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The expectation value of Wilson loop operators in three-dimensional SOðNÞ Chern-Simons gauge

theory gives a known knot invariant: the Kauffman polynomial. Here this result is derived, at the first

order, via a simple variational method. With the same procedure the skein relation for Sp(N) are also

obtained. Jones polynomial arises as special cases: Sp(2), SOð�2Þ, and SLð2;RÞ. These results are

confirmed and extended up to the second order, by means of perturbation theory, which moreover let us

establish a duality relation between SOð�NÞ and Spð�NÞ invariants. A correspondence between the first

orders in perturbation theory of SOð�2Þ, Sp(2) or SU(2) Chern-Simons quantum holonomy’s traces and

the partition function of the Q ¼ 4 Potts model is built.
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I. INTRODUCTION

In a milestone work [1] Witten realized that the expec-
tation value of a Wilson loop, computed with a three-
dimensional Chern-Simons action measure, was a knot
invariant. This is due to the fact that the Wilson loops are
observables for Chern-Simons theories, having therefore
diffeomorphism invariant expectation values. More gener-
ally, this feature stems from the property that such a
quantum field theory manifests general covariance, which
in turn is a consequence of the metric independent struc-
ture: any physical quantity computed in this framework is a
topological invariant.

In practice, for SUðNÞ Chern-Simons field theory, the
resulting knot invariant is the HOMFLY polynomial,
which, in particular, specializes into the Jones polynomial
in the case of SU(2). These outcomes were derived through
both conformal field theory (as in [1]) or perturbative
quantum field theory (see, for instance, [2]). But a simpler
heuristic derivation was proposed in [3,4] (for reviews see
also [5,6]), at least up to the first order in the inverse
coupling constant of the theory. It is based on a variational
approach: it studies the behavior in the expectation value of
the Wilson loop when one performs small geometric
deformation.

In the conformal field theory scheme similar results have
been found in [7–9] for several other groups: SOðNÞ,
SpðNÞ, SUðnjmÞ, and OSpðmj2nÞ. It would be interesting
to test whether the variational procedure, which is ex-
pressly realized to reproduce the HOMFLY polynomial
from SUðNÞ gauge theory, may apply also in different
contexts. In Sec. III are studied the SOðNÞ, SLðN;RÞ,
and SpðNÞ cases. The results obtained are moreover ana-
lyzed in Sec. IV by means of the more rigorous standard
perturbation theory and extended up to the subsequent
order, the second. Finally, in Sec. V we try to interpret

these results from the statistical mechanic point of view,
trying to connect the holonomies first order expansion to
one of the more famous lattice statistical system: the
Q-Potts model;1 which at the moment remains unsolved
apart for its easiest personification when Q ¼ 2, the Ising
model. We start (Sec. II) by introducing the notation and
summarizing the fundamental properties of Chern-Simons
theory and Kauffman polynomial that are useful in deriva-
tion of skein relations.

II. CHERN-SIMONS THEORYAND KAUFFMAN
POLYNOMIAL

Let us consider a Chern-Simons theory for a gauge field
connection oneform A ¼ Aa

�ðxÞTadx� valued in a generic

semisimple Lie algebra g, with action:

LCS½A� ¼ k

4�

Z
M3

d3x
����

2

�
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�@�A
a
�

� 1

3
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�A
b
�A
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�f

abc

�

whereM3 is a compact three-dimensional manifold whose
coordinates are labeled by Greek letters ð�; �; �; . . .Þ;
while the internal group indices will be denoted by Latin
letters ða; b; c; . . .Þ. The Lie algebra is spanned by gener-
ators Ta; Tb; . . . , obeying the commutation relations
½Ta; Tb� ¼ ifabcTc and normalized as follows:
TrðTaTbÞ ¼ 1

2�
ab.

This action got several notable properties: (i) it changes
by 2�kng under a gauge transformation A�VA0

� ¼
g�1A�g� ig�1ð@�gÞ (ng is the degree of the mapping

g: M3 ! G); thus, 8 k 2 Z, expðiLCSÞ is a complete
gauge invariant quantity that will play the rôle of the
path integral measure. (ii) The curvature of the gauge field
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1We are referring to the standard two dimensional Potts model,
not to some variant with multiple Boltzmann weights, which in
much literature are misleadingly called the same.
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at the point x 2 M3 is given by

Fa
��ðxÞ ¼ 4�

k
����

�LCS½AðxÞ�
�Aa

�ðxÞ
:

We will be interested in computing expectation values
hWð�Þi for Wilson loops W�½A� along closed paths �,

that in fact may be thought as a knot on M3, defined as
follows:

W�½A� ¼ Tr

�
P exp

�
i
I
�
A�dx

�

��

hWð�Þi ¼ Z�1
Z

DA expðiLCS½A�ÞW�½A�

In this notation, � represents both common knots �ðtÞ: I !
M3 and n-component knots, also called knot-links,
�ðt1; t2; . . . ; tnÞ ¼ ð�1ðt1Þ; �2ðt2Þ; . . . ; �nðtnÞÞ: I1 � I2 �
. . . In ! M3. In the latter case hWð�Þi ¼
hWð�1ÞWð�2Þ . . .Wð�nÞi. Without losing generality, one
may think the compact interval Ii ¼ ½0; 1� and �ð0Þ ¼
�ð1Þ in order to have closed paths. The fact that the
Chern-Simons action is independent of the particular
choice of a metric on the three-manifold suggests that the
Wilson loop expectation values may capture some invari-
ant or topological characteristic of the system’s geometry:
either that of the knots or of the manifold itself.

