BRST-symmetry s of S0. These symme-
tries are explicitly, though softly, broken by the dimension
2 termL� in the local action S. It is natural to ask, ‘‘Could

these symmetries of the quantum effective action � also be
symmetries of the local action S?’’

To make the question precise, we quantize in a periodic
Euclidean box. In this case, the answer to the question is

‘‘No, s andRj
i and F

j are not symmetries of the action S.
But they are symmetries of the Lagrangian density L that
hold locally, within each coordinate patch in which the
Cartesian coordinates x� are well defined.’’ (The coordi-

nates x� are not well defined globally on a periodic box

because they are not periodic.)
Within such a coordinate patch, the Lagrangian density

L ¼ L0 þL� at finite Gribov mass � may be obtained

from L0 at � ¼ 0 by the change of variable [5],

L ð��; ���; b; �cÞ ¼ L0ð’�; �’�; b
?; �c?Þ; (183)

where

’ab
� � �ab

� � �1=2x��
ab;

�’ab
� � ��ab

� þ �1=2x��
ab;

b?d � bd þ i�1=2gfadbx� ��ba
� ;

�c?d � �cd þ �1=2gfadbx� �!ba
� ;

(184)

and all other field variables are unchanged. By this change

of variable, each symmetry X̂ of L0 is translated into a
symmetry of L. A thorough analysis of the symmetries of
L0 is presented in [5].

The change of variable contains x� explicitly, so it is not

translation invariant. Nevertheless, both local Lagrangian
densities L0 and L are translation invariant. This happens
because both Lagrangian densities are invariant under shift
of � and �� by constants,

�ab
� ! �ab

� þ a��
ab; ��ab

� ! ��ab
� þ �a��

ab; (185)

with a compensating shift of b and �c. We have not consid-
ered this invariance explicitly because it is implicit in the
solution of the equations of motion of the ghost fields given
in Appendix A that is used in (53).

We exhibit the BRST operator that is a symmetry of L.
An alternative nonlocal BRST operator that is a symmetry
of S may be found in [21]. For this purpose we introduce
the operator ŝ that acts on the Faddeev-Popov fields in the
usual way

ŝA � Dc; ŝc ¼ �ðg=2Þc� c;

ŝ �c? ¼ ib?; ŝb? ¼ 0;
(186)

and that acts on the (untransformed) auxiliary ghosts ac-
cording to

ŝ’ab
� ¼ !ab

� ; ŝ!ab
� ¼ 0;

ŝ �!ab
� ¼ �’ab

� ; ŝ �’ab
� ¼ 0:

(187)

It is a symmetry of L0ð’�; �’�; b
?; �c?Þ,

ŝL0ð’�; �’�; b
?; �c?Þ ¼ 0: (188)

Under the change of variable (184), ŝ acts on the trans-
formed fields according to

ŝ�ab
� ¼ !ab

� ; ŝ!ab
� ¼ 0;

ŝ �!ab
� ¼ ��ab

� þ �1=2x��
ab; ŝ ��ab

� ¼ 0;
(189)

and the action on the other fields is unchanged. Here the
fields are evaluated within a coordinate patch at the point x,
so �! ¼ �!ðxÞ, etc. Since this is merely a change of variable,
ŝ is a symmetry of Lð��; ���; b; �cÞ,

ŝLð��; ���; b; �cÞ ¼ 0: (190)

The symmetry ŝ is spontaneously broken because the
vacuum state satisfies

hŝ �!ab
� i ¼ hð ��ab

� þ �1=2x��
abÞi ¼ �1=2x��

ab � 0;

(191)

so the expectation value of an ŝ-exact quantity is nonzero.
Because of the Ward identities satisfied by the auxiliary

ghosts, the reduced quantum effective action

��ðm; v; . . .Þ ¼ ��ðMþ @ ��;V þ @�; . . .Þ (192)

depends only on the combinations m ¼ Mþ @ �� and v ¼
V þ @�. The symmetry-breaking vacuum is given bym ¼
�v ¼ �1=2, and we may equivalently attribute �1=2 either

to the sources M ¼ �V ¼ �1=2, as we have done previ-

ously, or to the fields ’ab
� ¼ � �’ab

� ¼ �1=2x��
ab. If it is

attributed to the sources, then L breaks the symmetry
explicitly but softly; if it is attributed to the fields then L
breaks the symmetry spontaneously.
Although these two points of view are strictly equivalent

for the purpose of calculating the propagators, it may be
helpful, when considering the problem of unitarity and
positivity of the present approach, to consider the BRST
symmetry as being spontaneously broken.
Finally, we note that a sufficient condition for the ex-

istence of a conserved BRST Noether current is that the
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symmetry operator ŝ be well defined within a coordinate
patch. To exhibit this current, consider the infinitesimal
variation

