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This work deals with the presence of topological defects in k-field models, where the dynamics is

generalized to include higher order power in the kinetic term. We investigate kinks in (1, 1) dimensions

and vortices in (2, 1) dimensions, focusing on some specific features of the solutions. In particular, we

show how the kinks and vortices change to compactlike solutions, controlled by the parameter used to

introduce the generalized models.
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I. INTRODUCTION

In this work, we deal with defect solutions in k-field
models, which are models where the kinematics is gener-
alized to allow for the presence of terms depending on
higher order power of the derivative of the fields.

There are several distinct motivations to study defect
structures in high energy physics. In the case of standard
models, interest to investigate defect structures can be
found, for instance, in [1,2]. Motivations to study defect
structures in generalized models come from cosmology,
with the k-essence models [3–8] and from other areas, as
one can find in the recent works [9–18].

A nice property of generalized models is that under
specific conditions, they may support compactons [19],
which are defect solutions which live in a compact region,
so they have finite wavelength. This is different from the
standard defects, which are described by solutions of infi-
nite wavelength. Since compactons have gained recent
interest in high energy physics [20], the main purpose of
the present work is to investigate the behavior of the defect
solutions, and their modification into compactons, under
the variation of the driving parameter, which responds for
the generalized model. As we show below, the generalized
models which we will consider are controlled by a single
real parameter, labeled �, which responds for the general-
ization, in the sense that the limit � ! 0 leads us back to
the standard model. This driving parameter � is then used
to make the generalized model close to (for � small) or far
away from (for 1=� small) the standard model.

As one knows, the existence of excitations localized
under the presence of nonlinear interaction has long been
explored with the hope to better understand the fundamen-
tal contents of matter [1,2]. In the case of compactons
[19,20], which are excitations characterized by having a
compact support, one notes that two adjacent compactons
do not interact unless they come into close contact. This is
specific to compactons and in this sense, compact excita-
tions seem to be well appropriate to introduce new features

as particlelike structures, as kinks in the line or vortices in
the plane, or immersed in space as domain walls or cosmic
strings, respectively [1–18].
In the present work we deal with kinks in generalized

models described by a single real scalar field � in (1, 1)
space-time dimensions. This is done in the next Sec. II,
where we start with the standard model and then generalize
it and study the presence of defect structures. Since the
case of kinks is simpler, we use it to set the focus of the
work, to prepare for the study of vortices, which is done in
Sec. III. We deal with vortices considering generalized
models in (2, 1) space-time dimensions, described by a
complex scalar field ’ coupled to the Uð1Þ gauge field A�,

with the standard model being the Maxwell-Higgs model
firstly investigated in [21], with the generalization being
controlled by the parameter �, in a way similar to the case
of kinks considered in Sec. II. We end the work in Sec. IV,
where we introduce our comments and conclusions.

II. THE CASE OF KINKS

The model which describes a single real scalar field in
(1, 1) space-time dimensions is given by the Lagrange
density

L ¼ 1
2@��@��� Vð�Þ; (1)

or

L ¼ X � Vð�Þ; (2)

where we have set

X ¼ 1
2@��@��: (3)

The equation of motion for static solution is

d2�

dx2
¼ dV

d�
: (4)

It can be integrated to give
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1
2�

02 ¼ Vð�Þ: (5)

If we choose specific potential, we can obtain topological
solution. As a nice model, let us take the potential

Vð�Þ ¼ 1
2ð1��2Þ2: (6)

In this case, we are using units such that both the field and
coordinates are dimensionless. Here we obtain the solution

�ðxÞ ¼ tanhðxÞ; (7)

after choosing its center to be at the origin x ¼ 0. The
energy of the solution is E ¼ 4=3. As we know, the width
wk of the defect can be written in terms of the height of the
potential between the two minima. Thus, we can write

wk / V�ð1=2Þð0Þ: (8)

This shows that the higher the barrier between the two
minima, the thinner the width of the defect solution, when
one fixes the distance between the minima.

Let us now consider the generalized model

L ¼ X � �X2 � Vð�Þ; (9)

where � is a real parameter, introduced to control the
modification of the standard kinematics, with the limit
� ! 0 leading us back to the standard situation. Here the
equation of motion for static solution is

ð1� 3��02Þ�00 ¼ V�: (10)

It can be integrated to give

1

2
�02 þ 3�

4
�04 ¼ Vð�Þ; (11)

or

1
2�

02 ¼ U; (12)

where we have set

Uð�Þ ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12�Vð�Þp � 1

�
: (13)

Note that the minima of the potential are given by Uð�Þ ¼
0, which imposes that Vð�Þ ¼ 0, as it happens to be the
case in the standard model. This shows that in the above
description, the distance between the minima does not
depend on �. However, for the potential given by Eq. (6)
, we get that