Now we introduce the Kauffman polynomial, which is a
regular isotopy invariant of knots and, if suitably normal-
ized, becomes an ambient isotopy invariant. Actually, we
will deal with its equivalent Dubrovnik version. To each
knot-link there is associated a finite Laurent polynomial
DK ¼ DKða; zÞ of two variables with integer coefficients,
such that if K1 � K2, thenDK1

¼ DK2
(while the reverse is

not necessary true). The polynomial can be constructed, as
in [10] or [11], by the following rules2 (see Fig. 1 for
notation, � stands for the unknotted circle):

ðiÞ DðLþÞ �DðL�Þ ¼ z½DðL0Þ �DðL1Þ�
ðiiÞ DðL̂�Þ ¼ a�DðL̂0Þ ðiiiÞ Dð�Þ ¼ 1

(2.1)

In (i) and (ii) the small diagrams fLkgk¼�;0;1 stand for

larger link diagrams that differ only as indicated by the
smaller ones. Starting from any knot-links K and using
recursively Reidemeister moves and the skein relations
(2.1) at each diagram’s crossing, one can obtain uniquely
its regular isotopy invariant DKða; zÞ. It is possible to
normalize DK by a factor that take into account also
eventual contributions of twists. For this purpose is used
the writhe wðKÞ ¼ P

p�ðpÞ, where p runs over all crossing

inK and �ðL�Þ ¼ �1 is the sign of the type of crossing. So
finally we are able to define a genuine ambient isotopy

invariant: the normalized Kauffman-Dubrovnik polyno-
mial3:

YKða; zÞ ¼ ðaÞ�wðKÞDKða; zÞ:

III. VARIATIONAL DERIVATION OF THE SKEIN
RELATION

It is well known (see [5] for details) that the Wilson
loops satisfy the following differential equations:

�AW�½A� ¼
�W�½A�
�Aa

�ðxÞ ¼ iTadx�W�½A�

��x
W�½A� ¼ iFa

��T
adx�dx�W�½A�

where ��x
is the variation corresponding to an infinitesimal

deformation of the loop � in the neighborhoods of a point
x. It Is then possible to compute this variation for an
expectation value of a Wilson line along a knotted path �
and to use it to obtain a formula for the switching identity

hWðL̂þÞi � hWðL̂�Þi as4 follows:

��x
hWð�Þi ¼ � 4�i

k

1

Z

Z
DA expðiLCS½A�Þ

� ½����dx
�dx�dy��

�X
a

TaTa

�
W�½A�:

(3.1)

Note that studying the formal properties of this integral
three assumptions are always used: (i) the limits of differ-
entiation and integration commute: ��x

hW�½A�i ¼
h��x

W�½A�i; (ii) integrating by parts it is possible to dis-

card the boundary term; (iii) the existence of an appropriate
functional measure on this moduli space.

FIG. 1. Different crossing configurations involved in the skein
relations. Dealing with unoriented links, arrows can be ignored
because they carry no sensitive information.

2Sometimes, as in [5], can be found a different normalization
for DK: ðiiiÞ0Dð�Þ ¼ 1þ a�a�1

z ; in our notation 1þ a�a�1

z will
result the h�i’s normalization.

3While Dk is defined for unoriented knots, to calculate the
writhe in YK one needs to define an orientation. At the end the
orientation does not affect the result for knots but it affects the
invariant polynomial in case of proper links. Thus YK is said to
be defined for semioriented knot links.

4Proposition 17.4 and theorem 17.5 of [5].
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From the previous equation one is able to write the

switching identity hWðL̂þÞi � hWðL̂�Þi. The quantity
½����dx

�dx�dy�� is dimensionless and, whether properly

normalized, can be thought �1, 0, or 1. Then (3.1) has a
standard interpretation (we follow [5]) if one calls the
operator, which in some sense enclose the loop’s small
deformation, C ¼ P

aT
aTa:

hWðL̂þÞi � hWðL̂�Þi ¼ � 4�i

k
hCWð�Þi: (3.2)

Graphically hCWð�Þi is represented in the left-hand side of
the equation in Fig. 2. Note that the sign is a convention

which may be reversed exchanging L̂þ $ L̂�.
Until this point, the whole model has been valid for a

generic gauge group G. In particular, it was successfully
used in the literature to reproduce the Witten’s result for
HOMFLY polynomials from the SUðNÞ group. Instead, in
this paper we specialize our study to two particular alge-
bras which have simple Fierz identities: the ones associated
to the orthogonal group SOðNÞ and the symplectic group
SpðNÞ, for a generic N.

A. SOðNÞ and Kauffman polynomial

Here the features of the algebra under consideration
begin to play an important role. In fact to evaluate the
operator C one needs to use the Fierz identity; in particular,
we have for SOðNÞ in the fundamental representation (in
[12] Fierz identities are presented for almost all semisim-
ple Lie groups):

X
a

ðTaÞijðTaÞkl ¼
1

4
ð�i

l�
k
j � �ik�jlÞ:

This expression in the Baxter’s abstract tensor notation (see
[5]) reads as the diagrammatic relation drawn in Fig. 2.