��i ¼ 
ðxÞŝ�i; (193)

where 
ðxÞ vanishes outside a coordinate patch on which
the coordinate x� is well defined, but is an otherwise

arbitrary function of x. Since ŝ is a symmetry of the
Lagrangian density, we have, by Noether’s theorem,

�L ¼ j�@�
; (194)

where

j� ¼ @L
@@��i

ŝ�i (195)

is the conserved BRST current.

XVII. DISCUSSION

In the present work we have shown that the fermi ghosts
and some bose ghosts are the Goldstone particles of a
symmetry that is spontaneously broken at the level of the
quantum effective action �. Their propagators possess a
double pole

Dc �c ¼ D! �! ¼ DXX �D
Y½ab�
L Y½cd�

L
� 1

ðk2Þ2 : (196)

The double pole in the fermi-ghost propagator agrees with
the Kugo-Ojima confinement criterion [22]. The relation
between the present approach and the Kugo-Ojima ap-
proach has been clarified recently [17].

We have not fully exploited the Slavnov-Taylor identity
because of its nonlinearity, and, in principle, there could be
other symmetries, not considered here, that further con-
strain �. Thus, there may be additional flat directions be-
sides the ones whose existence we have established, and
corresponding additional Goldstone particles. These could
only be in the Y propagator, because the propagators of all
other ghosts have double poles. In this respect a compari-
son with the recent perturbative calculations of Gracey [13]
is illuminating. Starting from the present action, Gracey
has calculated the ghost and gluon propagators to one-loop
order and imposed the horizon condition to this order.
Although our calculation of the infrared limit of propaga-
tors is nonperturbative, the symmetries we have found hold
order by order in perturbation theory, and the Goldstone
particles we have found should be seen in each order of
perturbation theory when the horizon condition is imposed.
Indeed, the double poles we have found, the c- �c, !- �!, X,

and Y½ab�
L propagators also appear in Gracey’s calculation,

as does the suppression of the gluon propagator.5 However

he finds additional double poles in the transverse part of the
Y-Y propagator that we have not found. This suggests that
further exploitation of the Slavnov-Taylor identity would
reveal additional Goldstone bosons corresponding to the
additional double poles found in one-loop by Gracey. If
present, they would modify the quark-quark effective in-
teraction given in (182).
We have found as an exact result, Eq. (169), that the

gluon propagator DðkÞ vanishes like k2 at k ¼ 0,

DAAðkÞ � k2; (197)

as originally found by Gribov [1]. This nicely explains the
absence of gluons from the physical spectrum. Indeed, the
equation Dð0Þ ¼ 0 is not compatible with the Lehmann
representation,

DðkÞ ¼
Z 1

0
dM2�ðM2Þ=ðk2 þM2Þ; (198)

and a positive spectral function �ðM2Þ 
 0. However the
short range of the gluon propagator only deepens the
mystery, in the Gribov approach in Landau gauge, of the
origin of the long-range confining force between quarks.
Indeed, in his original paper, Gribov turned from the
Landau to the Coulomb gauge to address this problem
[1]. The exchange of a massless quantum between quarks
that is assured by the Goldstone mechanism exhibited here
may offer a resolution of this dilemma. This possible
confinement mechanism is also proposed in [13].
From the results DAAðkÞ � k2 and Dc �cðkÞ � 1=ðk2Þ2,

where Dc �c is the Faddeev-Popov ghost propagator, we
obtain for the renormalization-group invariant running
effective coupling constant [23],

