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We study a manifestly gauge-invariant set of Schwinger-Dyson equations to determine the non-

perturbative dynamics of the gluon and ghost propagators in d ¼ 3 Yang-Mills theory. The use of the

well-known Schwinger mechanism, in the Landau gauge leads to the dynamical generation of a mass for

the gauge boson (gluon in d ¼ 3), which, in turn, gives rise to an infrared finite gluon propagator and

ghost dressing function. The propagators obtained from the numerical solution of these nonperturbative

equations are in very good agreement with the results of SUð2Þ lattice simulations.
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I. INTRODUCTION

QCD in three space-time dimensions (QCD3 for short)
has received increasing attention in recent years, not only
because it is the infinite-temperature limit of its four-
dimensional counterpart (QCD4), but also because, at
zero temperature, these two theories, despite a number of
important differences, seem to share a variety of important
nonpertubative features [1–28].

QCD3 differs from QCD4 in several aspects. For ex-
ample, the fact that QCD3 lives in an odd-dimensional
space allows the appearance of phenomena that are not
possible in even-dimensional spaces, such as the parity
violating gauge-boson masses from a Chern-Simons term
[2,4,5]. Moreover, given that in d ¼ 3 the square of the
coupling constant has dimensions of mass, QCD3 is super-
renormalizable, having a trivial renormalization group.
Finally, there are no finite-action classical solitons in
QCD3 (i.e., no instantons) (see [9] for a brief review).

On the other hand, both theories confine display area
laws for Wilson loops in the fundamental representation,
and develop nonperturbative vacuum condensates, such as
TrhG2

iji; in fact, in d ¼ 3 one can actually prove [11] the

existence of a TrhG2
iji condensate, associated with the

minimum of the zero-momentum effective action, simply
on the hypothesis that the full theory possesses a unique
mass scale (that of the gauge coupling). In addition, and
more importantly for the purposes of the present work,
both theories appear to cure their infrared (IR) instabilities
through the dynamical generation of a gauge-boson
(gluon) mass, usually referred to also as ‘‘magnetic’’
mass, without affecting the local gauge invariance, which
remains intact [29]. The nonperturbative dynamics that
gives rise to the generation of such a mass is rather com-
plex, and can be ultimately traced back to a subtle realiza-
tion of the Schwinger mechanism [30–37].

The gluon mass generation manifests itself at the level of
the fundamental Green’s functions of the theory in a very

distinct way, giving rise to an IR behavior that would be
difficult to explain otherwise. Specifically, in the Landau
gauge, both in d ¼ 3, 4, the gluon propagator and the
ghost-dressing function reach a finite value in the deep
IR [38,39]. However, the gluon propagator of QCD3 dis-
plays a local maximum at relatively low momenta, before
reaching a finite value at q ¼ 0. This characteristic behav-
ior is qualitatively different from what happens in d ¼ 4,
where the gluon propagator is a monotonic function of the
momentum in the entire range between the IR and UV
fixed points [38].
It should also be mentioned that a qualitatively similar

situation emerges within the ‘‘refined’’ Gribov-Zwanziger
formalism [40,41], presented in [42]. In this latter frame-
work the gluon mass is obtained through the addition of
appropriate condensates to the original Gribov-Zwanziger
action.
Even though several aspects of QCD3 have been studied

in a variety of works, the recent theoretical developments
associated with the pinch technique (PT), together with the
high-quality lattice results produced, motivate the detailed
study of the entire shape of the gluon and ghost propagators
in d ¼ 3. Specifically, given that the gluon mass generation
is a purely nonperturbative effect, in the continuum it has
to be addressed within the framework of the Schwinger-
Dyson equations (SDE). These complicated dynamical
equations are best studied in a gauge-invariant framework
based on the PT [29,43–46], and its profound correspon-
dence with the background field method (BFM) [47]. As
has been explained in detail in the recent literature [48,49],
this latter formalism allows for a gauge-invariant trunca-
tion of the SD series in the sense that it preserves mani-
festly and at every step the transversality of the gluon self-
energy.
In the present work we study the dynamics of the gluon

and ghost propagators of pure Yang-Mills theory in d ¼ 3,
using the SDEs of the PT-BFM formalism in the Landau
gauge. Even though our results are valid for every gauge
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group, we will eventually focus on the group SUð2Þ, in
order to make contact with available lattice simulations
[50]. The crucial ingredient in this analysis, which ac-
counts for the type of solutions obtained, is the gauge-
invariant introduction of a gluon mass. The way gauge
invariance is maintained is through the inclusion of
Nambu-Goldstone–like (composite) massless excitations
into the nonperturbative three-gluon vertex [29]. As a
result, the fundamental Ward identities of the theory, which
encode the underlying gauge symmetry, remain intact. The
results obtained from our SDE analysis, presented in
Sec. IV, compare rather well with the available lattice
data (see, in particular, Figs. 6 and 8).

In addition, as a necessary intermediate step, we calcu-
late an auxiliary function, denoted byGðqÞ, which plays an
instrumental role in the PT-BFM framework (see next
section). Interestingly enough, and in the Landau gauge
only, GðqÞ coincides with the so-called Kugo-Ojima (KO)
function; this latter function, and, in particular, its value in
the deep IR, is intimately connected to the corresponding
and well-known confinement criterion [51].

The article is organized as follows. In Sec. II we briefly
review the salient features of the SDEs within the PT-BFM
framework. Section III contains a general discussion of the
main conceptual issues related with the dynamical mass
generation through the Schwinger mechanism. Particular
attention is paid to the specific form of the three-gluon
vertex that must be employed in order to maintain gauge
invariance in the form of the Ward identities. In addition,
we give a qualitative discussion of some of the main
features expected for the gluon propagator in the presence
of a gluon mass. Section IV contains the main results of
this work. After setting up the corresponding SDE for the
gluon propagator and the auxiliary function GðqÞ, we give
explicit closed expressions for the latter quantities. The
two available free parameters appearing in the expression
for the gluon propagator, namely, the gauge coupling g and
the mass m are then varied, in order to obtain the best
possible agreement with the lattice data. The ghost-
dressing function is also obtained from the self-consistent
solution of the corresponding SDE; it too shows a good
agreement with the lattice. Finally, in Sec. V we present
our conclusions.

II. THE PT-BFM FRAMEWORK

In this section we remind the reader of the basic char-
acteristics of the SD framework that is based on the PT-
BFM formalism; for an extended review of the subject see
[45].

