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Using simple 6D junction conditions, we describe two surprising geometries. First in a case of

transitions between dS4 � S2 vacua, the S2 can be stretched significantly larger than the vacuum values

both before and after the transition. The same mechanism can also lead to ‘‘bubble of nothing’’

geometries.
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I. INTRODUCTION AND OUTLINE

The six-dimensional Einstein-Maxwell theory [1,2] pro-
vides stable compactifications to M4 � S2, where M4 can
be de Sitter, anti-de Sitter or Minkowski space. Recently it
is recognized as a good toy model to study transitions
between different vacua with compactified extra dimen-
sions [3–5], a scenario that arises from the landscape of
string theory [6].

One advantage of this model is that we can have a lot of
4D vacuum solutions with similar sizes of S2. Therefore, it
is natural to assume that S2 remains in a similar size during
vacuum transitions, as we usually do in more detailed
models. However, Johnson and Larfors in [7] pointed out
a problem of such assumption in a string theory model.

In Sec. II, we will give an intuitive picture explaining
why freezing the extra dimensions during vacuum transi-
tions is generally not a good idea. The interpretation is
slightly different from [7] but the main idea is the same.

In Sec. III, we go over general equations in the 6D
Einstein-Maxwell theory. Here the transitions are approxi-
mated as charged branes at the boundary between vacua,
and apply Israel junction conditions to solve the spacetime
geometry.

In Sec. IV, we study 4D to 4D transitions with the
geometric method and the conventional dimensional re-
duced method side by side. Together they allow us to
describe how the extra dimension changes during the tran-
sition. Choosing some allowed values of a free parameter
ensures that the extra dimensions are stretched during the
process.

In Sec. V, we use the same construction for a new 4D to
6D transition. Different from both the compactification [5]
and the decompactification [8], our solution does not have
6D asymptotics. It is similar to a bubble of nothing [9]
within a 4D vacuum.

Finally, in Sec. VI we summarize and comment on
possible future directions. The stretched extra dimensions
may change our picture on bubble collisions [4,10], and
help to clarify whether in some cases the transition will be
forbidden [7]. The bubble of nothing [9] may replace the

decompactification to be the universal instability in models
with extra dimensions.

II. BETTER NOT TO FREEZE THE EXTRA
DIMENSIONS

Figure 1 is a typical effective (Euclidean) potential of a
theory with extra dimensions and discrete vacua. It con-
tains the following two traits.
(i) In the � direction, the potential gradually slopes to

zero, which corresponds to decompactifying the ex-
tra dimensions. This can be the real part of Kähler
moduli for string theory [11].

(ii) Discrete vacua distribute not only in the above di-
rection, but also in some other directions c . For
example the imaginary part of Kähler moduli in [12].

Because the discrete vacua are stabilized by nonperturba-
tive effects, for the value c not supporting any vacuum, the
effective potential typically follows the general slope in �.
Now consider two vacua with the same value of �,

namely, the same size of extra dimensions. Fixing that
size during a transition implies connecting the two vacua
by a straight line in Fig. 1. This line certainly does not obey
any equation of motion, as it should be swept away by the
nonzero slope in the � direction. A more reasonable path

V

FIG. 1 (color online). An effective Euclidean potential for a
theory with extra dimensions and discrete vacua. � is related to
the size of extra dimension, so there is a decompactification
direction where V is asymptotically zero. In two different values
of c but very similar values of � we have two local maxima—
the vacua.*isheng.yang@gmail.com
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representing the transition would be like a projectile mo-
tion—climb the slope in � direction and come back, in the
meanwhile move from one vacuum to another. This implies
the extra dimension during a transition can be very differ-
ent from its vacuum value.

Such transition might be very annoying to model, since a
generic multidimensional effective potential will not be as
simple as Fig. 1 and one can only search for the path
numerically. In the following two sections we will show
that in the 6D Einstein-Maxwell theory, there is a simple
way to monitor transitions with significant changes in the
extra dimensions.