�eff
s ðkÞ � ðg2=4�Þðk2Þ3DAAðkÞD2

c �cðkÞ; (199)

the finite infrared limit

�eff
s ð0Þ ¼ Oð1Þ; (200)

in agreement with the one-loop result [13].
It was recently proposed [24] that there is a triple pole in

the Y propagator which, with the factorization of ghost
momentum from quark-ghost vertex, Eq. (177), gives an
effective one-particle exchange between quarks of the form
1=ðk2Þ2 that could be the carrier of a linearly rising poten-
tial between quarks. Although a triple pole is not indicated
by the present calculation, it remains a possibility if the
coefficient of the ðk2Þ2 term in the effective action of the
relevant Y ghost were to vanish. In any case, we also find
here that the longest range force between quarks arises
from exchange of a Y quantum.
The infrared exponents (infrared power laws of the

propagators) that we have obtained are integer, as they
are in finite order of perturbation theory [13]. In contrast,
a recent solution of the Dyson-Schwinger equation derived
from the local action used here [25], gives noninteger
infrared exponents. This difference may have its origin in

5Gracey’s result for the longitudinal part of the Y-Y propagator
(the �-� propagator in his notation) is not reported in [13]. I am
grateful to him for communicating this result to me privately.
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the truncation error in the Dyson-Schwinger calculation, or
possibly to a different choice of Gribov copy (different
gauge) inside the Gribov horizon, or in the fact that the
behavior obtained here is delicate because it holds only at
� ¼ �ph, and could be missed in a Dyson-Schwinger cal-

culation. It would be of interest to look for solutions to the
Dyson-Schwinger equations that have the infrared limit
that has been found here.

We now turn to a comparison with lattice data, which
has been reviewed recently in [26]. Recall that we have
obtained a gluon propagator that vanishes like k2, indepen-
dent of dimension. In 2 Euclidean dimensions it is found
numerically that Dð0Þ ¼ 0, in accordance with this result,
but numerically it appears that DðkÞ vanishes like kp, with
p < 2 [27]. In contrast, on large lattices in 3 and 4
Euclidean dimensions, it appears that the gluon propagator
is finite,Dð0Þ> 0, at k ¼ 0 [28–34]. In 3 dimensions there
is a clear turnover ofDðkÞwhich has a maximum at finite k,

and approaches its infrared limit,Dð0Þ, from above, @DðkÞ
@k >

0 at low k. So in 3 dimensions Dð0Þ, though finite, is
suppressed at k ¼ 0 [26,34]. Note that from the Lehmann
representation (198), the first derivative of Dðk2Þ,

@Dðk2Þ
@k2

¼ �
Z 1

0
dM2 �ðM2Þ

ðk2 þM2Þ2 ; (201)

is negative if the spectral function is positive, �ðM2Þ 
 0.
Thus, the observed turnover of DðkÞ in 2 and 3 Euclidean

dimensions, with @DðkÞ
@k > 0 at low k, implies that the gluon

field produces unphysical excitations. In d ¼ 4 dimensions
there appear to be a shoulder in DðkÞ, if not a turnover, and
this would also contradict the Lehmann representation with

positive spectral function, because every derivative @nDðk2Þ
ð@k2Þn

is monotonic.
The only explanation at hand for the observed turnover

of the gluon propagator in 2 and 3 dimensions is the
suppression of infrared modes due to the proximity of the
Gribov horizon in infrared directions, and which is other-
wise counter intuitive. It is puzzling that the main qualita-
tive feature of the Gribov scenario is confirmed by latttice
studies, namely, suppression of infrared gluon modes, but
numerically there is disagreement with lattice data at k ¼
0. The situation with the ghost propagator is similar. We
have found that the fermi-ghost propagator has a double
pole 1=ðk2Þ2, corresponding to a dressing function k2GðkÞ
that diverges at k ¼ 0. However lattice data show a ghost
dressing function that does increase as k decreases, but
which appears to level off at the lowest k available [26].

A possible way out has been proposed by Maas [34]. He
has studied numerically the properties of different Gribov
copies inside the Gribov horizon, and found that, depend-
ing on the choice of weight given to different copies, one
may impose any one of a continuum of values forDð0Þ, the
gluon propagator at k ¼ 0. This effectively makes Dð0Þ
into a gauge parameter, within the class of Landau gauges

inside the Gribov horizon. Thus, it is possible that the
results obtained here correspond to a particular Landau
gauge within the Gribov horizon. An alternative approach
which accords with the lattice data is to modify the local
action used here to account for condensation of dimension-
2 operators [35].
Other unresolved questions are the identification of the

physical states and observables. It has been found that
renormalization of the operator F2 requires both BRST
exact and BRST noninvariant quantities to construct a
quantum operator invariant under renormalization-group
equations [12]. A possible construction of physical observ-
ables is developed in [36]. We remain far from a satisfac-
tory understanding of the phases of QCD.
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APPENDIX A: SOLUTION OF GHOST EQUATIONS
OF MOTION