Hence, substituting in (3.2) the Fierz identity we have

hWðLþÞi � hWðL�Þi ¼ ��i

k
½hWðL0Þi � hWðL1Þi�:

(3.3)

To get in touch with the known results, one has to take the
limit of k � 1, namely, the analogous of the first order
perturbation expansion, thus the previous expression re-
duces to

hWðLþÞi � hWðL�Þi ¼ ðq� q�1Þ½hWðL0Þi � hWðL1Þi�:

These are exactly the skein relations that are found by
means of the original Witten’s method based on conformal
field theory arguments (see [7,8]), once q :¼ expð� �i

2kÞ is
defined.5 So is not difficult to see that DK ¼
hWðKÞi=hWð�Þi fulfils the definition of Dubrovnik poly-
nomial (normalized as in [10,11]),6 with z ¼ ðq� q�1Þ.
The only thing that remains to fix is the value of a such that

hWðL̂þÞi ¼ ahWðL̂0Þi. This can be done considering the
closure of the path in the skein relation (3.3), as shown in
Fig. 3:

hWðL̂þÞi � hWðL̂�Þi ¼ ��i

k
½hWð�L̂0Þi � hWðL̂0Þi�

ahWðL̂0Þi � a�1hWðL̂0Þi ¼ ��i

k
½ðN � 1ÞhWðL̂0Þi�: (3.4)

Solutions for (3.4) are a ¼ qN�1 or a ¼ �q1�N, which
however gives rise at an equivalent DK polynomials.7 The
factor N comes from the diagrammatic tensor interpreta-
tion of the unknot circle, that is �i

i ¼ N. It is worthwhile to
observe that these Dubrovnik-Kauffman polynomials
DKða ¼ �q1�N; z ¼ q� q�1Þ do not run out all the origi-
nal ones, but constitute a smaller subset depending on the
fact that a assumes only discrete values depending on N
(which generally is thought in N).
The consistency check up to the 1=k order proposed in

[3] is intrinsically satisfied using the quadratic Casimir
operator of soðNÞ: 1ðN � 1Þ=4. Moreover, the variational
first order approach, can be generalized to subsequent
orders with the same arguments presented in [13,14] for
SUðNÞ groups. But we will prefer explore the subsequent
order of the expansion (see Sec. IV) through a different
method based on the standard quantum field theory of
perturbations.
Finally note that the original Jones polynomial

a�wðKÞDKð �a ¼ �q3; �z ¼ q� q�1Þ is not included in this
subclass of Kauffman polynomial, unless choosing uncon-
ventionally N ¼ �2 (once the polynomial is analytic con-
tinued for all integers values of N).
Negative dimensions group theory is a powerful tech-

nique, first introduced by Penrose, to calculate algebraic
invariants (see [15–17]). In that case it relates the Casimirs
and Young tableau of SOð�2Þ to the ones of Sp(2). Some
speculation about this possibility is done in the next sub-
section, while a more rigorous treatment is done in Sec. IV.
One may be puzzled not to come across Jones polynomial
for the SO(3) group which is locally isomorphic to SU(2)

FIG. 2. Abstract diagrammatic representation of Fierz identity
for SOðNÞ.

5Reference [8] uses a different killing metric normalization for
the Lie algebra generators; in order to compare with it one has to
define a slightly different q :¼ expð� �i

k Þ. Reference [7] uses an
inverse definition of the writhe and of the crossing diagrams, so
what they call 	 ¼ a�1 and their q is our q�1.

6Clearly if writhe-normalized by a factor a�wðKÞ (where
wðL�Þ ¼ �1) DKða; zÞ became an ambient isotopy invariant.

7Just redefine q ! ~q ¼ �q�1 to verify the second root branch
redundancy.
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where this relation holds. The reason for this mismatch is
based on the fact that in this context, more than groups
similarities, the Lie algebras invariants play a key rôle.

Actually, as is also true for SLð2;RÞ generators, the same
SU(2) Fierz identity for the C operator holds, the Jones
polynomial can be recovered with the same procedure of
[3]. It is not surprising because slð2;RÞ is the real split
form of the A1 algebra [known also as the slð2;CÞ algebra
by an abuse of notation], while suð2Þ is the real compact
one.

B. SpðNÞ skein relations and Jones polynomial for Sp(2)

In this section we consider the symplectic group SpðNÞ,
for even N; apart from the relation with SOð�NÞ it is an
interesting case for itself. Its Fierz identity (see again [12])
for the generators in the fundamental representation is:

X
a

ðTaÞijðTaÞkl ¼
1

4
ð�i

l�
k
j þ fikfjlÞ;

where fij ¼ �fji, fijfjk ¼ �i
k. As the fundamental rep-

resentation of this group is pseudoreal, unlike SOðNÞ, the
orientation should not be neglected as it is shown in Fig. 4.8

Plugging this Fierz identity for SpðNÞ into Eq. (3.2) one fits
the same skein relation of [8] which is obtained by a totally
different approach.9

There is a particular case where those computations are
easily10 carried on until get its knot invariant: N ¼ 2, just
the one suspected to be related to the Jones polynomial, as
we saw in Sec. III A. In fact, for Sp(2) the antisymmetric

matrix fij may be straight interpreted, without losing gen-
erality, as the Levi-Civita tensor �ij and its inverse fij ¼
��ij. Hence the algebraic [Eq. (3.5)] and diagrammatic

(Fig. 5) representations of the C operator appear, respec-
tively, as follows:

X
a

ðTaÞijðTaÞkl ¼
1

4
ð�i

l�
k
j � �ik�jlÞ

¼ 1

4
ð2�i

l�
k
j � �i

j�
k
lÞ: (3.5)

Now substituting the Fierz identity for Sp(2) into (3.2)
we have

hWðLþÞi � hWðL�Þi ¼ � 2�i

k
hWðL0Þi

þ �i

2k
hWðLþÞi

þ �i

2k
hWðL�Þi�

1� �i

2k

�
hWðLþÞi �

�
1þ �i

2k

�
hWðL�Þ ¼ � 2�i

k
hWðL0Þi

qhWðLþÞi � q�1hWðL�Þi ¼ ~zhWðL0Þi;
where q is the same as in Sec. III A, while it is defined ~z :¼
� 2�i

k ¼ x� x�1 if we call x :¼ expð� �i
k Þ. Again we are

considering at this stage k � 1, i.e. these equalities hold up
to first order in the inverse coupling constant of the the-
ory.11 Closing the path in the previous skein relation as
done for SOðNÞ we will be able to get a constraint that
reduces one variable dependence:

qhWðL̂þÞi � q�1hWðL̂�Þi ¼ ~zhWðL̂0�Þi
aqhWðL̂0Þi � a�1q�1hWðL̂0Þi ¼ x2 � x�2hWðL̂0Þi