We start by introducing the necessary notation. The
gluon propagator ���ðqÞ in the covariant gauges assumes

the form

���ðqÞ ¼ �i

�
P��ðqÞ�ðqÞ þ �

q�q�

q4

�
; (2.1)

where � denotes the gauge-fixing parameter, P��ðqÞ ¼
g�� � q�q�=q

2 is the usual transverse projector, and

��1ðqÞ ¼ q2 þ i�ðqÞ, with ���ðqÞ ¼ P��ðqÞ�ðqÞ the

gluon self-energy. We also define the dimensionless vac-
uum polarization �ðqÞ, as �ðqÞ ¼ q2�ðqÞ. In addition,
the full ghost propagator, DðpÞ, and its dressing function,
FðpÞ, are related by DðpÞ ¼ iFðpÞ=p2.
The truncation scheme for the SDEs of Yang-Mills

theories based on the PT respects gauge invariance (i.e.,
the transversality of the gluon self-energy) at every level of
the ‘‘dressed-loop’’ expansion. This becomes possible due
to the drastic modifications implemented in the building
blocks of the SD series, i.e., the off-shell Green’s functions
themselves, following the general methodology of the PT
[29,43,46]. The PT is a well-defined algorithm that exploits
systematically the BRST symmetry in order to construct
new Green’s functions endowed with very special proper-
ties, in particular, the crucial property of gauge invariance,
for they satisfy Abelian Ward identities instead of the usual
Slavnov-Taylor identities The PT may be used to rearrange
systematically the entire SD series [48]. In the case of the
gluon self-energy it gives rise to a new SDE, shown sche-
matically in Fig. 1.
Note that the quantity that appears on the left-hand side

of Fig. 1 is not the conventional self-energy���, but rather

the PT-BFM self-energy, denoted by �̂��. The graphs

appearing on the right-hand side contain the conventional
self-energy ��� as before, but are composed out of two

types of vertices:
(i) The conventional vertices, where all incoming fields

are quantum fields, i.e., they carry the virtual loop
momenta; these vertices are all ‘‘internal’’, i.e., the
external gluons cannot be one of their legs, and will
be generally denoted by �.

(ii) A new set of vertices, with one of their legs being the
external gluon, carrying physical momentum q;

these new vertices, to be generally denoted by ~�,
correspond precisely to the Feynman rules of the
BFM [47], i.e., it is as if the external gluon had
been converted dynamically into a background
gluon.

As a result, the full vertices ~�amn
���ðq; k1; k2Þ,

~�anm
� ðq; k1; k2Þ, ~�amnr

����ðq; k1; k2; k3Þ, and
~�amnr
�� ðq; k1; k2; k3Þ appearing on the right-hand side of

the SDE shown in Fig. 1 satisfy the simple Ward identities

q�~�amn
��� ¼ gfamn½��1

��ðk1Þ ���1
��ðk2Þ�;

q�~�amn
� ¼ igfamn½D�1ðk1Þ �D�1ðk2Þ�;

q�~�amnr
���� ¼ gfadr�drm

���ðqþ k2; k3; k1Þ þ c:p:;

q�~�amnr
�� ¼ gfaem�enr

� ðqþ k1; k2; k3Þ þ c:p:;

(2.2)

where c.p. stands for cyclic permutations. Using these
identities, it is straightforward to show that the crucial
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transversality condition q��̂��ðqÞ ¼ 0 is enforced

‘‘blockwise’’ [48], i.e.,

q�½ða1Þ þ ða2Þ��� ¼ 0;

q�½ða3Þ þ ða4Þ��� ¼ 0;

q�½ða5Þ þ ða6Þ��� ¼ 0;

q�½ða7Þ þ ða8Þ þ ða9Þ þ ða10Þ��� ¼ 0;

(2.3)

which allow for a self-consistent truncation of the full
gluon SDE given in Fig. 1.

Quite interestingly, the conventional �ðqÞ and its PT-

BFM counterpart �̂ðqÞ are connected by the following
background-quantum identity [52]

�ðqÞ ¼ ½1þGðqÞ�2�̂ðqÞ; (2.4)

where the function GðqÞ is the g�� component of the

auxiliary two-point function ���ðqÞ, defined as

���ðqÞ ¼ �ig2CA

Z
k
Hð0Þ

��Dðkþ qÞ���ðkÞH��ðk; qÞ

¼ g��GðqÞ þ q�q�

q2
LðqÞ; (2.5)

where CA is the Casimir eigenvalue of the adjoint repre-
sentation [CA ¼ N for SUðNÞ] and

R
k � �2"ð2�Þ�d �R

ddk, with d the dimension of space-time. The function
H�� is given diagrammatically in Fig. 2. Note that it is
related to the full gluon-ghost vertex by q�H��ðp; r; qÞ ¼
�i��ðp; r; qÞ; at tree-level, Hð0Þ

�� ¼ ig��.
The identity (2.4) allows us to express the SDE of Fig. 1

as an integral equation involving only �ðqÞ, namely,

��1ðqÞP��ðqÞ ¼
q2P��ðqÞ þ i

P10
i¼1ðaiÞ��

½1þGðqÞ�2 : (2.6)

Finally, as shown in Fig. 3, the ghost SDE is the same as
in the conventional formulation, namely,

iD�1ðqÞ ¼ q2 þ ig2CA

Z
k
�����ðkÞ��ðq; kÞDðqþ kÞ;

(2.7)

where �� is the standard (asymmetric) gluon-ghost vertex

at tree level, and �� its fully dressed counterpart.

III. MASS GENERATION IN d ¼ 3 YANG-MILLS
THEORY

It is well known that, just as happens at d ¼ 4, the Yang-
Mills dynamics in d ¼ 3 generates an effective gauge-
boson mass that cures all IR instabilities. The underlying
mechanism that leads to the generation of such a dynamical
mass, both in d ¼ 3, 4, is the Schwinger mechanism, the
only known procedure for obtaining massive gauge bosons
while maintaining the gauge-symmetry intact.
As Schwinger pointed out a long time ago [30], the

gauge invariance of a vector field does not necessarily
imply zero mass for the associated particle if the current
vector coupling is sufficiently strong. According to
Schwinger’s fundamental observation, if �ðqÞ acquires a
pole at the zero-momentum transfer, then the vector meson
becomes massive, even if the gauge symmetry forbids a
mass at the level of the fundamental Lagrangian. Indeed, it
is clear that if the vacuum polarization �ðqÞ has a pole at

FIG. 1 (color online). The full SDE for the gluon self-energy in the PT-BFM framework. By virtue of the special Abelian-like Ward
identities satisfied by the various fully-dressed vertices, the contributions of each block are individually transverse.