The extended action with sources for composite opera-
tors is given in (23). In this appendix we shall use the 4
sources M, N, U, V to convert the equations of motion of
the 4 auxiliary ghosts into 4 Ward identities that are stable
under renormalization. This was done in [4], but we report
it here for completeness. A new result reported in this
appendix is the solution of the integrated equation of
motion of the Faddeev-Popov ghost c.
But first let us recall the Ward identities associated with

the Faddeev-Popov fields b and �c,

��

�b
¼ �i@�A�;

��

� �c
¼ @�

��

�K�

; (A1)

which have the solution

� ¼ �1ðK� � @� �c; . . .Þ þ ið@�b; A�Þ: (A2)

This gives the complete dependence of � on b and �c. We
now derive similar equations for the 4 auxiliary ghosts.
We have

��

� �!ai
¼ @�½sðD��iÞa� � ðD�N�iÞa þ gfabcðD�cÞbVc

�i:

(A3)

We use the identity

��

�Uai
�

¼ sðD��iÞa � Na
�i (A4)

to write this as

GOLDSTONE BOSONS AND FERMIONS IN QCD PHYSICAL REVIEW D 81, 125027 (2010)

125027-17



��

� �!ai
¼ @�

��

�Uai
�

� ðgA� � N�iÞa þ gfabc
��

�Kb
�

Vc
�i:

(A5)

This equation is at most linear in the functional derivatives
and in the field A�, and consequently one may show, by the
method that was used to establish the Slavnov-Taylor
identity, that the same equation is satisfied by the quantum
effective action �,

��

� �!ai
¼ @�

��

�Uai
�

� ðgA� � N�iÞa þ gfabc
��

�Kb
�

Vc
�i:

(A6)

This is the first Ward identity. It has the solution

� ¼ �2 þ ði@�b; A�Þ þ ðgA� � �!i; N�iÞ; (A7)

where

�2 � �2ðUi
� � @� �!i; K1;�Þ; (A8)

Ka
1;� � Ka

� � @� �c
a � gð �!i � V�iÞa; (A9)

and ð �!i � V�iÞa � fabc �!biVc
�i. This gives the complete

dependence on �!.
Likewise we have

��

� ��ai
¼ �@�ðD��iÞa � ðD�V�iÞa; (A10)

We use

��

�Mi
�

¼ D��i þ V�i (A11)

to write this as

��

� ��ai
¼ �@�

��

�Mai
�

� ðgA� � V�iÞa: (A12)

Again this is at most linear in the derivatives and the field
A�, so � satisfies the same equation

��

� ��ai
¼ �@�

��

�Mai
�

� ðgA� � V�iÞa; (A13)

which is the second Ward identity. It has the solution

� ¼ �3 þ ði@�b; A�Þ þ ðgA� � ��i; V�iÞ
þ ðgA� � �!i; N�iÞ; (A14)

where

�3 � �3ðMi
� þ @� ��;U�� � @� �!i; K1;�Þ; (A15)

and we have made use of our previous result. This gives the
complete dependence on �! and ��.

To derive the third Ward identity, we start from

��

�!a
i

¼ �ðD�@� �!iÞa þ ðD�U�Þai

¼ �@�ðD� �!iÞa þ gð@�A� � �!iÞa þ ðD�U�Þai:
(A16)

We use

��

�N�i

¼ �D� �!i þUi
� (A17)

to write this as

��

�!a
i

¼ @�
��

�Na
�i

þ ig

�
��

�b
� �!i

�
a þ ðgA� �Ui

�Þa:
(A18)

One can show, using the equation of motion of b that the
quantum effective action satisfies the same equation,

��

�!a
i

¼ @�
��

�Na
�i

þ ig

�
��

�b
� �!i

�
a þ ðgA� �Ui

�Þa;
(A19)

which is the third Ward identity. It may also be written

��

�!a
i

¼ @�
��

�Na
�i

þ ðg@�A� � �!iÞa þ ðgA� �Ui
�Þa;
(A20)

which has the solution

� ¼ �4ðN�i � @�!iÞ þ ð �!i; g@�A� �!iÞ
þ ðUi

�; gA� �!iÞ: (A21)

This gives the complete dependence on !. We wish to
write this solution for ! in a way that is compatible with
our previous solution for �!. To this end we write