) aq ¼ x2:

As before the second root aq ¼ �x�2 leads exactly to the
same results. So at large values of k for a normalized (to be

a) expectation value PðKÞ ¼ a�wðKÞhWðKÞi=hWð�Þi the
original one variable Jones polynomial follows directly:

x2PðLþÞ � x�2PðL�Þ ¼ ðx� x�1ÞPðL0Þ:
So actually the estimation suggested by negative dimen-
sion group theory seems to work reliably. As it is here
proved the Sp(2) Chern-Simons expectation values of a

FIG. 4. Fierz identity for SpðNÞ, dots represent points where
orientations of the line change.

FIG. 3. Diagrammatic closure of the SOðNÞ skein relation (3.3).

8In [8] another approach (which has the advantage that leaves
the Wilson lines unoriented) is also presented, but not preferred
as requires the specific choice of a ‘‘time’’ direction, which
breaks the topological invariance because it is no longer possible
to freely rotate the Wilson lines.

9We refer to the one drawn in Fig. 17 of [8].
10Even without the oriented diagram notation which is unnec-
essary heavy for Sp(2). One might work, in a complete compat-
ible way, with the arrowed diagrams but paying the price of
redefining appropriate oriented Reidemeister moves and oriented
Kauffman state bracket as described in cap 60 of [5,8].

11The first order consistency check proposed in [3] is trivially
satisfied using, this time, the quadratic Casimir operator of
spð2Þ: 31=4
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Wilson knot-link gives the Jones polynomial invariant for
the same link.

IV. PERTURBATIVE QUANTUM FIELD
APPROACH

It is worth analyzing the heuristic previous section’s
results in a more careful way. We opt for the standard
quantum field theory of perturbation as developed for the
SUðNÞ group in [2], which maybe got the disadvantage of
being less qualitative from a geometrical point of view but
got the benefit of being more analytically quantitative. The
fact of it being, in principle, a different approach also adds
some guarantees on the consistency of the check. Not least,
this method let us push the expansion, in the inverse
coupling constant k, to one order further.

Note that for this procedure a framing of the knot is
needed; in this paper we always use the vertical frame,
defined as the one that got linking number equal to the
writhe of the knot ’fðKÞ ¼ wðKÞ. Framed knots can be

thought as bands, so in this picture a writhe for a knot
represents a band twist. As Kauffman polynomial are
regular isotopy invariant, twisted bands are the most suit-
able objects to be described with. The expectation value for
the Wilson loop computed along a vertical framed,
m-component ðC1; C2; . . . ; CmÞ knot-link K in a Chern-
Simons theory for a generic semisimple group G is given
at second order by

hWðKÞi ¼
�Ym
k¼1

dimTk

��
1� i

�
2�

k

�Xm
k¼1

c2ðTkÞ’fðCkÞ

�
�
2�

k

�
2 Xm
k¼i

�
1

2
c22ðTkÞ’2

fðCkÞ

� cvc2ðTkÞ�ðCkÞ
�
�

�
2�

k

�
2X
k�‘

c2ðTkÞc2ðT‘Þ

�
�
’fðCkÞ’fðC‘Þ þ 
2ðCk; C‘Þ

dimG

�
þO

�
1

k3

��
;

(4.1)

where T stands for the fundamental representation,

ðCk; C‘Þ is the Gauss linking number between the two
curves Ck and C‘, ðc2ðTÞÞij ¼

P
aðTaÞikðTaÞkj is the qua-

dratic Casimir in the fundamental representation, cv the
quadratic Casimir in the adjoint representation, �ðCÞ is an
ambient isotopy invariant characteristic of the knot under
consideration. �ðCÞ represents the second coefficient of the

Alexander-Conway polynomial and is related with Arf-
and Casson-invariants; in practice it is not easy to compute
apart from small knots. Our aim is now, with the help of
(4.1), to find the value of a appearing in [(2.1)-(ii)] in terms
of its expansion in (2�=k). The effect of changing the
frame of a link component Ci by �’fðCiÞ ¼ �wðCiÞ ¼
�1 (or adding a twist in the band picture) reflects in the
entire Wilson loop expectation value by

hWðK’�1Þi ¼ 	ð�ÞhWðK’Þi
	ð�Þ ¼ 1� i

�
2�

k

�
c2ðTÞ � 1

2

�
2�

k

�
2
c22ðTÞ

þO

�
1

k3

�
: (4.2)

So we find a�1 ¼ 	ð�Þ, taking into account DK ¼
hWðKÞi=hWð�Þi as previously defined in Sec. III A.
While [(2.1)-(iii)] is trivially satisfied, it is possible to
extract the value of z from [(2.1)-(i)], for instance applying
it to the Hopf-link HL.
That is, closing the skein relation (2.1)-(i) as shown in

Fig. 6, one gets the following expression:

DHL �D�� ¼ zða� a�1ÞD�

written in term of relatively easy objects that can be
computed directly from (4.1), using as in [2], �ð�Þ ¼
�1=12:

D�� ¼ N

�
1� 1

12

�
2�

k

�
2
cvc2ðTÞ þO

�
1

k3

��

DHL ¼ N

�
1� 1

12

�
2�

k

�
2
cvc2ðTÞ

�
�
2�

k

�
2
c22ðTÞ

2

dimG
þO

�
1

k3

��
: (4.3)