FIG. 2. Diagrammatic representation of the functions� andH.

FIG. 3. The SDE satisfied by the ghost propagator.
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q2 ¼ 0 with positive residue �2, i.e., �ðqÞ ¼ �2=q2, then
(in Euclidean space) ��1ðqÞ ¼ q2 þ�2. Thus, the vector
meson becomes massive, ��1ð0Þ ¼ �2, even though it is
massless in the absence of interactions (g ¼ 0). There is no
physical principle which would preclude �ðqÞ from ac-
quiring such a pole, even in the absence of elementary
scalar fields. In a strongly-coupled theory, like nonpertur-
bative Yang-Mills theory in d ¼ 3, 4, this may happen for
purely dynamical reasons, since strong binding may gen-
erate zero-mass bound-state excitations [32]. The latter act
like dynamical Nambu-Goldstone bosons, in the sense that
they are massless, composite, and longitudinally coupled;
but, at the same time, they differ from Nambu-Goldstone
bosons as far as their origin is concerned: they do not
originate from the spontaneous breaking of any global
symmetry [29]. In what follows we will assume that theory
can indeed generate the required bound-state poles; the
demonstration of the existence of a bound state, and, in
particular, of a zero-mass bound state, is a difficult dy-
namical problem, usually studied by means of integral
equations known as Bethe-Salpeter equations (see, e.g.,
[53]). Note also that the generation of a dynamical mass
(both in d ¼ 3, 4) requires (and, correspondingly, gives
rise to) the formation of a gluon condensate.

The Schwinger mechanism is incorporated into the SDE
of the gluon propagator essentially through the form of the
fully dressed, nonperturbative three-gluon vertex (see
Fig. 4). In fact, since the generation of the mass does not
interfere with the gauge symmetry, which remains intact,
the three-gluon vertex must satisfy the same Ward identity
as in the massless case [viz. Eq. (2.2)], but now with
massive, as opposed to massless, gluon propagators on its
right-hand side. The way this crucial requirement is en-
forced is precisely through the incorporation into the three-
gluon vertex of the Nambu-Goldstone (composite) mass-
less excitations mentioned above. To see how this works
with a simple example, let us consider the standard tree-
level vertex

����ðq; p; rÞ ¼ ðq� pÞ�g�� þ ðp� rÞ�g��
þ ðr� qÞ�g��; (3.1)

which satisfies the simple Ward identity

q�����ðq; p; rÞ ¼ P��ðrÞ��1
0 ðrÞ � P��ðpÞ��1

0 ðpÞ;
(3.2)

where ��1
0 ðqÞ ¼ q2 is the inverse of the tree-level propa-

gator. After the dynamical mass generation, the inverse
gluon propagator becomes, roughly speaking,

��1
m ðqÞ ¼ q2 �m2ðq2Þ; (3.3)

and the new vertex, �m
���ðq; p; rÞ that replaces

����ðq; p; rÞ must still satisfy the Ward identity of (3.2),

but with ��1
0 ! ��1

m on the right-hand side. This is ac-

complished if

� m
���ðq; p; rÞ ¼ ����ðq; p; rÞ þ V���ðq; p; rÞ; (3.4)

where V���ðq; p; rÞ contains the massless poles. A stan-

dard Ansatz for V���ðq; p; rÞ is [7]

V���ðq; p; rÞ ¼ m2ðrÞq�p�ðq� pÞ�
2q2p2

P
�
�ðrÞ

� ½m2ðpÞ �m2ðqÞ� r�
r2

P�
� ðqÞP�

�ðpÞ þ c:p:

(3.5)

It is easy to check that

q�V���ðq; p; rÞ ¼ P��ðpÞm2ðpÞ � P��ðrÞm2ðrÞ; (3.6)

and cyclic permutations. Therefore, one has

q��m
���ðq; p; rÞ ¼ P��ðrÞ��1

m ðrÞ � P��ðpÞ��1
m ðpÞ;

(3.7)

as announced. Note that for constant masses [mðqÞ ¼
mðpÞ ¼ mðrÞ ¼ m] the vertex of (3.5) reduces to

V���ðq; p; rÞ ¼ m2

2

�
q�p�ðq� pÞ�

q2p2
P
�
�ðrÞ

þ p�r�ðp� rÞ�
p2r2

P
�
�ðqÞ

þ r�q�ðr� qÞ�
r2q2

P
�
�ðpÞ

�
: (3.8)

Even though the precise implementation at the level of the
complicated integral equations is rather subtle, the final

FIG. 4. Vertex with nonperturbative massless excitations triggering the Schwinger mechanism.
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upshot of introducing a vertex such as �m (or more sophis-
ticated versions of it) into the SDE for the gluon self-
energy is that one finally obtains, gauge invariantly, a

nonvanishing �̂�1ð0Þ and ��1ð0Þ. Qualitatively speaking,
in Euclidean space and d space-time dimensions, the
(background) gluon propagator is given by

�̂�1ðqÞ ¼ q2 þ �̂ðqÞ þ �̂�1ð0Þ; (3.9)

where �̂ðqÞ has the general form

�̂ðqÞ ¼ c1g
2
Z
k
�ðkÞ�ðkþ qÞK1ðq; kÞ

þ c2g
2
Z
k
DðkÞDðkþ qÞK2ðq; kÞ: (3.10)

The functions K1ðq; kÞ and K2ðq; kÞ are SD kernels, whose
closed form depends, among other things, on the dimen-
sionality of space-time, the details of the vertices em-
ployed, and the gauge chosen, as do, in general, the

constants c1 and c2. Setting �̂
�1ð0Þ ¼ m2, one then obtains

�̂�1ðqÞ ¼ q2 þm2 þ �̂ðqÞ: (3.11)