�4ðN�i�@�!iÞ ¼ �5ðN�i�@�!iÞ
þ ðgA�� �!i;N�i�@�!iÞ

¼ �5ðN�i�@�!iÞþ ðgA�� �!i;N�iÞ
� ð@� �!i;gA��!iÞ� ð �!i;g@�A��!iÞ:

(A22)

The terms in @�A� cancel and we obtain

� ¼ �5ðN�i � @�!iÞ þ ðUi
� � @� �!i; gA� �!iÞ

þ ðgA� � �!i; N�iÞ: (A23)

This expression is compatible with the previous solution
for �! (and ��), and we obtain

� ¼ �6 þ ði@�b; A�Þ þ ðUi
� � @� �!i; gA� �!iÞ

þ ðgA� � ��i; V�iÞ þ ðgA� � �!i;N�iÞ; (A24)

where
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�6 � �6ðM0i
�; N

0
�i; U

0i
�; K1;�Þ; (A25)

and the primed variables are defined below in (A38). This
gives the complete dependence on �!, ��, and !.

To derive the fourth Ward identity we start from

��

��a
i

¼ �ðD�@� ��iÞa þ ½ðUi
� � @� �!iÞ � gD�c�a

� ðD�M
i
�Þa ¼ �@�ðsD� �!iÞa þ gð@�A� � ��iÞa

þ gð@�D�c� �!iÞa � ðD�M
i
�Þa

þ ðUi
� � gD�cÞa: (A26)

We use the identity,

��

�V�i

¼ sD� �!i þMi
�; (A27)

to write this as

��

��a
i

¼ �@�
��

�Va
�i

þ ig

�
��

�b
� ��i

�
a � ðgA� �Mi

�Þa

þ g

�
@�

��

�K�

� �!i

�
a þ

�
gUi

� �
��

�K�

�
a
: (A28)

The quantum effective action satisfies the same equation,
which yields the fourth Ward identity,

��

��a
i

¼ �@�
��

�Va
�i

þ ig

�
��

�b
� ��i

�
a � ðgA� �Mi

�Þa

þ g

�
@�

��

�K�

� �!i

�
a þ

�
gUi

� �
��

�K�

�
a
:

(A29)

This has the solution

� ¼ �7 � ð ��i; g@�A� ��iÞ þ ðMi
�; gA� ��iÞ; (A30)

where

�7 ¼ �7ðV�i þ @��i; K2;�Þ; (A31)

K2;� ¼ K� þ @�ðg �!i ��iÞ � gUi
� ��i

¼ K� þ g �!i � @��i � gðUi
� � @� �!iÞ ��i;

(A32)

and ð �!i ��iÞa ¼ fabc �!bi ��c
i , etc. This gives the com-

plete � dependence. To make the solution for � compat-
ible with the solution for �� and �!, we make use of the fact
that the dependence on V�i þ @��i is completely arbitrary,
and moreover, in the solution for � we may freely choose
the dependence on the variables ��, �!, ! to be consistent
with our previous solution. We write

�7ðV�i þ @��i;K2Þ � ðgA� � ��i;V�i þ @��iÞ
þ�8ðV�i þ @��i;K

0Þ
¼ ðgA� � ��i;V�iÞ þ ð@� ��i;gA� ��iÞ

� ðg@ �A� ��i;�iÞ
þ�8ðV�i þ @��i;K

0Þ; (A33)

where

K0
� � K2;� � @� �c� g �!i � ðV�i þ @��iÞ (A34)

is given below in (A38). The dependence ofK0 on �! is now
consistent with (A8) and (A9). We substitute (A33) into
(A30). The terms in @ � A cancel, and we obtain

� ¼ ð@� ��i þMi
�; gA� ��iÞ þ ðgA� � ��i; V�iÞ

þ �8ðV 0; K0Þ; (A35)

where the primed variables are given in (A38). This ex-
pression gives the complete dependence of � on � and
moreover it is compatible with our previous solution (A24)
for �!, ��, and !. We combine the two expressions and
obtain

� ¼ �p þ �0ðA; c; K0; L;M0; N0; U0; V 0Þ; (A36)

where

�p � ði@�b; A�Þ þ ðMi
� þ @� ��i; gA� ��iÞ

þ ðgA� � ��i; V�iÞ þ ðgA� � �!i; N�iÞ
þ ðUi

� � @� �!i; gA� �!iÞ; (A37)

and a partially reduced set of variables is defined by

M0i
� � Mi

� þ @� ��i; N0
�i � N�i � @�!i;