An alternative way to find z is imposing the equality
between Kauffman DKða; zÞ polynomials obtained from
the skein relations (2.1) with the expansion of
hWðKÞi=hWð�Þi coming from (4.1). But this could be
done just for the few simple knots where �ðKÞ can be
calculated, so it may be here regarded as a self-consistency
check.
That is the point where the algebraic properties of the

gauge groups come out; for the groups we are interested in,
they are summarized in the following table:

FIG. 5. Diagrammatic representation of Fierz identity for Sp(2).
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dimG dimT c2 cv

SOðNÞ NðN � 1Þ=2 N ðN � 1Þ=4 ðN � 2Þ=2
SpðNÞ NðN þ 1Þ=2 N ðN þ 1Þ=4 ðN þ 2Þ=2
SUðNÞ N2 � 1 N ðN2 � 1Þ=2N N

hence, from (4.2), we get, respectively, for SOðNÞ and
SpðNÞ the following values for a

aSOðNÞ ¼ 1� i

�
2�

k

�
N � 1

4
� 1

2

�
2�

k

�
2
�
N � 1

4

�
2 þO

�
1

k3

�

aSpðNÞ ¼ 1� i

�
2�

k

�
N þ 1

4
� 1

2

�
2�

k

�
2
�
N þ 1

4

�
2 þO

�
1

k3

�

(4.4)

while for both orthogonal and symplectic groups the value
found for z is

z ¼ � i�

k
þO

�
1

k3

�
: (4.5)

These results are consistent with the ones found in the
previous section by means of the variational method both
for SOðNÞ and Sp(2). Moreover, (4.4) and (4.5) extend the
series expansion in 2�=k up the second order. The fact that
z has not the quadratic contribution could be guessed from
the very beginning because of the peculiar property of the
Chern-Simons Lagrangian: the inversion symmetry. This
implies that a change in the sign of the coupling constant k
is compensated by the inversion of the orientating of the
manifold. When a knot K is embedded in M3 the change
of orientation of the manifold corresponds to a � rotation
or its mirror image ~K, so hWðKÞijk ¼ hWð ~KÞij�k. On the
other hand, from skein relations (2.1) it is easy to see that
DKða; zÞ ¼ D ~Kða�1;�zÞ; combining it with the inversion
symmetry one gets some restriction on the k-functional
dependence of the variables a and z:

aðkÞ ¼ a�1ð�kÞ zðkÞ ¼ �zð�kÞ: (4.6)

So even powers of k were not expected in the z expansion;
as one can see (4.4) and (4.5) fulfill the constraints (4.6).
The easiest functions that are compatible with the series
expansions (4.4) and (4.5), their restrictions (4.6) and the
samples (4.3) are

a ¼ exp

�
�i

2�

k
c2ðTÞ

�
z ¼ �2i sin

�
�

2k

�
:

Furthermore, observe that in the groups table there is a
value of N for whom two lines match: for N ¼ 2 all the
values for Sp(2) and SU(2) coincide. So the expectation
value of a Wilson loop along a generic knot K agrees in

both cases. This special point is the one where the
HOMFLY and Kauffman polynomials overlap to give the
Jones polynomial. This is exactly the same result we have
found with the variational approach in Sec. III B, but now
extended to the second order. Another interesting feature
that can be read from the table is the analogy between the
quantities of SOð�NÞ and SpðNÞ, in particular, one can
note in (4.1) as Wilson loop expectation values of a
SOð�NÞ-Chern-Simons theory for a knot K correspond
to the ones of its mirror image ~K for a SpðNÞ-CS theory:

hWðKÞijSOð�NÞ ¼ ð�1ÞmhWð ~KÞijSpðNÞ: (4.7)

For odd-multicomponent knots-links the correspondence
hold up to a global sign, where m is the number of compo-
nents. The mirror image ~K is needed in order to have
opposite the chirality in framing that compensate a sign
in the odd terms expansion. In terms of Dubrovnik poly-
nomial (4.7) became DKjSOð�NÞ ¼ D ~KjSpðNÞ, at least for
proper knots. So again what suggested by the variational
approach can be coherently recovered and extended by the
perturbative one.
The ambient isotopic Dubrovnik-Kauffman polynomial

is obtained, as usual, from the regular one thanks to a

writhe normalization: a�wðKÞDK.
Another remarkable feature of the variational and per-

turbative approaches is that they allow us to generalize at
once the present treatment also to the noncompact groups
such as SOðm; nÞ, which are the more interesting ones for
describe general relativity in 2þ 1 dimensions by the
Chern-Simons theory. Although from a classical point of
view, locally isomorphic groups represent the same gauge
theory; we have seen as at the quantum level expectation
values even of simple knots differ. Thus in case one wants
to take advance of the Chern-Simons formalism to study
quantum properties of gravity, he will have to consider the
issue of which is the ‘‘good’’ group election. Actually the
values of the fundamental quantities as the Casimirs c2, cv,
the group’s dimension dimG and the fundamental repre-
sentation dimension dimðTÞ of SOðm; nÞ are not different
from the SOðNÞ ones, whenever mþ n ¼ N. Hence the
topological quantity hWðKÞi (4.1) is not affected by the
signature change of the Cartan-Killing metric.12 To the
best of the author’s knowledge, invariant knot polynomials

FIG. 6. Skein relation (2.1)-(i) applied to the upper HL crossing.

12Of course a gauge description of gravity needs a further step:
also a signature’s change in the space-time coordinates, this is
more problematic because all the treatments done in this paper
are for compact manifolds M3.
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for SOðm; nÞ groups are not found by means of any other
methods; it could be interesting to verify it with the help of
more rigorous mathematical tools such as quantum groups.
Moreover, the SOðm; nÞ Chern-Simons theory got a richer
structure than the SUðNÞ one. In fact other nonequivalent
Chern-Simons Lagrangians can be built from their Chern’s
characteristic classes apart from the Pontryagin; for in-
stance, it is possible to use also the Euler or Nieh-Yan
topological invariants (see [18] for a review). The expec-
tation values of knotted Wilson loops weighted by this
Chern-Simons density remains a topological invariant,
but possibly of a different kind.

