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We search for vortices in a generalized Abelian Chern-Simons model with a nonstandard kinetic term.

We illustrate our results, plotting and comparing several features of the vortex solution of the generalized

model with those of the vortex solution found in the standard Chern-Simons model.
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I. INTRODUCTION

The study of vortices in planar Chern-Simons models
has been pioneered in Refs. [1–3]. Since then, a lot of
investigations on Chern-Simons vortices have been done;
see, e.g., [4–7]. During the past years, however, theories
with a noncanonical kinetic term, named generalized of
k-field models, have been intensively studied. Generically,
their applications have been found in strong interaction
physics, with the Skyrme [8] and Skyrme-like models [9–
14], and also in cosmology with the so-called k-essence
models [15,16]. k fields change the way the fields approach
their vacuum values, allowing thereby, for instance, the
existence of solitons which approach their vacuum values
in a powerlike instead of an exponential fashion and which
therefore have a compact support [17–21]. Also, k theories
allow one to avoid Derrick’s theorem [22] increasing the
chances to find soliton solutions in symmetry-breaking
models. In this way, several k-topological defects were
already studied by several authors [23–31] and the overall
conclusion is that their properties can be quite different
from the standard ones depending specifically on the
choice made for the kinetic term.

The nonlinear effects in k theories make the equations of
motion more difficult to solve and therefore we will focus
only on Bogomol’nyi-Prasad-Sommerfield (BPS) vortex
solutions which minimize the energy. They can be found
by minimizing the energy functional [32,33] or equiva-
lently by using the conservation law for the energy-
momentum tensor combined with the boundary conditions
that require finite energy for the vortex [34]. This method
combined with supersymmetry arguments allows for the
first order formalism developed in Ref. [28], used to obtain
BPS global k defects in one dimension and whose linear
stability is proved analytically. In particular, when consid-
ering perturbative corrections to the canonical kinetic term,
the authors found linearly stable solitons which, as ex-
pected, do not differ physically from the standard kinks,
as they have the same energy, even though their width and
energy densities are different. They also found kink solu-
tions through a specific combination for the noncanonical
kinetic term and the potential. Finally, the method was used

to obtain topological compactons [35–38], e.g., solitons
which approach the vacuum values at finite distance, con-
firming the results of Ref. [18]. Thus, an important con-
clusion of this work is that even being a first order
formalism, it is suitable for the study of nonlinearities in
the kinetic term. More recently, supersymmetric exten-
sions of k-field models have been introduced [26].
The most important aim of the present work is to gen-

eralize to vortices the first order formalism developed in
Ref. [28]. We take a (2, 1) Abelian Chern-Simons model
with a noncanonical kinetic term for the complex scalar
field. We apply the method of Ref. [34] to obtain the first
order equations of motion, and then search for vortex
solutions choosing the usual rotationally symmetric ansatz
for the scalar and gauge fields. First, we check that all
vortex solutions of the Bogomol’nyi equations, i.e., BPS
vortices, are physical requiring that they minimize the
action. We then study analytically the BPS vortex equa-
tions and present a vortex solution for a specific choice for
the noncanonical kinetic term. Finally, we compare our
results with the BPS vortex solutions obtained in
Refs. [1,2]. We use standard conventions, taking a (2, 1)
spacetime with a plus/minus signature for the Minkowski
metric ðþ ��Þ and using bold style for the spatial com-
ponents of 3-vectors.

II. THE MODEL

We take an extension of the vortex model suggested by
Refs. [1,2], which has the standard form

L S ¼ k

4
����A�F�� þ jD�’j2 � Vðj’jÞ; (1)

where k is a constant, ’ is the complex Higgs field, and
Vðj’jÞ is its potential. Also, F�� ¼ @�A� � @�A� and

D� ¼ @� þ ieA�, with e being the electric charge. Here

we are using A� ¼ ðA0;AÞ, and the electric and magnetic

fields are given byEi ¼ Fi0 ¼ � _Ai �riA
0 andB ¼ ~r�

A, respectively.
We modify this model by changing the canonical kinetic

term of the scalar field, as described by the new Lagrangian
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density

L G ¼ k

4
����A�F�� þ wðj’jÞjD�’j2 � Vðj’jÞ; (2)

where wðj’jÞ is, in principle, an arbitrary function of the
complex scalar field. Note that the noncanonical term in
the Lagrangian density, in the limit wðj’jÞ ! 1, leads us
back to the standard Chern-Simons model.