To obtain the perturbative (one-loop) expression for �̂ðqÞ
one must substitute in the integral on the right-hand side of
(3.10) the tree-level values for�,D, K1, and K2, which is a
good approximation for large values of the physical mo-
mentum q. However, for low values of q, one must solve
the integral equation, which, under suitable assumptions,

will furnish massive (IR finite) solutions for �̂ðqÞ.
An easy way to qualitatively appreciate the effect of the

mass on the solutions for �̂ðqÞ is to substitute � ! �m in
the first integral on the right-hand side of (3.10), assuming
for simplicity a constant mass m, and use tree-level ex-
pressions for all other terms. This will furnish an approxi-

mate expression for �̂ðqÞ, to be denoted by �̂mðqÞ, and the
resulting �̂�1ðqÞ will read

�̂�1ðqÞ ¼ q2 þm2 þ �̂mðqÞ: (3.12)

In d ¼ 4 the corresponding �̂mðqÞ will have the form

�̂
ð4Þ
m ðqÞ ¼ bg2q2

Z 1

0
dx ln½q2xð1� xÞ þm2�: (3.13)

For m ! 0, or q2 � m2, one recovers the usual one-loop
logarithm bg2 lnðq2Þ, with b being the first coefficient of
the QCD one-loop � function, b ¼ 11CA=48�

2. As ex-
plained in the literature, the presence of the mass inside the
logarithm tames the Landau pole, and gives eventually rise
to an IR finite value for the QCD effective charge

Similarly, in d ¼ 3 we have [see the integral R1 in
Eq. (4.8)]

�̂
ð3Þ
m ðqÞ ¼ �2b3g

2q arctan

�
q

m

�
; (3.14)

which in the limit m ! 0 assumes the one-loop perturba-

tive form [see also the integral I1 in Eq. (4.8)]

�̂
ð3Þ
pertðqÞ ¼ ��b3g

2q: (3.15)

In this case however, and unlike in d ¼ 4, b3 is a numerical
coefficient that depends explicitly on the value of the gauge
parameter chosen; in the Feynman gauge, b3 ¼ 15CA=32�
(we will return to this point in the next section).
Let us now briefly compare the versions of the gluon

propagator obtained by substituting �ð3Þ
pertðqÞ or �ð3Þ

m ðqÞ
into (3.12). For the perturbative case we have

�̂ pertðqÞ ¼ 1

q2 � �b3g
2q

: (3.16)

There two points to notice: (i) �̂pertðqÞ has a Landau pole at
�q ¼ �b3g

2, and (ii) it displays a maximum value at q� ¼
�q=2. On the other hand, the gluon propagator correspond-

ing to �̂ð3Þ
m ðqÞ becomes

�̂ðqÞ ¼ 1

q2 þm2 � 2b3g
2q arctanðqmÞ

: (3.17)

It is clear that the presence of the mass regulates the
denominator for all values of q, provided that it exceeds

a certain critical value (in units of g2). In addition, �̂ðqÞ
may or may not display a maximum, depending on the ratio
g2=m; in general, its position is displaced with respect to
q�.

IV. RESULTS AND COMPARISON WITH THE
LATTICE

In order to make contact with the d ¼ 3 lattice results of
[50], we must next determine the form of the relevant SDEs
in the Landau gauge (� ¼ 0). The three quantities of
interest are
(i) The gluon propagator, �ðqÞ given in (2.6);
(ii) The Kugo-Ojima function GðqÞ, given in (2.5),

which connects the conventional and background
gluon propagators;

(iii) The ghost propagator, given in (2.7), and, in particu-
lar, its dressing function, FðqÞ.

A. Calculating the gluon propagator(s) and the KO
function

In the ‘‘one-loop dressed’’ approximation, the PT-BFM
gluon self-energy is given by the following (gauge-
invariant) subset of diagrams:

�̂ ��ðqÞ ¼ ½ða1Þ þ ða2Þ þ ða3Þ þ ða4Þ���: (4.1)

When evaluating the diagrams (ai) one should use the
BFM Feynman rules [47], noticing, in particular, that the
bare three- and four-gluon vertices depend explicitly on
1=�, the coupling of the ghost to a background gluon is
symmetric in the ghost momenta, and, finally, that there is a
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four-field coupling between two background gluons and
two ghosts.

As explained in [38], the limit � ! 0 of the diagrams
(a1) and (a2) must be taken with care, due to the terms
proportional to 1=� coming from the tree-level vertices.
Introducing �t

��ðqÞ ¼ P��ðqÞ�ðqÞ, one obtains

½ða1Þ þ ða2Þ��� ¼ g2CA

�
1

2

Z
k
���
� �t

��ðkÞ�t
��ðkþ qÞL��

�

� 4

3
g��

Z
k
�ðkÞ þ

Z
k
�t

��ðkÞ
ðkþ qÞ�
ðkþ qÞ2

� ½�þL���� þ
Z
k

k�ðkþ qÞ�
k2ðkþ qÞ2

�
: (4.2)

The vertex L��� is the fully dressed counterpart of ����

(in the Landau gauge); it satisfies the Ward identity

q�L��� ¼ P��ðkþ qÞ��1ðkþ qÞ � P��ðkÞ��1ðkÞ:
(4.3)

It is then easy to verify that the right-hand side of (4.2)
vanishes when contracted by q�, thus explicitly confirming
the validity of the first equation in (2.3), for the special case
of � ¼ 0.

Similarly,

½ða3Þ þ ða4Þ��� ¼ �g2CA

�Z
k

~��DðkÞDðkþ qÞ~��

� 2ig��

Z
k
DðkÞ

�
; (4.4)

with ~��ðq; p; rÞ � ðr� pÞ�. The vertex ~�� satisfies the

second Ward identity in (2.2), which leads immediately to
the transversality of this block, i.e., the second equation in
(2.3).