V. CORRESPONDENCE WITH THE POTTS
MODEL

In this section we try to build a bridge between the
previous results about first order expectation values of
quantum holonomies along a knotted path and some sta-
tistical system such as the Potts model. Of course, it is clear
that an exact equality cannot hold, since the Chern-Simons
observables are knot invariants while the Potts partition
functions are not. Nevertheless something can be said, but
at the price of renouncing to the knot topological invari-
ance. First let us remind the reader of some fundamental
facts about the Potts model that will be used afterwards.

It is found in [19] that the partition function of the
Q-Potts model of a statistical lattice represented by a graph
G is the Potts state bracket fKðGÞg of the knot-link K dual
to the graphG. That is because this state bracket expansion
coincides exactly with the dichromatic polynomial, or the
Tutte polynomial, of the graph G. We remember the defi-
nition of the Potts state bracket:

To be more precise, for any alternating knot or link K it is
possible to construct a graph lattice GðKÞ checkerboard
shading its planar diagram and assigning to each shadow a

vertex and for each crossing a bound, as shown in Fig. 7.
Vice versa for any two dimensional graph G one can
associate its dual knot KðGÞ. Note that this is a one-to-
one13 mapping between planar graphs and alternate knots
and note that any knot got its alternate representative, that
is, it can be drawn as an alternate planar diagram.
Thus the Q-Potts partition function for a certain statis-

tical lattice PGðQ; tÞ is given by the dichromatic polyno-

mial ZGðQ; vÞ of its graph G (whenever v ¼ eJ=kt � 1) or
by the Potts state bracket of its associated knot fKg as
follows:

PGðKÞðQ; tÞ ¼ X
�

e
ðJ=kBtÞ

P
<i;j>

�ð�i;�jÞ

¼ QV=2fKgðQ; v ¼ eJ=kBt � 1Þ; (5.2)

where V is the number of vertex of the graph (i.e. the
number of the lattice’s sites or rather the number of shaded
regions of the knot), t is the temperature, kB the
Boltzmann’s constant, �n is one of the Q possible states
of the nth vertex and J ¼ �1 according to the ferromag-
netic or antiferromagnetic case.

A. SOð�2Þ & Sp(2) holonomies and Q ¼ 4 Potts model

First we consider a special case, that is when the
Kauffman polynomial reduces to the Kauffman state
bracket ½K�ðqÞ (or to the Jones polynomial whether writhe
normalized), which occurs for the SOð�2Þ, Sp(2)14 or
SU(2) Chern-Simons theory, as we have seen in
Secs. III B and IV:

hWðKÞiðz ¼ q� q�1; a ¼ �q3Þ ¼ ½K�ðqÞ:

Then we perform a shift in the q-variable: ½K�VqcðKÞ½K�,
where cðKÞ is the number of crossings in the knot K
diagram. This shift is the point where regular isotopical
invariance of the Kauffman polynomial is broken. So
focusing just on the first order approximation, one gets

the following bracket qcðKÞ½K�ðqÞj1st order :¼ hhKii�
ð1� i�=2kÞ:

The analogy with the Potts state bracket (5.1) is now evident:

fKgðQ; vÞ ¼ hhKiið�v1=2Q�1=4Þ: (5.4)

14Correlated by (4.7)

13When the white region is left outside.
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Let us now concentrate on the SOð�2Þ case, such that once
the q-shift is reabsorbed one recovers knot invariance, so
Q ¼ N2 ¼ 4. Using (5.2) and (5.4) it is easy to see that
�2VhhKii represents theQ ¼ 4 Potts partition function for
the lattice graph associated to the knot K. In terms of the
first order Wilson loops expansion, it reads

PGðKÞ ¼ QV=2fKg ¼ NVqcðKÞhWðKÞij1st order: (5.5)

An example may make things clearer: consider a 2� 2
lattice graph G of Fig. 7 and its dual knot-link KðGÞ (with
V ¼ 4). From skein relations (5.1) [or equally from the
deletion-contraction rule that define the dichromatic poly-
nomial ZGð4; vÞ] one gets the Q ¼ 4 Potts partition func-
tion for the graph GðKÞ:
ZGð4; vÞ ¼ 4V=2fKg

¼ 42ð42 þ 4 	 4vþ 6v2 þ 4 	 4�1v3 þ 4�1v4Þ;
(5.6)

while from the skein relations (5.3) one get the expectation
value of the holonomy along the knotKðGÞ, up toOð1=k2Þ:
�2VqcðKÞhWðKÞij1st-ord ¼ 24

�
1� i2�

k

��
16

�
1þ i2�

k

�

� 32

�
1þ i�

k

�
þ 24

� 8

�
1� i�

k

�
þ 4

�
1� i2�

k

��
:

It is easy to see that (5.5) is fulfilled imposing v ¼ �2þ
i2�=k in (5.6). So the first order expectation value of the
Wilson loop along a knotted path K for a SOð�2Þ=Spð2Þ
Chern-Simons theory can be extracted from the partition
function of a Q ¼ 4 Potts model of a lattice graph GðKÞ
dual to the knot K, and vice versa. This correspondence
works well for any two dimensional lattice graph, not just
for regular ones like the sample presented in Fig. 7.