III. 6D SPACETIMEWITH VACUUM ENERGYAND
FLUX

A. Stable solutions

We consider the 6D Einstein-Maxwell theory with posi-
tive vacuum energy �6 and 4-form fields, as it is appro-
priate to ensure dS4 � S2 compactifications. For the
solutions we will use in this paper, it is most convenient
to write down a general metric with SOð3; 1Þ � SOð3Þ
symmetry.

ds2 ¼ d�2 þ A2ð�ÞdS23 þ B2ð�Þd�2
2: (1)

The Einstein equations are
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Here m6 is the 6D Planck mass and Q is the quantized
charge as the field sources, namely, 2-branes. The 6D dS
space is a solution with Q ¼ 0, which corresponds to

Að�Þ ¼ L cos

�
�

L

�
; (3)

Bð�Þ ¼ L sin

�
�

L

�
; (4)

where 0< �<�=2, 10m4
6L

�2 ¼ �6. Of course we can

interchange A and B, it is still the same solution.
Nonzero Q induces ‘‘compactified’’ solutions as

Að�Þ ¼ sinðH�Þ
H

; (5)

Bð�Þ ¼ R: (6)

Here it is given in the convenient form for dS spaces, but

we can easily takeH ! 0 for Minkowski space and imagi-
nary H for AdS spaces. Using the Einstein equations, we
can relate the size of the compactified dimensions R and
the 4D Hubble constant H to both Q and �6.
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B. Transitions between different solutions

From the geometric point of view, vacuum transitions
are related to geometries with solutions of different Qs
patched together. For example, two different solutions
separated by a charged 2-brane at ð �A; �BÞ. Note that a
boundary in 6D is a 5D object, but 2-branes are only 3D
objects. We have to sprinkle the branes in two of the
dimensions like dust to construct a 5D boundary.2

Such patched solutions must obey Israel junction con-
ditions [15] at the boundary. The sprinkled branes are like
dilute gas, whose energy is dominated by the rest mass,
therefore the pressure is zero.

2
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It is basically the integrated Einstein equations with a
delta-function source.� is the total tension (energy density
in 2D) of the 2-branes we sprinkled on the 4� �B2 sphere.
Here the convention is that _Ai > 0 means Ai is increasing
while moving toward the boundary, and the same for Bi.
Note that for a given fundamental theory � is proportional
to the charge of the brane, but we treat it as a free parameter
in order to study vacuum transitions in different fundamen-
tal theories.
Note the positivity constraint on the tension,

�

4� �B2m4
6
¼ �4

� _A1 þ _A2

�A

�
> 0: (11)

1Some of the solutions are unstable [13,14], but the solutions
we use in Sec. IV are all stable ones.

2In realistic situations that such geometry comes from a
quantum tunneling, the flux is usually changed by only 1 unit,
therefore only involve a single brane as described in [4].
However, a single brane will be a pointlike object on the
extradimensional S2 and ruin the symmetry. Since eventually
we care more about the effective 4D picture where the exact
location of the brane should not matter, the assumption of
sprinkled branes will be sufficient.
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Combining Eq. (10) with Eq. (2), we have
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4m4
6
�B4

: (12)

These tell us an important message. For example, when
Q1 <Q2, we have _A2

1 <
_A2
2. So

_A2 needs to be negative to
make the tension positive. More generally, approaching the
junction from the side with the larger Q always looks like
approaching a small bubble from outside.

IV. 4D TO 4D VACUUM TRANSITIONS

A. Geometric point of view

If we limit ourselves to ideal 4D vacua, where H�1 �
R, we have
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Note that for these vacua, R� ðm4
6=2�6Þ1=2 cannot

change a lot. This gives us a few advantages. First of all,
larger H in our 6D point of view really means a larger
effective 4-dimensional cosmological constant. Equation
(12) tells us larger Q should be outside, which agrees with
the usual tunneling picture that a bigger cosmological
constant should be outside. There will be geometries with
a clean separation of scales,

R�1 � �A�1 � H2 >H1; (15)

which represent standard thin-wall, small bubbles [16] that
do not care for the extra dimensions. Within these solu-
tions, we can simplify further calculations with

_A 1 ¼ � _A2 ¼ 1þOðH2
i
�A2Þ: (16)

Combine the junction condition Eq. (10) and (12), we
have

�
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Furthermore, if B does not change a lot during the

transition, we have �B� Ri � R ¼ ðm4
6=2�6Þ1=2. The en-

tire transition can be understood from the 4D point of view.
Using the standard dimensional reduction method, we
rescale length and Planck mass as following:

l4D ¼ l6DRm6; m4 ¼
ffiffiffiffiffiffiffi
4�

p
m6:

Equation (17) reproduces the naı̈ve junction condition in
4D,

�4D ¼ rc��4D

3
; (18)

where rc is the 4D critical size of the bubble, as expected.