Finally, using tree-level values for the auxiliary function
H�� in (2.5) and for the vertex�

� in (2.7), we obtain for the

Kugo-Ojima function

GðqÞ ¼ g2CA

2

Z
k

�
1þ ðk � qÞ2

k2q2

�
�ðkÞDðkþ qÞ; (4.5)

while for LðqÞ one has

LðqÞ ¼ g2CA

2

Z
k

�
1� 3

ðk � qÞ2
k2q2

�
�ðkÞDðkþ qÞ: (4.6)

The way we proceed is the following. Instead of actually
solving the system of coupled integral equation, we will
adopt an approximate procedure, which is operationally
less complicated, and seems to capture rather well the
underlying dynamics.
Specifically, we will assume that the gluon propagator

has the form given in (3.12), and will determine the func-

tion �ð3Þ
m ðqÞ by calculating the expressions given in (4.2)

and (4.4) using inside the corresponding integrals � ! �m

and D ! D0. In order to maintain gauge invariance intact,
we will set

L ���ðq; p; rÞ ¼ �m
���ðq; p; rÞ; (4.7)

with �m
���ðq; p; rÞ given in (3.4). The vertex Vm

���ðq; p; rÞ
entering into �m

���ðq; p; rÞwill be that of Eq. (3.8), i.e., we
will assume a constant mass m throughout.
From the final expressions appearing in the rest of the

paper we will use Euclidean momenta. To that end we set
q2 ¼ �q2E, with q2E > 0 the positive square of a Euclidean

four-vector, and qE ¼
ffiffiffiffiffiffi
q2E

q
. The Euclidean propagator is

defined as �̂Eðq2EÞ ¼ ��̂ð�q2EÞ. To avoid notational clut-
ter, we will suppress the subscript E in what follows.
The results of all our calculations will be expressed in

terms of the following six basic integrals:

R0 ¼
Z
k

1

k2 �m2
¼

�
i

4�

�
m; R1 ¼

Z
k

1

ðk2 �m2Þ½ðkþ qÞ2 �m2� ¼
�
i

4�

�
1

q
arctan

�
q

2m

�
;

I1 ¼
Z
k

1

k2ðkþ qÞ2 ¼
�
i

8

�
1

q
; I2 ¼

Z
k

1

ðk2 �m2Þðkþ qÞ2 ¼
�
i

4�

�
1

q
arctan

�
q

m

�
;

I3 ¼
Z
k

1

k2ðk2 �m2Þ ¼
�
i

4�

�
1

m
; I4 ¼

Z
k

q � k
ðk2 �m2Þðkþ qÞ2 ¼

�
i

8�

��
mþ q2 �m2

q
arctan

�
q

m

��
;

(4.8)

where the momentum q appearing in the integrals on the left-hand side is Minkowskian, while the momentum q appearing
in the results on the right-hand side is Euclidean.

To facilitate the calculation, and since the transversality of �̂��ðqÞ is guaranteed, one may set in (4.1) �̂��ðqÞ ¼
P��ðqÞ�̂mðqÞ, and isolate �̂mðqÞ by taking the trace of both sides, i.e.,

ðd� 1Þ�̂mðqÞ ¼ ½ða1Þ þ ða2Þ þ ða3Þ þ ða4Þ���: (4.9)

For the different four contributions shown in Eq. (4.2) we obtain the following results:
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1

2

Z
k
���
� �t

��ðkÞ�t
��ðkþ qÞL��� ¼ 9R0 þ

�
1

4

q6

m4
� 2

q4

m2
� 10q2 þ 8m2

�
R1 þ 1

4

q6

m4
I1

�
�
1

2

q6

m4
� 2

q4

m2
� 11

2
q2 � 3m2

�
I2 �

�
5

2
q2 þ 4m2

�
I3;

4

3
g��

Z
k
�ðkÞ ¼ 4R0;

Z
k
�t

��ðkÞ
ðkþ qÞ�
ðkþ qÞ2 ½�þL���� ¼ �

�
1

2
þ 1

4

m2

q2

�
R0 �

�
1

2

q4

m2
þ 1

4
q2
�
I1 þ

�
1

2

q2

m2
� 11

4
q2 � 3m2 þ 1

4

m4

q2

�
I2

þ
�
1

2
q2 þm2

4

�
I3;

Z
k

k�ðkþ qÞ�
k2ðkþ qÞ2 ¼ 1

2
q2I1:(4.10)

Next, let us turn to the diagrams (a3) and (a4) of Fig. 1,
which contain a ghost loop. Since we will treat the ghost as
a massless particle, the ‘‘tadpole’’ diagram (a4) vanishes
identically in dimensional regularization; from diagram
(a3) we get instead (after taking the trace)

ða3Þ�� ¼ �g2CA

Z
k

ð2kþ qÞ�ð2kþ qÞ�
k2ðkþ qÞ2 ¼ �g2CAq

2I1:

(4.11)

From the results above it is relatively straightforward to
check, taking appropriate limits, that in the deep IR

�̂ð0Þ ¼ �i
g2CA

6�
m: (4.12)

Therefore, in order for the (Euclidean) �̂ð0Þ�1 ¼
m2 � i�̂ð0Þ to be positive definite, m and g must satisfy
the condition

m

CAg
2 >

1

6�
: (4.13)

In the opposite limit, namely, for asymptotically large
momenta, the addition of all terms given in (4.10) exposes
a vast cancellation of all powers qn, with n > 1. After all
such cancellations taking place, one is left with a linear
contribution, given by

�̂ðqÞ !q!1 � i
g2CA

32
q

�
15� 7

2

�
: (4.14)

The reason for writing the numerical coefficient in front of
the leading contribution as a deviation from 15 is the
following. The expression (4.14) should coincide with the
d ¼ 3 one-loop BFM self-energy calculated in the Landau
gauge. For any dimension d and any value of the gauge-
fixing parameter �Q, the latter reads [45]

�̂ðqÞ ¼ g2CA

2

�
7d� 6

d� 1

�
q2

Z
k

1

k2ðkþ qÞ2

� g2CAq
2ð1� �QÞ

�
1� �Q

2
q2P��ðqÞ

�
Z
k

k�k�

k4ðkþ qÞ4 þ
Z
k

2q � k
k4ðkþ qÞ2

�
: (4.15)

In the Feynman gauge of the BFM, �Q ¼ 1, �̂ðqÞ collap-
ses to the PT answer for the gauge-independent gluon self-
energy; specifically, for d ¼ 3,

�̂ðqÞj�Q¼1 ¼ �i
g2CA

32
qð15Þ: (4.16)

Away from �Q ¼ 1 the terms in the second line of (4.15)

give additional contributions, which may be easily calcu-
lated using the basic resultsZ

k

k�k�

k4ðkþ qÞ4 ¼ � i

32

1

q3
g�� þ . . . ;

Z
k

q � k
k4ðkþ qÞ2 ¼ � 1

16q
;

(4.17)

where the dots in the first integral indicate longitudinal
parts. In particular, it is easy to verify that at �Q ¼ 0 these

additional terms account precisely for the term� 7
2 appear-

ing in Eq. (4.14).
The above discussion reveals an important difference

between the d ¼ 3 and d ¼ 4 cases. Specifically, in d ¼ 4
the coefficient in front of the leading one-loop contribution

to �̂ðqÞ is independent of the gauge-fixing parameter �Q.