U0i
� � Ui

� � @� �!i; V 0
�i � V�i þ @��i;

K0a
� � Ka

� � @� �c
a � gð �!i � V�iÞa

� ½gðUi
� � @� �!iÞ ��i�a: (A38)

This gives the complete dependence of � on b, �c and on the
4 auxiliary ghosts �, !, �!, ��.
There remains one ghost field c which we have not yet

considered and whose local equation of motion we cannot
solve. However it obeys an integrated equation of motion,
which was first given for the present action in [5], that will
be useful. The operator,

G a �
Z

dDx

�
�

�ca
þ gfabd

�
i �cb

�

�bd
��b

i

�

�!d
i

� �!bi �

� ��di
þUbi

�

�

�Mdi
�

þ Vb
�i

�

�Nd
�i

��
; (A39)

is a symmetry of the local action �, apart from a breaking
term that is linear in the local fields,

G a� ¼ �gðK� � A�Þa þ gðL� cÞa: (A40)
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The operator itself is also linear in the local fields, so the
same identity holds for the quantum effective action

G a� ¼ �gðK� � A�Þa þ gðL� cÞa: (A41)

We introduce

�inv � �p þ ðK0
�; gA� � cÞ þ ðL; ð�g=2Þðc� cÞÞ;

(A42)

which satisfies

G a�inv ¼ Ga�: (A43)

We separate this term out of the action and write,

� ¼ �inv þ �9ðA; c; K0; L;M0; N0; U0; V0Þ; (A44)

so �9 satisfies

G a�9 ¼ G0a�9 ¼ 0; (A45)

where

G 0a �
Z

dDx

�
�

�ca
þ gfabd

�
U0bi

�

�

�M0di
�

þ V 0b
�i

�

�N0d
�i

��
:

(A46)

The new element in this appendix, not found in [4], is the
final change of variable

k� � K0
�; mai

� � M0ai
� � gðc�U0i

�Þa;
na�i � N0a

�i � gðc� V 0
�iÞa; uai� � U0ai

� ;

vai
� � V0ai

� ;

(A47)

and the new fully reduced quantum effective action ��
which is a functional of the new variables,

�0ðA; c; K0; L;M0; N0; U0; V0Þ ¼ ðK0
�; gA� � cÞ

þ ðL; ð�g=2Þc� cÞ
þ ��ðA; c; k; L;m; n; u; vÞ:

(A48)

It satisfies the simple integrated ghost equation of motion

G �a�� �
Z

dDx
���

�ca
¼ 0: (A49)

This equation is equivalent to the statement that �� de-
pends only on @�c, but not on c itself, and we write

�� ¼ ��ðA; @c; k; L;m; n; u; vÞ: (A50)

All other ghosts besides c also appear in �� only as
derivatives that are contained in the sources k, m, n, u,
and v. The fact that only derivatives of all ghost fields
appear in �� is the functional expression of the well-known
factorization of external ghost momenta from all vertices.

APPENDIX B: ONE-LOOP CALCULATIONOF THE
VACUUM FREE ENERGY

We wish to evaluate the dependence of the free energy
�ð0; �Þ upon �, to one-loop order, starting from the action
(1). To this order, it is sufficient to consider the quadratic
part of this action. The quadratic action of the fermi-fields
c, �c,!, �! is independent of � and we suppose that they are
integrated out. There remains

Sq ¼
Z

dDx½ð1=4Þð@�Aa
� � @�A

a
�Þ2 þ i@�b

cAc
�

þ @� ��ab
� @��

ab
� þ �1=2gfabcAb

�ð�� ��Þca� �: (B1)

More generally, since we are only interested in the �
dependence, and � appears only in the A-� and A- ��
mixing term, we may freely integrate out all other fields
besides the ones that mix. We integrate out the b field. This
imposes the Landau-gauge constraint @ � A ¼ 0, so A is
purely transverse, @ � A ¼ 0. We may decompose � and ��
into their longitudinal and transverse parts. Since A is
purely transverse, only the transverse parts of � and ��
mix with A. We suppose that the longitudinal parts of �
and �� are integrated out, so these fields are now also purely
transverse. We decompose � and �� according to