B. Effective 4D theory

From the very beginning, we could have followed [4]
and use the standard dimensional reduced effective 4D
theory.

ffiffiffiffiffiffiffi
4�

p
m6 ¼ m4; m6Bð�Þ ¼ eð�ð�ÞÞ=ð2m4Þ;

m6Að�ÞBð�Þ ¼ að�Þ; m6Bð�Þd� ¼ d�:

This translates the 6D Einstein equations into the gen-
eral 4D Friedmann-Robertson-Walker equations and an
equation of motion for the field �.
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Here 0 means the derivative to � and the effective potential

Vð�Þ ¼ m2
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6
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�
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(22)

In Fig. 3 we sketch the shape of effective potentials with
different values of Q and indeed find a local minimum as a
stable 4D vacuum. Unfortunately, different 4D vacua are
present in different effective potentials, but the conven-
tional way to describe a transition only applies to two
vacua in the same potential.
However, the 6D description provides a simple answer.

As depicted in Figs. 4 and 5, the field � follows the
potential with Q1 from its vacuum value until the position
of the charged brane, �� ¼ 2m4 lnðm6

�BÞ, then jumps to the
other potential with Q2 and proceeds to the other vacuum.
The velocity ��0 will be discontinuous at the jump, but

can be computed from the extra junction condition in 6D,
Eq. (10).

�� 0
1 þ ��0

2 ¼
3�ffiffiffiffiffiffiffi

4�
p

m4
6
�B3
: (23)

Since the vacuum values of �i sit near each other, there
will be a range of � where the following expansion holds
in both potentials.

Við�Þ ¼ 12�H2
i

R2
i

þ 2�2
6

m10
6

ð���iÞ2: (24)

Here e�i=2m4 ¼ m6Ri is the vacuum value of the field.
We can see the mass of the potential is set by the 6D

vacuum energy, which is much larger than the 4D vacuum
energy that controls the bounce geometry. By the argument
of Coleman and De Luccia [16], we can ignore the friction
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term in Eq. (19) and pretend the energy is conserved.
Together with the convention we mentioned earlier, that
�0 is positive if it is increasing toward the brane, we have

�0
i ¼

2�6

m5
6

ð ����iÞ; (25)

where e
��=2m4 ¼ m6

�B is the matching value of the field.
Plugging into the junction condition Eq. (23), we have
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2
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4
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p
�B3�6
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It is more illuminating to take the exponential of the
above equation.

�B2

R1R2

¼ eð3�m6Þ=ð4
ffiffiffiffiffi
4�

p
m4

�B3�6Þ: (27)

The matching radius �B has to be larger than the geometric
mean of the vacua radii for the tension to be positive. Also,
depending on the tension, the transition can be monotonic
as depicted in Fig. 4, or with �B> R2, in which the field
goes to a larger value then comes back, as in Figs. 6 and 7,
the extra dimensions are stretched. The critical tension
when �B ¼ R2 is related to the charge �Q by Eqs. (13),
(27), and (14).

�c ¼ 2
ffiffiffiffiffiffiffi
2�

p
m2

6�Q: (28)

V. 4D TO 6D SOLUTION

Since the extra dimensions can be stretched during a
transition, more dramatic effects like decompactifications
might also happen. We can use the same technique of
jumping between potentials, but this time from a potential
with Q> 0 to Q ¼ 0. Note that this is not covered in [5]
where the entire solution is on one effective potential. The
most obvious difference is the charged brane appearing
explicitly in our solution.

From Eq. (12) we know that the 4D vacuum has to be
outside, since it has the larger Q. It means that the non-
trivial region in 4D is only a small bubble, therefore there is
no major difference between a de Sitter, Minkowski or AdS
space. We shall take the 4D side to be Minkowski space for
simplicity. The 6D side has two possibilities. Taking the
left portion in Fig. 2 we get Fig. 8, while the right portion
gives Fig. 9.

Figure 8 speaks trouble. It contains a piece of de Sitter
future infinity surrounded by flat spacelike asymptotics. By
the argument of Farhi and Guth in [17], it needs to violate
the null energy condition. In the Appendix we confirm this
by showing explicitly that the junction conditions lead to a
domain wall with negative tension.

This leaves us with Fig. 9, where the 6D piece is small
and does not have de Sitter asymptotics. It is just a piece of
spacetime letting the extradimensional S2 pinch off in a
nonsingular way. In the Appendix we also show by junc-
tion conditions that such geometry really exists. Instead of
a decompactification, we get a bubble of nothing [9]!3
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FIG. 3 (color online). Effective potential as a function of B ¼
m�1

6 e�=ð2m4Þ. From high to low we have potentials with decreas-

ing Q, the stablized 4D vacuum being de Sitter, Minkowski and
AdS. The lowest one with Q ¼ 0 has no stabilized 4D vacuum.