Uð0Þ ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6�

p � 1

�
; (14)

and so the width of the defect in the generalized model
depends on �. In fact, as we have investigated numerically,
the dependence of the width on � is strong, and may make
it difficult to understand how to get to the case of compac-
ton solutions. However, to make the study of the behavior
of the defect structure for large � easier to understand, it is

better to modify the potential Vð�Þ in a way such thatUð0Þ
is constant, independent of�. Thus, we consider the simple
case in which Uð0Þ ¼ 1=2. We get to this with the modi-
fication

Vð�Þ ! ð1þ 3
2�ÞVð�Þ; (15)

which leads to

Uð�Þ ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6�ð2þ 3�ÞVð�Þp � 1

�
: (16)

With this at hand, it is now easy to understand the
behavior of the solution for increasing �. We do this by
first expanding the newerUð�Þ in terms of ��1. In the case
of � ! 1 we get to

Uð�Þ ¼ 1
2j1��2j: (17)

We use this into Eq. (12) to get to the compacton

�ðxÞ ¼
8><
>:
1 for x > �

2 ;
sinðxÞ for � �

2 < x < �
2 ;�1 for x <� �

2 :
(18)

In Fig. 1 we plot both the kink (7), with dashed line, and the
compacton (18), with solid line, to show how the kink
should behave in the limit of very large �. See also
Fig. 2 for the other plots shown in Fig. 1.
We also depict in Fig. 3 the energy density �ðxÞ of the

kinklike solution for � ¼ 0, 1, and 10. We see from this
figure that the energy density is localized, irrespective of
the value of alpha, as expected.
In the generalized model, the first-order equation which

we have to solve for � arbitrary is given by

�02 ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3�ð2þ 3�Þð1��2Þ2p � 1

�
: (19)

(x)

x

1

2

FIG. 1. The standard kink (7) is shown with the dashed line,
and the compacton (18) is shown with the solid line. The other
solutions are for other values of �, as we explain in Fig. 2.
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We numerically investigate this equation for several values
of �, and we also plot some solutions in Fig. 1: the dotted
line is for � ¼ 1, and the dash-dotted line is for � ¼ 100.
The behavior of the solution for varying � is better seen in
Fig. 2. There we see that for increasing �, the defect
converges to the compacton shown in Fig. 1, as expected.
However, the convergence is very slow since one needs a
very large � to make the kink behave as a compacton.

The above investigation help us to understand the basic
behavior of the defect solutions and the passage to com-
pactons. It will help us to understand the much more
complicated situation, where we deal with vortices, to
investigate the presence of compactlike vortices in gener-
alized models. This is the subject of Sec. III.

III. THE CASE OF VORTICES

Let us first introduce our model. It is described by the
Lagrange density

L ¼ �1
4F��F

�� þ jD��j2 � �jD��j4 � Vðj�j2Þ;
(20)

where F�� ¼ @�A� � @�A� and

D�� ¼ @��þ ieA��; (21)

and Vðj�j2Þ is the potential which implements spontaneous
symmetry breaking.
As before, here � is a real parameter which controls the

generalized dynamics, with � ! 0 leading us back to the
standard Maxwell-Higgs model. Also, e stands for the
electric charge, and the potential usually has two parame-
ters, � and v, which represent the coupling constant for
self-interaction of the scalar field and the spontaneous
symmetry breaking parameter, respectively. Usually, it is
given by

Vð�Þ ¼ �2

4
ðv2 � j�j2Þ2: (22)

However, we are working in (2, 1) space-time dimensions,
and so the fields, parameters, and coordinates are not
dimensionless quantities. For simplicity, however, we can
rescale fields, parameters, and coordinates in order to work
with dimensionless quantities. We do this in the usual way,
and we can write the new Lagrange density in the simpler
form

L ¼ �1
4F��F

�� þ jD��j2 � �jD��j4 � Vðj�j2Þ;
(23)

where we are now using dimensionless fields, coordinates
and �, with � ¼ v ¼ e, for simplicity. We are also using
the same F�� ¼ @�A� � @�A�, but now we have changed

the covariant derivative to

D�� ¼ @��þ iA��: (24)

In this case, we can consider the potential in the form

Vð�Þ ¼ 1
4ð1þ 3

2�Þð1� j�j2Þ2: (25)

Note that the potential has the same form used in the case
of kinks, and the presence of � has the same motivation
there considered. Note also that we could have introduced
other models, one of them with another extra �-dependent
contributions added to the Maxwell term, for instance.
However, we have implemented the above modification
since it leads to the simplest model, which can be obtained
starting from the scalar field model used in the former
Sec. II.
In the investigation below, for simplicity we will some-

times use

Y ¼ jD��j2 (26)

and

FðYÞ ¼ Y � �Y2 (27)

(x)

x

1

2

FIG. 2. A closer view of Fig. 1, showing the standard kink
(dashed line), the compact solution (solid line), and two other
solutions, for � ¼ 1 (dotted line) and for � ¼ 100 (dash-dotted
line).