Even though hWðKÞij1st order and PGðKÞ are not exactly
the same, they share some features, for instance their
zeroes. So hWðKÞij1st’s zeros can be interpreted as the
Fisher zeros of the statistical lattice associated to K, which

encode many important physical properties of the system.
Also the critical temperature tc (when the statistical system
acquires conformal invariance) of the Potts model can be
easily read: In the knot formalism it occurs where
hWðKÞi ¼ hWð ~KÞi, that is when 1� i�=k ¼ 1, so in the
limit k ! 1, which means tc ¼ J

kB
1

lnð ffiffiffi
Q

p þ1Þ .
It is worthwhile to remark at this point that the

SOð�2Þ=Spð2Þ group [or even SU(2)] gives rise to the
Jones polynomial too. This polynomial (at the nonpertur-
bative level) is known to describe the partition function of a
particular kind of Potts model with two Boltzmann factor,
which is of different kind respect to the standard Potts
model considered here (see [11,20]).
The correspondence holds also at the following orders of

the perturbative expansion, basically in the same way it
works at the first order. For instance, one can obtain
hWðKÞij2nd order from the Q ¼ 4 Potts partition function
identifying v and Q as follows:

v ↭ �2

�
1� i�

k
�

�
�

k

�
2 þO

�
1

k3

��

Q1=2 ↭ �2

�
1� 1

2

�
�

k

�
2 þO

�
1

k3

��
:

The simple relation between Q and N is now spoiled and,
moreover, this fact makes the analogy between the two
models purely formal because choosing a particular Q
imply fixing at the same time the temperature to a constant
value.

B. SpðNÞ holonomies and Q-Potts model

We would like to do something similar to the previous
subsection, but for generic N. Now that procedure is less
direct because the Kauffman polynomial cannot be cast in
a simple form such as the state bracket [K]. To connect the
two theories, in particular, to give the Q-Potts partition
function a similar structure to the Dubrovnik polynomial
one, we can introduce a new bracket polynomial k K k
ðQ; vÞ defined by the following skein relations:

FIG. 7 (color online). KðGÞ $ shading of KðGÞ $ emerging of lattice graph G inside K $ GðKÞ.
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The Q-Potts partition function, in character of the dichro-
matic polynomial ZGðKÞðQ; vÞ, has the following form in
terms of k K k :

ZGðQ; tÞ ¼ QV=2½Q�1=4v1=2�cðKÞ k K k :

Even in this form k K k is not an isotopical invariant of the
knots, as hWðKÞi because the two coefficients in [(5.7)-(ii)]
are not reciprocal and [(5.7)-(iv)] does not satisfy the
second Reidemeister move. However there is a point where
both [(5.7)-(ii), (iv)] becomes invariant, that is for v ¼
ð�Q� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 � 4Q
p Þ=2. This value of the temperature is

exactly the one that relates the Potts model to the
Khovanov homology [21]. Comparing the k K k ðQ; vÞ
bracket with the first order expectation value of the hol-
onomy hWðKÞij1st ord, one has to impose Q ¼ N2 and v ¼
Nð1� i�=kÞ. So the k K k ðN; kÞ invariance occurs, in
terms of the Chern-Simons coupling constant k and the
fundamental representation dimensionN, just forN ¼ �2,
i.e, the previous case we analyzed in Sec. VA.

Therefore, for a generic Q ¼ N2 � 4 is not possible to
pass from the Potts partition function to the first order
Wilson loop expectation value as we did for the
SOðNÞ=Spð2Þ case. What can be done at most is to define
a generic bracket polynomial which include both PG and
hWðKÞi and specializes to one or the other for some values
of its variables. This is done in Appendix A.

VI. COMMENTS AND CONCLUSIONS

In this paper is analyzed the relation between expecta-
tion values of Wilson loop in three-dimensional SOðNÞ
Chern-Simons field theory and an isotopic invariant of
knots, the Kauffman polynomial. This equivalence is
achieved in a simple intuitive knot variational approach
borrowed by the schemes in Refs. [3,5], which was elabo-
rated by obtaining the Witten result: HOMFLY polynomial
from the SUðNÞ gauge group. The key point of this con-
struction is based on the existence of a Fierz identity for the
infinitesimal generators of the group in certain representa-
tions. With precisely the same interpretation of the expec-
tation value’s path variations and no other extra
assumptions with respect to the original work, here we
exactly get the conformal field theory known result for
SOðNÞ: the Kauffman polynomial. It suggests that the easy
variational knot approach, expressly built for SUðNÞ,
works well also for different gauge group theories as
SOðNÞ. So its heuristic geometrical assumptions are
endorsed.

Convinced of all that and encouraged by negative di-
mension group theory suggestion we explored also the
SpðNÞ group getting the exact skein relation. In particular
in the simple Sp(2) case we are able to find its isotopic
invariant: the original Jones polynomial. Furthermore, to

enforce and extend those results, an independent procedure
has been performed, the quantum field theory method
cannot only full recover the variational approach but it
can also: improve its outcomes precision of an order of
magnitude, extend to groups with semidefinite Cartan-
Killing metric as well SpðNÞ with N � 2, and most of all
prove, up to Oð1=k3Þ, the correspondence between isotopy
invariant polynomials from SOðNÞ and Spð�NÞ Chern-
Simons theories.
To sum up, these procedures give for SUðNÞ,

SOðNÞ=SpðNÞ, and Sp(2) the famous HOMFLY,
Kauffman, and Jones polynomials, respectively. Hence
they may be used for other groups or representations to
find new link invariants, both based on skein relations or
not. This could give new insights into knots theory, which
is still looking for a link invariant able to distinguish
conclusively knots isotopic equivalence.
From a physical point of view, it is interesting to note

that not only the Jones polynomial, at nonperturbative
level, correspond to the partition function of the Potts
model with two Boltzmann weight factors, but also its first
order perturbation expansion, in the realm of the Chern-
Simons theory, gives the standard Q ¼ 4 Potts partition
function (and vice versa). Moreover, the connection be-
tween the quantum holonomies of Sp(2) Chern-Simons
theory and the Q ¼ 4 Potts partition function opens the
possibility to relate apparently disconnected physical sys-
tems. This is actually the main motivation of the author. In
fact, since [22], it is well known that Spð2Þ � Spð2Þ Chern-
Simons theory describes 2þ 1 gravity with a negative
cosmological constant. Furthermore, the first terms in the
Kauffman bracket expansion give states of 3þ 1 quantum
gravity in the loop representation [6]. This feature of knot
theory may represent the tip of the iceberg that links
discrete statistical models with the expectation value of
holonomies of gravitational theories. Work in this direction
is in progress.
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APPENDIX A: GENERAL POTTS-DUBROVNIK
POLYNOMIAL MK