ρ= π
2

ρ=0

FIG. 2 (color online). The special Penrose diagram for dS6
where two S2s are suppressed individually. One of them has zero
size on the left boundary, and the other one is zero on the right
boundary. Our coordinate covers the region with blue (timelike)
slices where the physical radius of one S2, Bð�Þ, is constant, and
the radius of dS3 formed by the other S2 with time, Að�Þ, is also
constant. These are the slicings convenient to put the charged
brane. The green slices are the similar constant size surfaces with
B> L, which can be obtained by analytically continuing our
coordinate.

3We thank Ben Freivogel for pointing this out.
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VI. DISCUSSION

A. Stretched extra dimensions

In Sec. IVB we demonstrated a vacuum transition with
extra dimensions stretched, ð �B� RiÞ � ðR2 � R1Þ, in the
sense that it seems to get larger than necessary while
interpolating between the vacuum values. Within the va-
lidity range of our approximations, the sizes of the extra
dimensions are still quite similar, ð �B� RiÞ � Ri. It means
that we can still understand the geometry in the 4D picture.
Also, the stretching process has the time scale of 6D
physics, so from the 4D prospective it is very fast, therefore
still a thin-wall solution. We did not calculate the tunneling
rate explicitly because it will not be significantly different
from the pure 4D Coleman–De Luccia [16] tunneling.
If we can go beyond the approximation in Eq. (25), we

can increase � even further and describe vacuum transi-
tions with �B � Ri. In which case it will be interesting to
think about the tunneling rates and many other things. In
particular, there might be � too large that a transition is
forbidden as conjectured in [7].
A small stretch described here can already affect one

thing—the bubble collisions. An interesting conjecture in
[4] says that the domain walls will pass through each other

spacelike infinity

dS6 future
infinity

Minkowski

FIG. 8. Matching the interior of a small bubble in 4D
Minkowski space to the bigger portion of dS6 (left- hand side
of Fig. 2). Coexistence of Minkowski spacelike infinity and dS6
future infinity violates the null energy condition.

B=0

B=R

FIG. 9. Matching the interior of a small bubble in 4D
Minkowski space to the smaller portion of dS6 (right-hand
side of Fig. 2). The extra dimension S2 pinches off smoothly
at the left end of this diagram.

2R RB1

FIG. 7 (color online). The size of extra dimension S2 gets
stretched during the transition from vacuum 2 (green, right) to
vacuum 1 (blue, left).

FIG. 5 (color online). The corresponding bounce geometry.
The charged brane sits on the matching slice of two portions.
In the left portion the field � follows the blue potential, and in
the right portion it follows the green potential. Our metric
describes the shaded parts and can be analytically continued to
obtain the rest of the geometry.

B

R R1 2

V

B

FIG. 6 (color online). The matching radius �B can be larger
than either vacuum values Ri.

B

B

R R1 2

V

FIG. 4 (color online). The effective potential of two solutions
with different charges, Q1 (blue, lower) and Q2 (green, higher).
Our solution corresponds to the radius B started at R2, moves
through the green (higher) potential to �B and hits a charged
brane, then follows the blue (lower) potential to R1.
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and leave a third vacuum in between, as shown in Fig. 10. It
is supported by simulations of single-field-tunnelings [10].
The stretch we discovered in this paper unavoidably in-
troduces an additional short-range interaction between
domain walls. In slightly stretched or unstretched cases,
the conclusion remain unchanged. However if we tune
parameters to stretch the extra dimensions significantly,
novel behaviors such as a collision-induced decompactifi-
cation might be possible.

The critical tension to stretch the extra dimensions in
Eq. (28) looks very similar to the familiar Bogomol’nyi-
Prasad-Sommerfield bound in supersymmetric theories.
One may want to argue that for the real string theory
landscape, since we started from a supersymmetric theory,
the generic object will be much heavier than the bound, and
therefore always stretches the extra dimensions.

On the other hand, this toy model has 6D vacuum energy
to start with. One can also argue that gravity has to be the
weakest force [18].4 And there must be a charged brane
that does not stretch the extra dimensions.

We will not argue in favor of either side, but simply
present this model as a tool to analyze the situation when
the extra dimensions are stretched. For the reasons given in
the Introduction, this might be an unavoidable situation.

B. Bubbles of nothing

In Sec. V and the Appendix we provided two pieces of
evidence that a bubble of nothing appears in the same way
as a usual vacuum transition—through nucleation of
charged branes. The Farhi-Guth [17] argument applies to
the specific case in Fig. 8, where inside the bubble is a de
Sitter space and outside is Minkowski. We can also adopt
their argument that a small bubble effect does not care
about asymptotics, therefore dS4 and AdS4 can also nucle-
ate bubbles of nothing.