FIG. 3. The energy density �ðxÞ of the kinklike solution of Eq.
(19) for � ¼ 0, 1, and 10, with greater � corresponding to higher
solid curve.
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to describe the generalization included in the above model
in a shorter way.

The equations of motion are now given by

@�F
�� ¼ J�; (28)

and

FYD
�D��þ FYYD

��@�Y ¼ � @V

@ ��
; (29)

where

J� ¼ ið� �D� ��� ��D��ÞFY; (30)

with FY ¼ dF=dY and FYY ¼ d2F=dY2.
The Gauss Law is written as

r2A0 ¼ 2A0j�j2FY; (31)

which allows that we use A0 ¼ 0 as a proper gauge choice.
We fix this temporal gauge from now on.

In order to investigate the presence of vortices, let us
consider the standard static and rotationally symmetric
Ansatz, which implies that

�ðr; �Þ ¼ gðrÞ expðin�Þ; (32)

A ðr; �Þ ¼ � 1

r
ðaðrÞ � nÞ�̂; (33)

where n ¼ �1;�2; . . . describes the vorticity of the solu-
tion. In this case, the dimensionless static and rotationally
symmetric equations of motion become

d2a

dr2
� 1

r

da

dr
� 4�K1ðg; aÞ ¼ 2g2a; (34)

and

d2g

dr2
þ 1

r

dg

dr
� a2g

r2
þ 2�K2ðg; aÞ ¼

�
1þ 3

2
�

�
ðg3 � gÞ:

(35)

where K1ðg; aÞ and K2ðg; aÞ are given by

K1ðg; aÞ ¼ g2a

�
dg

dr

�
2 þ g4a3

r2
; (36)

and

K2ðg; aÞ ¼ 1

r

�
dg

dr

�
3 þ 3

�
dg

dr

�
2 d2g

dr2
þ g2a2

r2
d2g

dr2

þ ga

r2
dg

dr

�
a
dg

dr
þ 2g

da

dr
� ga

r

�
� g3a4

r4
: (37)

In the limit � ! 0, the above equations get to

d2a

dr2
� 1

r

da

dr
¼ 2g2a; (38)

and

d2g

dr2
þ 1

r

dg

dr
� a2g

r2
¼ g3 � g: (39)

which exactly reproduces the equations of motion of the
standard Maxwell-Higgs model. According to our conven-
tions, here we are dealing with scalar and vector fields with
the same mass. Thus, we can write the first-order equations

dg

dr
¼ � 1

r
ga (40)

and

1

r

da

dr
¼ �ð1� g2Þ (41)

Their solutions are BPS states, since they solve the equa-
tions of motion and have energy minimized to the
Bogomol’nyi bound. This case is well understood and
can be found, for instance, in Ref. [1].
The generalized model is much more complicated. To

understand the main features for a nonvanishing �, let us
consider the energy-momentum tensor. It has the form

T�� ¼ 2ffiffiffiffiffiffiffið	Þp @½ ffiffiffiffiffiffiffið	Þp
L�

@	��

¼ �	��L� F��F�
� þ 2FYD�� �D�

��; (42)

where 	�� ¼ ðþ��Þ identifies the metric signature.
Thus, the energy density is given by

T00 ¼ � ¼ B2

2
� Y þ �Y2 þ 1

4

�
1þ 3

2
�

�
ð1� j�j2Þ2

¼ B2

2
þ jD�j2 þ �jD�j4 þ 1

4

�
1þ 3

2
�

�
ð1� j�j2Þ2;

(43)

where B is the magnetic field and

Y ¼ �jD�j2 ¼ �j ~r�� iA�j2 ¼ �
�
dg

dr

�
2 � g2a2

r2
:

(44)

The total energy of the static solution has the form

E ¼
Z

�ðrÞd2r

¼ 2�
Z

rdr

�
B2

2
þ jD�j2 þ �jD�j4

þ 1

4

�
1þ 3

2
�

�
ð1� j�j2Þ2

�
; (45)

and the presence of� destroys the Bogomol’nyi bound. We
then come to the conclusion that for the generalized model
at hand we have to study the equations of motion, and this
requires numerical investigation.
To solve the equations of motion with finite energy

solutions, the boundary conditions on gðrÞ and aðrÞ are
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given by, near the origin

lim
r!0

gðrÞ ! 0 and lim
r!0

aðrÞ ! n; (46)

and at very large distances

lim
r!1gðrÞ ! 1 and lim

r!1aðrÞ ! 0: (47)

We have investigated the equations of motion (34) and
(35) numerically, and the results for aðrÞ and gðrÞ are
depicted in Figs. 4 and 5 for some values of �.