� ¼ ð1= ffiffiffi
2

p ÞðX þ iYÞ; �� ¼ ð1= ffiffiffi
2

p ÞðX � iYÞ: (B2)

Only Y mixes with A, and we integrate out X. The action
now reads

Sq ¼
Z

dDx½ð1=2Þð@�Aa
�Þ2 þ ð1=2Þ@�Yab

� @�Y
ab
�

þ i�1=2g
ffiffiffi
2

p
fabcAb

�Y
ca
� �; (B3)

where is it understood that Ab
� and Yb

� are both purely

transverse. Only the part of Yb
� that is projected onto the

adjoint representation by

Ya
� � ð1= ffiffiffiffi

N
p ÞfabcYca

� (B4)

mixes with A and we integrate out the remaining compo-
nents of Yb

�, so the action simplifies to

Sq ¼
Z

dDx½ð1=2Þð@�Aa
�Þ2 þ ð1=2Þð@�Ya

�Þ2

þ i�1=2gð2NÞ1=2Aa
�Y

a
��: (B5)

This is the correct normalization because

Pab;cd � ð1=NÞX
e

fabefcde (B6)

is a projector

Pab;cdPcd;ef ¼ Pab;ef: (B7)

We complete the diagonalization by forming the i particles
[36],
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�b
� ¼ ð1= ffiffiffi

2
p ÞðAþ YÞb�; 	b

� ¼ ð1= ffiffiffi
2

p ÞðA� YÞb�;
(B8)

so Sq is diagonal,

Sq ¼
Z

dDxð1=2Þ½ð@��a
�Þ2 þ iM2ð�a

�Þ2

þ ð@�	a
�Þ2 � iM2ð	a

�Þ2�; (B9)

where we have written

M2 � �1=2gð2NÞ1=2: (B10)

This action is diagonal in momentum space. We quan-
tize in a periodic Euclidean box of volume �, so

�a
�ðxÞ ¼ ��1

X
k

expðik � xÞ�a
�ðkÞ; (B11)

and similarly for 	, so the action reads

Sq ¼ ð2�Þ�1
X
k

½ðk2 þ iM2Þj�a
�ðkÞj2 þ ðk2 � iM2Þj	a

�ðkÞj2�;

(B12)

where k� ¼ 2�n�=L and � ¼ LD, and n� runs over all

integers. The one-loop contribution to the partition func-
tion, with all sources set to 0, is given by

Z1ð�Þ ¼
Z Y

d�d	 expð�SqÞ: (B13)

For each k there are N2 � 1 color components and D� 1
(transverse) Lorentz components, of the fields � and 	,
which gives

Z1ð�Þ ¼
Y
k

½ðk2 þ iM2Þðk2 � iM2Þ��ðN2�1ÞðD�1Þ=2:

(B14)

With Z1ð�Þ ¼ exp½��1ð�Þ�, we get
�1ð�Þ ¼ ðN2 � 1ÞðD� 1ÞReX

k

lnðk2 þ iM2Þ; (B15)

or

�1ð�Þ
ðN2 � 1ÞðD� 1Þ� ¼ Re

Z dDk

ð2�ÞD lnðk2 þ iM2Þ; (B16)

where Re means real part. We go to D-dimensional spheri-
cal coordinates to obtain

�1ð�Þ
�

¼ ðN2 � 1ÞðD� 1ÞSD�1Re
Z 1

0

dk2ðk2ÞðD�2Þ=2

2ð2�ÞD
� lnðk2 þ iM2Þ; (B17)

where SD�1 ¼ 2�D=2=�ðD=2Þ is the area of a D� 1 di-
mensional sphere. With y ¼ k2 and dimensional regulari-
zation, this gives, after a partial integration,

�1ð�Þ
�

¼ �ðN2 � 1ÞðD� 1ÞSD�1

ð2�ÞDD J; (B18)

where

J � Re
Z 1

0
dy

yD=2

yþ iM2
; (B19)

or, with y ¼ iM2z,

J � Re½expði�=2ÞM2�D=2
Z 1

0
dz

zD=2

zþ 1
: (B20)

This gives

J ¼ cosð�D=4ÞMD
Z 1

0
dz

Z 1

0
d�zD=2 exp½�ðzþ 1Þ��

¼ cosð�D=4ÞMD�ð1þD=2Þ
�

Z 1

0
d���ð1þD=2Þ expð��Þ

¼ cosð�D=4ÞMD�ð1þD=2Þ�ð�D=2Þ

¼ cosð�D=4ÞMD �

sinð��D=2Þ ¼ � �MD

2 sinð�D=4Þ :
(B21)