This well-known BFM result can be easily deduced from
(4.15), since both integrals proportional to (1� �Q) are

UV finite, i.e., they do not furnish logarithms. The coeffi-
cient in front of the logarithm is completely determined by

the first integral, multiplied by the factor g
2CA

2 ð7d�6
d�1 Þ, which,

at d ¼ 4, reduces to 16�2b ¼ ð11=3Þg2CA, namely, the
first coefficient of the Yang-Mills theory � function. As
we have just demonstrated, things are different in d ¼ 3,
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where no renormalization is needed; the leading (linear)
contribution depends explicitly on the value of �Q.

Next, we determine an approximate expression for the
function GðqÞ. To that end, we turn to (4.5) and substitute
in the integral on the right-hand side, � ! �m and D !
D0. One has then

GðqÞ ¼ ig2CA

2

Z
k

1

ðkþ qÞ2ðk2 �m2Þ
�
1þ ðk � qÞ2

k2q2

�

¼ ig2CA

8

�
� 2

q2
I4 þ 5I2 � I3 þ q2

m2
ðI2 � I1Þ

�
;

(4.18)

which gives

GðqÞ ¼ � g2CA

32�m

�
�

2

q

m
þm2

q2
� 1

þm

q

�
6�m2

q2
� q2

m2

�
arctan

�
q

m

��
: (4.19)

In the deep IR (q ! 0), and for asymptotically large mo-
menta (q ! 1), one finds

GðqÞ !q!0 � g2CA

6�m
; GðqÞ !q!1

0: (4.20)

From the expressions for �̂mðqÞ and GðqÞ obtained
above, we can determine the conventional gluon propaga-
tor, �ðqÞ, in the Landau gauge; the latter can then be
compared to the lattice data. To that end, let us first employ
the crucial identity of (2.4) to write

�ðqÞ ¼ ½1þGðqÞ�2
q2 þm2 þ �̂mðqÞ

: (4.21)

Then, by virtue of (4.20), �ðqÞ has the same asymptotic

behavior as �̂ðqÞ.
Notice that in d ¼ 3 the gluon and ghost propagators

have the basic scaling property
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FIG. 5 (color online). Results for the massive one-loop approximation for the d ¼ 3 gluon propagator. In the upper panels we show

the plots for different values of the hard-mass parameter m for the background-quantity identity ingredients �̂ðqÞ (left) and the Kugo-
Ojima function GðqÞ (right). In the lower panels we show the conventional propagator �ðqÞ (left) and its corresponding dressing
function q2�ðqÞ (right).
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�ðq; g;mÞ ¼ a2�ðaq; ffiffiffi
a

p
g; amÞ;

Dðq; g;mÞ ¼ a2Dðaq; ffiffiffi
a

p
g; amÞ; (4.22)

where a is a positive real number. Of course, the corre-
sponding dressing functions (being dimensionless quanti-
ties) are invariant under such a combined rescaling; for
example, the ghost-dressing function satisfies Fðq; g;mÞ ¼
Fðaq; ffiffiffi

a
p

g; amÞ, and so does the gluon dressing function
q2�ðqÞ and the Kugo-Ojima function GðqÞ. One can then
make use of these scaling properties to set g (respectively,
m) equal to unity, and vary m (respectively, g) in order to
study the shape of the solutions found so far. The results
(when setting g ¼ 1 and varying m) are shown in Fig. 5.

B. Comparing the gluon propagator with SUð2Þ lattice
data

We next compare the result of our calculation for the
conventional gluon propagator �ðqÞ with the lattice results
of [50]. In order to do that, the lattice data must be first
properly normalized (or, equivalently, the theoretical pre-
diction must be suitably rescaled) Specifically, in the ab-
sence of any physical input that would fix the physical
scale, one uses the scaling property (4.22) and determine
the scaling factor a in such a way that the asymptotic (large
momentum) segment of the lattice data coincides with that
obtained from our calculation; indeed the two ‘‘tails’’
should coincide, given that perturbation theory is reliable
in that region of momenta. The result of this procedure is
shown in Fig. 6; evidently, the matching between the
theoretical curve and the lattice data is very good. The
best-fit curve furnishes the ratio

m

2g2
	 0:146; (4.23)

which appears to be in rather good agreement with pre-
vious theoretical and lattice studies [14].

C. Ghost-dressing function and lattice data

We next proceed to calculate the theoretical prediction
for the ghost-dressing function FðqÞ. In a spirit similar to
that adopted for the gluon propagator, as first approach in
this direction, we simply compute the diagram for the
ghost propagator (see Fig. 3) using as inputs on the right-
hand side � ! �m and D ! D0. The result of this calcu-
lation is

F�1ðqÞ ¼ 1þ ig2CA

Z
k

1

ðkþ qÞ2ðk2 �m2Þ
�
1� ðk � qÞ2

k2q2

�

¼ 1þ ig2CA

4

�
2

q2
I4 þ 3I2 þ I3 � q2

m2
ðI2 � I1Þ

�
:

(4.24)

At this point, and before attempting a comparison with the
corresponding lattice data, we note that, in the Landau
gauge only, the ghost-dressing function FðqÞ, and the two
form factors GðqÞ and LðqÞ defined in Eq. (2.5), are related
(for any d) by the following important identity:

1þGðqÞ þ LðqÞ ¼ F�1ðqÞ: (4.25)

The relation of Eq. (4.25) has been first obtained in [54],
and some years later in [55], in the framework of the
Batalin-Vilkovisky quantization formalism; as was shown
there, this relation is a direct consequence of the funda-
mental BRST symmetry. Recently, the same identity has
been derived exactly from the SDEs of the theory [56], and
the important property Lð0Þ ¼ 0, usually assumed in the
literature, was shown to be valid for any value of the space-
time dimension d; indeed setting � ! �m andD ! D0 on
the right-hand side of Eq. (4.6), one has
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FIG. 6 (color online). Comparison of the lattice results of [50] with the gluon propagator (left) and the gluon dressing function (right)
obtained within the massive one-loop approximation adopted in this paper. In passing, notice that the dressing function does not tend to
1 for asymptotically large q which also motivates the momentum rescaling procedure employed.
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LðqÞ ¼ ig2CA

2

Z
k

1

ðkþ qÞ2ðk2 �m2Þ
�
1� 3

ðk � qÞ2
k2q2

�

¼ ig2CA

8

�
6

q2
I4 þ 3I3 þ I2 � 3

q2

m2
ðI2 � I1Þ

�

¼ 3g2CA

32�m

�
�

2

q

m
þm2

q2
� 1

þm

q

�
2

3
�m2

q2
� q2

m2

�
arctan

�
q

m

��
; (4.26)

and therefore

LðqÞ !q!0
0; LðqÞ !q!1

0: (4.27)

It is then straightforward to verify from the result above
and the closed expressions given in Eqs. (4.19) and (4.24),
that Eq. (4.25) holds exactly within the approximation
scheme we are using (see also the left panel of Fig. 7).