The numerical strategy was to use the pseudospectral
method [22] that consisted in approximating the fields aðrÞ
and gðrÞ by

aðrÞ ’ aNðrÞ ¼
XN
k¼0

âkc kðrÞ; (48)

gðrÞ ’ gNðrÞ ¼
XN
k¼0

ĝk
kðrÞ; (49)

where N is the truncation order that dictates the number of
modes âk and ĝk kept in the series, with c kðrÞ and 
kðrÞ
being the basis functions expressed in terms of the
Chebyshev polynomials, and reproducing the boundary
conditions (46) and (47).

We have used N ¼ 15 and followed straightforwardly
the steps for the implementation of the pseudospectral
method in the present case resulting in the determination
of the modes âk and ĝk yielding, as a consequence, the
reconstruction of the fields aðrÞ and gðrÞ. The numerical
results are obtained for n ¼ 1. In Figs. 4 and 5 we depict
the fields aðrÞ and gðrÞ for several values of �. We note
from these figures that both aðrÞ and gðrÞ go to the corre-
sponding vacuum states very rapidly, for increasing values
of the parameter �. The results show that for largest values
of �, the vortices behave as compactlike solutions, becom-

ing constant field configurations at some finite distance
from the origin.
An important way to study topological structures re-

quires that we search for the conserved topological charge,
which in the case of vortices is the flux of the magnetic
field. To see this, let us introduce the topological current

J� ¼ ����@�A� (50)

which is conserved. Thus, we can write the topological
change density

J0 ¼ @Ay

@x
� @Ax

@y
: (51)

We can use the Ansatz for A given by Eq. (33) to see that
J0 ¼ B, and the topological charge density equals the
magnetic field B. Thus, the topological charge has the form

QT ¼
Z

d2rB ¼ �B; (52)

and it gives the flux �B of the magnetic field in the plane.
For this reason, let us then investigate the dimensionless

magnetic field, which is given by

B ¼ � 1

r

da

dr
: (53)

We use the boundary conditions on aðrÞ to see that

QT ¼ �B ¼ 2�n; (54)

showing that the topological charge or the flux of the
magnetic field is conserved, and it is quantized according
to the winding number n ¼ �1;�2; . . .
In Fig. 6 we plot the magnetic field for � ¼ 0, 1, 5, and

10, and there we see that it has the appropriate feature,
showing the compactlike behavior of the vortex as �
increases. This is a nice behavior, because the magnetic

FIG. 5. The numerical solution of the equation of motion for
gðrÞ for � ¼ 0, 10, and 100, shown with the solid, dashed, and
dash-dotted lines, respectively.

FIG. 4. The numerical solution of the equation of motion for
aðrÞ for � ¼ 0, 10, and 100, shown with the solid, dashed, and
dash-dotted lines, respectively.
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field is gauge invariant, and it is directly related to the
topological charge of the planar vortices. We also plot in
Fig. 7 the energy density of the vortices for� ¼ 0, 1, 5, and

10. We note that the energy density does not show the same
behavior of the magnetic field, because it is localized
irrespective of the value of �, as expected.

IV. ENDING COMMENTS

In this work we have dealt with the presence of defect
structures in (1, 1) and in (2, 1) space-time dimensions. In
(1, 1) space-time dimensions, we focused on kinks and the
corresponding compactlike solutions in generalized mod-
els, controlled by a single parameter �. In this case, we
have verified that the presence of � makes the study some-
how complicated, and so we have changed the potential, in
order to simplify the investigation. The modification intro-
duced very much helps us to clearly see the behavior of the
solution for increasing �, reaching compactlike features
for large values of �.
In (2, 1) space-time dimensions, we have investigated

the presence of vortices in a generalized model, with the
generalization being also controlled by the single real
parameter �. The case of vortices is quite different from
the case of kinks, but here we have solved the equations of
motion for several values of �, and we have identified the
compactlike behavior in the vortex solution which we
found numerically. This seems to be a new behavior of
the vortices, and we hope that the present investigation will
stimulate new investigations in the field, mainly on the
main features the compactlike vortices may engender. In
particular, we need more numerical investigations to see if
the compactlike behavior which we have found can lead to
compact vortices. In this sense, an interesting issue could
be to investigate if the compactlike vortices obey the
behavior found before for standard vortices [23]. Another
issue concerns the natural extension of the present work to
the case of generalized model in the presence of the Chern-
Simons dynamics [24,25].
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