We obtain in dimension D,

�1ð�Þ
�

¼ ðN2 � 1ÞðD� 1Þ�MD

ð4�ÞD=2D�ðD=2Þ sin½�ð4�DÞ=4� ; (B22)

or

�1ð�Þ
�

¼ ðN2 � 1ÞðD� 1Þ�
ð4�ÞD=2D�ðD=2Þ sin½�ð4�DÞ=4� ð2Ng2�ÞD=4:

(B23)

We write D ¼ 4� 
, and take the limit 
 ! 0, which
gives,

�1ð�Þ
�

¼ 3ðN2 � 1Þð2Ng2�Þ
ð4�Þ2

�
1



� 1

4
lnð2Ng2�=�4Þ

�
;

(B24)

where we have introduced a normalization mass �. We
drop the pole term, and obtain for the one-loop contribu-
tion to the quantum effective action,

�1ð�Þ
�

¼ � 3ðN2 � 1Þð2Ng2�Þ
4ð4�Þ2 lnð2Ng2�=�4Þ: (B25)

APPENDIX C: PROOF OF IDENTITY

In this appendix we prove equality (35). By (31) it is
sufficient to show
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Z
dDx

X
�;a

�W

�Maa
��

���������¼0;Q¼Q1

¼ �
Z

dDx
X
�;a

�W

�Vaa
��

�
���������¼0;Q¼Q1

: (C1)

In the formula for the partition function, we set to zero all
sources besides M and V, namely K ¼ L ¼ N ¼ U ¼ 0,
and J� ¼ 0 for all sources J� of the elementary fields ��.
We integrate out the b field so the Landau-gauge condition,
@ � A ¼ 0, is satisfied on-shell. We next integrate out the �c
field which gives �ðMcÞ ¼ detM�ðcÞ, where M ¼
�@�D� ¼ �D�@� is the Faddeev-Popov operator which

is Hermitian because @ � A ¼ 0. Here detM is the
Faddeev-Popov determinant, and �ðcÞ is the functional
delta function, which may be written in a mode expansion
�ðcÞ ¼ Q

ici. We next integrate out c, which results in
setting c ¼ 0 everywhere, and we integrate out the auxil-
iary fermi ghosts! and �!which gives a factor of ðdetMÞf.
As a result, the extended action � is replaced by

�1 ¼ ð1=4ÞðF��; F��Þ þ ð ��ac
� ;Mab�bc

� Þ
þ ðMab

��;D��
ab
� Þ þ ðD�

��ab
� ; Vab

��Þ þ ðMab
��; V

ab
��Þ;
(C2)

and Z ¼ ZðM;VÞ. With WðM;VÞ ¼ lnZðM;VÞ, we have
�W

�Mab
��

��������Q1

¼ �Z�1
Z

dAd�d ��ðD��
ab
� þ Vab

��Þ

� expð��1ÞjQ1

¼ �Z�1
Z

dAd�d ��ðD��
ab
� � �1=2����

abÞ
� expð��2Þ; (C3)

where

�2 � �1jQ¼Q1

¼ ð1=4ÞðF��; F��Þ þ ð ��ac
� ;Mab�bc

� Þ
þ

Z
dDxf�1=2½D�ð�� ��Þ��aa � f�g: (C4)

Here we have set Mab
�;� ¼ �Vab

�;� ¼ �1=2��;��
ab because

Q ¼ Q1. By a similar calculation we obtain

�W

�Vab
��

��������Q1

¼ �Z�1
Z

dAd�d ��ðD�
��ab
� þ �1=2����

abÞ

� expð��2Þ: (C5)

In the last integral we make the change of variable� ¼ ��0
and �� ¼ �0. Then, after dropping primes and using the
Hermiticity of the Faddeev-Popov operator,
ð�ac

� ;Mab ��bc
� Þ ¼ ð ��ac

� ;Mab�bc
� Þ which holds because

@ � A ¼ 0, we obtain

�W

�Vab
��

��������Q1

¼ �Z�1
Z

dAd�d ��ð�D��
ab
� þ �1=2����

abÞ

� expð��2Þ: (C6)

This gives �W
�Vab

��

jQ1
¼ � �W

�Mab
��

jQ1
, which proves the

assertion.
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