We next vary the parameters g and m in the expression
given in Eq. (4.24) in order to reproduce the lattice data for
FðqÞ. As a natural starting point we use the values that have
resulted in the best fit for the gluon propagator, namely,
g ¼ 1:285 and m ¼ 0:480. However, as is clear from the
red dashed curve shown in Fig. 7 (right panel), the result
obtained is in poor agreement with the lattice. If instead we
allow the parameters to vary freely, i.e., we disregard the
gluon data and attempt to only reproduce the ghost data,
the best possible curve is shown by the black continuous
line of Fig. 7, being obtained for the values g ¼ 2:049,
m ¼ 0:543 (giving m=2g2 	 0:065).

It is clear from this analysis that, within the approxima-
tion scheme employed, the lattice data may be well repro-
duced if treated independently, but it is not possible to
arrive at a reasonable simultaneous fit, i.e., to fit both
curves using a unique set of parameters.

D. Combined treatment: gluon propagator and
ghost-dressing function vs lattice

To remedy this situation, we will improve the approxi-
mation used for obtaining the theoretical prediction for the
ghost-dressing function. Specifically, we will study an
approximate version of the ghost SDE given in Eq. (2.7),
and we will solve self-consistently for the unknown func-
tion FðqÞ, instead of simply calculating its right-hand side,
as was done above for obtaining the expression in
Eq. (4.24).
Given that Eq. (2.7) contains �ðkÞ as one of its basic

ingredients, the general matching procedure becomes more
subtle. In particular, instead of freely fitting just one set of
data (that for the gluon propagator) one must now attempt
to fit simultaneously both the gluon and ghost data as well
as possible. As we will see, this more complicated proce-
dure furnishes finally a very good agreement with the
combined set of lattice data, but one has to settle for a
slightly less accurate description of the gluon data com-
pared to the one obtained in Fig. 6
After approximating the gluon-ghost vertex �� by its

tree-level value, we arrive at the following integral equa-
tion for the ghost-dressing function F:

F�1ðqÞ ¼ 1þ g2CA

Z
k

�
1� ðk � qÞ2

k2q2

�
�ðkÞFðkþ qÞ

ðkþ qÞ2 :

(4.28)

The general idea now is to solve Eq. (4.28) numerically for
FðqÞ, using as input for the �ðkÞ under the integral sign the
theoretical curve that, after the rescaling mentioned earlier,
provides the best possible fit to the gluon data and, at the
same time, allows for the numerical convergence of
Eq. (4.28). We note in passing that this procedure permits
us, after a shift of the integration variable, to pass all
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FIG. 7 (color online). (Left panel) Values of LðqÞ, 1þGðqÞ, and FðqÞ ¼ ½1þGðqÞ þ LðqÞ��1 within our approximation for g ¼
1:287 and m ¼ 0:539. (Right panel) Comparison of the ghost-dressing function with the one calculated within our approximation for
two sets of values corresponding to the gluon propagator best fit (g ¼ 1:287 and m ¼ 0:539, red dashed line) and to the best fit to the
lattice data (g ¼ 2:049, m ¼ 0:543).
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angular dependence from Fðkþ qÞ to �ðkÞ, whose func-
tional form is considered known; as a result, one does not
need to resort to further approximations for the angular part
of the integral equation.

The general observation regarding the numerical treat-
ment of Eq. (4.28) is that it appears to be extremely
sensitive to the precise shape of �ðkÞ and the value of g;
minute variations of these quantities give rise to large
disparities in the resulting FðqÞ.

The best possible solution that we have obtained is
shown in the left panel of Fig. 8. As announced, the
accuracy achieved in matching the lattice data for the gluon
propagator is slightly inferior to that of our best fit (Fig. 8,
right panel), but is still very good.

V. CONCLUSIONS

In this work we have presented a nonperturbative study
of the (Landau gauge) gluon and ghost propagator for d ¼
3 Yang-Mills theory, using the one-loop dressed SDEs of
the PT-BFM formalism. One of the most powerful features
of this framework is that the transversality of the truncated
gluon self-energy is guaranteed, by virtue of the QED-like
Ward identities satisfied by the fully-dressed vertices enter-
ing into the dynamical equations.

The central dynamical ingredient of our analysis is the
assumption that the famous Schwinger mechanism,
namely, the dynamical formation of zero-mass Nambu-
Golstone–boson-like composite excitations, which allow
the gauge-invariant generation of a gauge-boson mass, is
indeed realized in d ¼ 3 Yang-Mills theory. The way this
dynamical scenario is incorporated into the SDEs is
through the form of the three-gluon vertex. Specifically,
in order to satisfy the correct Ward identity, as required by
gauge-invariance, this vertex must contain massless, lon-
gitudinally coupled poles, representative precisely of the
aforementioned composite excitations.