We should think about another case where we cannot
apply the Farhi-Guth argument—when the higher dimen-

sional geometry is not de Sitter, but flat as in the string
theory. It will be very interesting if the junction conditions
still work in a similar way as in the Appendix, showing that
positive tension demands a bubble of nothing instead of a
decompactification.
We need to further study the decay rates. But from the

fact that we can arrange our solution to be a small bubble, it
should have a rate very similar to a standard thin-wall
quantum instanton [4,16,19]. Other geometries represent-
ing decompactification tunnelings all have rates close to a
thermal instanton [4,5,8,11]. This may suggest that bubbles
of nothing is the real universal instability we should think
about, not decompactifications.
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APPENDIX: A CASE STUDY FOR 4D TO 6D
TRANSITIONS

Here we will construct a specific example of bubble of
nothing geometry—part of which is exactly a piece of
dS6—to support the argument and claim in Sec. V that
such geometry exists in the flux compactification scenario.
We believe the more general geometry also exists but it is
beyond the scope of this paper.
In Sec. IV we followed a general process to find the

matching geometry with given Q1, Q2, �6 and �, which
relies heavily on the approximation in Eq. (25), and the fact
that on either side we can find a family of well-behaved
solutions all similar to the 4D stablized geometry.
Unfortunately, Eq. (25) does not hold anywhere on the

Q ¼ 0 potential, and even the naı̈ve dS6 solution in Eq. (4)
looks dangerously singular in the 4D equations of motion
(19). A very careful numerical study might solve the prob-
lem, but we would like to do something slightly different
here.
Instead of searching for geometries with all parameters

fixed, we would like to specify the geometry at the Q ¼ 0
side. As a trade-off, the tension� cannot be fixed anymore.
Wewill show that in order to get the geometry in Fig. 8, the
tension has to be negative. This agrees with our reasoning
in Sec. V that it violates the null energy condition. For the
geometry in Fig. 9, the solution works with a positive
tension.
The Q ¼ 0 geometry will be specified as the pure dS6

solution in Eq. (4). With the convention that � increases as
it approaches the junction, it is like Fig. 9.

A1ð�Þ ¼ L cos
�

L
; B1ð�Þ ¼ L sin

�

L
: (A1)

FIG. 10 (color online). Bubble collision when the extra dimen-
sions are unstretched. If the charged branes pass through each
other trivially, they will change the flux in the middle region and
generate a third (lower) vacuum. With extra dimensions
stretched, the charged branes will feel an additional interaction
while approaching each other.

4We thank Robert Myers for pointing this out.
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For Fig. 8, we only need to exchange A and B.

A1ð�Þ ¼ L sin
�

L
; B1ð�Þ ¼ L cos

�

L
: (A2)

From the junction conditions, Eq. (10), we have

_A 2 ¼ �
�A�

16� �B2m4
6

� _A1; (A3)

_B 2 ¼ 3 �B�

16� �B2m4
6

� _B1: (A4)

By Eq. (14), Q2 ¼ m4
6=

ffiffiffiffiffiffi
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p
has the 4D Minkowski

vacuum. The effective potential is

Vð �BÞ ¼ 2�

R2 �B2
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1� R2
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�
2
: (A5)

For this potential we can still use the same approximation
in Eq. (25).

�0 ¼ 2
ffiffiffiffi
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p
R �B

�
1� R2

�B2

�
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Relate �0 to _B2 and use Eq. (A4), we have

_B 1 þ
�B

2R

�
1� R2

�B2

�
¼ 3�

16� �Bm4
6

: (A7)

As a small bubble in 4D Minkowski space,

�A
_B2

�B
þ _A2 ¼ a0 ¼ �1: (A8)

Combine with Eqs. (A3) and (A4), we have

3 �B

2 �A
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_A1 þ

�A
�B
_B1 � 1

�
¼ 3�

16� �Bm4
6

: (A9)

Note that Eqs. (A7) and (A9) have the same right-hand

side. Also, since L ¼ ffiffiffiffiffiffi
10

p
m2

6=
ffiffiffiffiffiffi
�6

p ¼ 2
ffiffiffi
5

p
R, the left-hand

sides are just sin and cos. Plotting them between 0 and
�=2, we found that with Eq. (A1) they cross at a positive �
(as in Fig. 11), but with Eq. (A2) they cross at a negative �
(as in Fig. 12). This confirms the argument in Sec. V that
Fig. 8 violates the null energy condition, and the bubble of
nothing geometry in Fig. 9 really exists.
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