Define the following bracket polynomial
MKða; b; c; d; zÞ:
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(A1)

MK reduces to the Kauffman-Dubrovnik polynomial when
b ¼ a�1, c ¼ 0, d ¼ 1; while to hWðKÞi when d ¼ ða�
a�1Þ=zþ 1. So for those values of the variables it is an
invariant of regular isotopy. But the Potts partition function
is not invariant, so the latter has b � a�1 and c switched
on, as can be seen in the following table, where two differ-
ent specializations of the MK polynomial are shown:

MK a b c d z

hWðKÞi a a�1 0 ða� a�1Þ=zþ 1 �i�=k
kKðGÞk Q1=4v1=2 þQ1=4vð�1Þ=2 Qð�1Þ=4v1=2 þQ3=4vð�1Þ=2 Q�ð1=2ÞvþQ1=2 þQ1=2v�1 Q1=2 Q�ð1=4Þv1=2 �Q1=4v�ð1=2Þ

[1] E. Witten, Commun. Math. Phys. 121, 351 (1989).
[2] E. Guadagnini, M. Martellini, and M. Mintchev, Nucl.

Phys. B330, 575 (1990).
[3] P. Cotta-Ramusino, E. Guadagnini, M. Martellini, and M.

Mintchev, Nucl. Phys. B330, 557 (1990).
[4] L. Smolin, Mod. Phys. Lett. A 4, 1091 (1989).
[5] L. H. Kauffman, Knots and Physics (World Scientific,

Singapore, 1991), p. 538.
[6] R. Gambini and J. Pullin, Loops, Knots, Gauge Theories

and Quantum Gravity (Cambridge University Press,
Cambridge, England, 1996), p. 321.

[7] T.W. Kim, B.H. Cho, and S. U. Park, Phys. Rev. D 42,
4135 (1990).

[8] J. H. Horne, Nucl. Phys. B334, 669 (1990).
[9] Y. S. Wu and K. Yamagishi, Int. J. Mod. Phys. A 5, 1165

(1990).
[10] L. H. Kauffman, Trans. Am. Math. Soc. 318, 417 (1990),

http://math.uic.edu/~kauffman/IRH.pdf.
[11] F. Y. Wu, Rev. Mod. Phys. 64, 1099 (1992); 65, 577(E)

(1993).
[12] P. Cvitanovic, Phys. Rev. D 14, 1536 (1976).
[13] B. Bruegmann, Int. J. Theor. Phys. 34, 145 (1995).
[14] R. Gambini and J. Pullin, Commun. Math. Phys. 185, 621

(1997).
[15] P. Cvitanovic, Group Theory (Princeton University Press,

Princeton, NJ, 2008), http://www.birdtracks.eu/version8.9/
GroupTheory.pdf.

[16] N. Maru and S. Kitakado, Mod. Phys. Lett. A 12, 691
(1997).

[17] G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979).
[18] J. Zanelli, arXiv:hep-th/0502193.
[19] L. H. Kauffman, in ‘‘New Developments in the Theory of

Knots’’ (World Scientific, Singapore, ), pp. 278–312.
[20] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[21] L. H. Kauffman, arXiv:0907.3178.
[22] A. Achucarro and P. K. Townsend, Phys. Lett. B 180, 89

(1986).

MARCO ASTORINO PHYSICAL REVIEW D 81, 125026 (2010)

125026-10

http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1016/0550-3213(90)90124-V
http://dx.doi.org/10.1016/0550-3213(90)90124-V
http://dx.doi.org/10.1016/0550-3213(90)90123-U
http://dx.doi.org/10.1142/S0217732389001271
http://dx.doi.org/10.1103/PhysRevD.42.4135
http://dx.doi.org/10.1103/PhysRevD.42.4135
http://dx.doi.org/10.1016/0550-3213(90)90317-7
http://dx.doi.org/10.1142/S0217751X90000556
http://dx.doi.org/10.1142/S0217751X90000556
http://dx.doi.org/10.2307/2001315
http://dx.doi.org/10.1103/RevModPhys.64.1099
http://dx.doi.org/10.1103/RevModPhys.64.1099
http://dx.doi.org/10.1103/RevModPhys.64.1099
http://dx.doi.org/10.1103/RevModPhys.64.1099
http://dx.doi.org/10.1103/RevModPhys.65.577
http://dx.doi.org/10.1103/RevModPhys.65.577
http://dx.doi.org/10.1103/PhysRevD.14.1536
http://dx.doi.org/10.1007/BF00672798
http://dx.doi.org/10.1007/s002200050103
http://dx.doi.org/10.1007/s002200050103
http://dx.doi.org/10.1142/S0217732397000728
http://dx.doi.org/10.1142/S0217732397000728
http://dx.doi.org/10.1103/PhysRevLett.43.744
http://arXiv.org/abs/hep-th/0502193
http://dx.doi.org/10.1103/RevModPhys.54.235
http://arXiv.org/abs/0907.3178
http://dx.doi.org/10.1016/0370-2693(86)90140-1
http://dx.doi.org/10.1016/0370-2693(86)90140-1