It should be emphasized that the approach followed here
is approximate, not only in the sense that we consider the
one-loop dressed version of the SDE, omitting (gauge-
invariantly) higher orders [i.e., the third and fourth block
of Fig. 1], but also because we do not actually solve
simultaneously the full system of resulting equations.
Specifically, as explained in Sec. IV, when evaluating the
gluon self-energy we have used tree-level expressions for
the ghost propagators appearing in diagram ða3Þ of Fig. 1,
and the same approximation is used also in the determi-
nation of the KO function GðqÞ. We have then used the
resulting gluon propagator as an input into Eq. (4.28) to
obtain the improved FðqÞ. Of course, this two-step proce-
dure is bound to result in a considerable discrepancy
between the ‘‘one-loop’’ GðqÞ and the FðqÞ obtained
from solving its corresponding SDE; evidently, the identity
of Eq. (4.25) cannot be fulfilled any longer. In addition, the
dynamical gluon mass m has been treated for simplicity as
a constant. However, a more thorough study should even-
tually include the important feature that the mass depends
nontrivially on the momentum, in accordance with general
considerations [57]; in fact, a complete SDE treatment
ought to actually determine the precise way the mass is
running [58]. The fact that, despite these simplifications,
the lattice results for the gluon and ghost propagator are so
well reproduced, suggests that the full treatment may
reveal a number of subtle cancellations, caused by the
highly nonlinear nature of the SDE equations, yielding
finally results very similar to those reported here.
Let us outline briefly some of the modifications and

additional field-theoretic inputs that such a full SDE treat-
ment would entail. To begin with, a more complete Ansatz

for the three-gluon vertex ~����, appearing in the SDE of

the gluon propagator [graph ða1Þ in Fig. 1], must be de-
vised. Such an Ansatz must not contain only the part of the
massless poles, as Eq. (3.5) does, which only accounts for
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FIG. 8 (color online). Comparison of the lattice results of [50] with the ghost-dressing function obtained through the solution of the
ghost SDE (left); on the right we show the gluon propagator for the same value of m=2g2 	 0:153.

NONPERTURBATIVE GLUON AND GHOST PROPAGATORS . . . PHYSICAL REVIEW D 81, 125025 (2010)

125025-11



the massive part of the propagator, but should also make
explicit reference to the entire �, in the spirit of the
analysis already presented in [58] (for d ¼ 4). In addition,
a similar Ansatz must be also introduced for the full gluon-

ghost vertex ~�� appearing in the graph ða3Þ of Fig. 1. In
order to maintain explicit gauge invariance, ~�� must be
such that the second Ward identity of Eq. (2.2) is automati-

cally satisfied. Note that ~�� is not the same as the conven-
tional gluon-ghost vertex �� that appears in Eq. (2.7) and

in Fig. 3. Given that ~�� and �� are different, and that only
the former is crucial for the transversality of the gluon
SDE, one may approximate �� by its tree-level value,
without clashing with gauge-invariance, a freedom that
exists only within the PT-BFM scheme. Should one opt
for a more sophisticated treatment of ��, then an appro-
priate Ansatz may have to be devised. Given that
�� satisfies a complicated Slavnov-Taylor identity, in-

stead of the simple Ward identity of ~��, further approx-
imations may be necessary. We hope to be able to imple-
ment some of the aforementioned improvements in the
near future.

Finally, it is important to clarify some pertinent concep-
tual points regarding the nature of the gluon mass that we
have encountered in our analysis, and, in particular, its
gauge (in)variance. Before proceeding any further, it is
important to establish from the outset a clear distinction
between the notions of gauge invariance and ‘‘gauge inde-
pendence.’’ Gauge invariance is used for indicating that a
Green’s function satisfies the Ward identity (or a Slavnov-
Taylor identity) imposed by the gauge (or BRST) symme-
try of the theory. On the other hand, the gauge (in)depen-
dence of a Green’s function is related with the
(independence of) dependence on the gauge-fixing pa-
rameter (e.g. �) used to quantize the theory. Evidently, an
off-shell Green’s function may be gauge invariant but
gauge dependent: for example, the QED photon-electron
vertex, ��ðp; pþ qÞ, depends explicitly on �, but satisfies

(for every value of �) the classic Ward identity
q���ðp; pþ qÞ ¼ S�1ðpþ qÞ � S�1ðpÞ. A celebrated

example of a Green’s function that is both gauge invariant
and gauge independent is the photon self-energy (vacuum
polarization), which is both transverse and � independent.
Returning to the issue of the gluon mass found in this
article, it is clear that it has emerged from a gauge-invariant
analysis, because, as explained in the text, the SDEs we
have solved are manifestly gauge invariant, in the sense
that the transversality of the ���ðqÞ is guaranteed.

However, it is also clear that a particular gauge choice
has been implemented from the beginning, namely, that
of the Landau gauge. Thus, the value for the gluon mass so
obtained is particular to that gauge, and we are not aware of
any quantitative studies, or even robust qualitative argu-
ments, supporting the notion that the same value would
emerge if the SDE analysis were to be repeated, for ex-
ample, in the Feynman gauge. In particular, there is no

known analogy to what happens in the case of the gauge-
boson propagators of the electroweak sector, where the
pole position (furnishing the on-shell mass and width of
the particle) is gauge independent and can be obtained
from the gauge-boson propagator computed in any gauge.
We hasten to emphasize that the reader should not con-
clude from the last statement that a genuinely gauge-
independent mass cannot be defined. Such a mass can be
(and has been) defined (see, e.g., [7]): it is the mass that
emerges from the gluon self-energy studied in the
Feynman gauge of the BFM, which is known to reproduce
the gauge-independent answer obtained within the PT
(unfortunately, no lattice studies exist for this particular
gauge). However, there is no known algorithm that would
connect this gauge-invariant mass with, e.g., the Landau
gauge mass.
The issues discussed above are further compounded by

an additional subtlety, particular to the specific approxi-
mation adopted in the present article. Specifically, the
value of the gluon mass has not been determined dynami-
cally, but rather it has been fitted to produce the best
possible matching with the available lattice results. A
more complete treatment of the SDE system should furnish
a unique value for that mass, which would then constitute
the definite SDE prediction for the gluon mass in the
Landau gauge (but still would not be the gauge-
independent gluon mass in the PT sense explained above).
How this can be done has been presented in [58], for the
case of d ¼ 4. The general idea is that by employing a
more sophisticated Ansatz for the three-gluon vertex one
accomplishes the separation of the gluon SDE into two
parts, one that determines the momentum dependence of
the mass, and one that determines the dimensionless part of
the gluon self-energy. In the d ¼ 4 case the latter quantity
is identified with the QCD effective charge; in the d ¼ 3
case (trivial renormalization group) the corresponding

quantity would be the �̂ð3Þ
m ðqÞ of Eq. (3.14). In d ¼ 4 the

resulting system of coupled equations was shown to fur-
nish a unique solution. A similar analysis for d ¼ 3 is
expected to completely pin down the value of the gluon
mass (in a given gauge). Such a study is clearly of interest,
because it would eliminate one fitting parameter (the
mass), thus providing a far more stringent test of the entire
formalism and the basic underlying idea of gluon mass
generation.
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