It is convenient for the study of vortices to write all the
variables in dimensionless units. For that we take x� !
x�=M, whereM is a mass scale of the model. Also, we take
the two parameters k and e as k ! Mk and the electric

charge e ! M1=2e. In this case, we get

’ ! M1=2’A� ! M1=2A�; (3)

and we can write LG ! M3Lg, with Lg being the

Lagrangian density to be used from now on.

III. EQUATIONS OF MOTION

The equations of motion for the gauge fields are given by

k

2
����F�� ¼ �J�; (4)

where J� ¼ ð�; jÞ is the current density given by

J� ¼ iew½’ðD�’Þ� � ’�D�’�: (5)

The time and spatial components of Eq. (4) are, for static
field configurations,

kB ¼ � ¼ 2e2A0j’j2wðj’jÞ (6)

and

kEa ¼ �baj
b; (7)

which show that the electric charge density is proportional
to the magnetic field, while the density current is perpen-
dicular to the electric field. This fact is important for the
phenomenological applications of Chern-Simons theories
as effective field theories for the quantum Hall effect [39].

The equation of motion for the scalar field is given by

wh’þ @�wD
�’þ @V

@’� � jD�’j2 @w

@’� ¼ 0 (8)

with

h’ ¼ 1ffiffiffi
g

p D�½ ffiffiffi
g

p
D�’�; (9)

where g is the determinant of the metric.
These second order differential equations will be re-

duced to first order ones by using the method developed
in [34]. For that, we need to obtain the components of the
energy-momentum tensor, given by

T�� ¼ 2ffiffiffi
g

p @½ ffiffiffi
g

p
L0

g�
@g��

; (10)

where L0
g excludes the Chern-Simons term of the

Lagrangian density, since it does not contribute to the
energy-momentum tensor. For the vortex they become

T�� ¼ �g��L0
g þ 2w��� (11)

with

��� ¼ 1
2D�’ðD�’Þ�½	��	�� þ 	��	���: (12)

Writing explicitly the components of the energy-
momentum tensor one obtains

" � T00 ¼ 2e2wA2
0j’j2 � wjD�’j2 þ V; (13)

P 1 � T11 ¼ wjD�’j2 þ 2wjD1’j2 � V; (14)

P 2 � T22 ¼ wjD�’j2 þ 2wjD2’j2 � V; (15)

T01 ¼ A0j1; (16)

T02 ¼ A0j2; (17)

T12 ¼ w½ðD1’ÞðD2’Þ� þ ðD1’Þ�ðD2’Þ�; (18)

where

jDi’j2 ¼ jð@i þ ieAiÞ’j2; i ¼ 1; 2: (19)

Now setting the vortex stability condition (see [34])

P 1 ¼ P 2 ¼ 0; (20)

we get to the first order equations of motion

D�’ ¼ 0; (21)

k2

4e2
B2

j’j2
1

w
¼ V; (22)

where

D�’ ¼ ðD1 � iD2Þ’; (23)

jD�’j2 ¼ �jD1’j2 � jD2’j2 þ e2A2
0j’j2; (24)

with

A0 ¼ kB

2e2j’j2w : (25)

We now look for vortex solutions of the Eqs. (21) and
(22), i.e., BPS vortices, for which we take the ansatz
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’ðr; 
Þ ¼ gðrÞ expðin
Þ; (26)

eAi ¼ �ij½aðrÞ � n�ðr̂j=rÞ; (27)

where r and 
 are the polar coordinates and n is the vortex
winding number. For simplicity, we set n ¼ 1 from now
on.

Inside the core, i.e., near the origin, the boundary con-
ditions are gðr ! 0Þ ! 0, aðr ! 0Þ ! 1, and A0

0ðr !
0Þ ! 0, while faraway from it the vortex fields approach
the vacuum, i.e., gðr ! 1Þ ! 1, aðr ! 1Þ ! 0, and
A0
0ðr ! 1Þ ! 0. This means that the potential has to

have spontaneous symmetry breaking, as usual.
The magnetic field, with magnitude

B ¼ 1

er

da

dr
(28)

is parallel to the magnetic momentum,�, ð12
R
dr2�abr

ajbÞ
and the angular momentum, L, ðR dr2�abraT0bÞ. They all

vanish near the origin and faraway from it.
Also note that the magnetic flux � ¼ 2�

R
drrBðrÞ and

the electric charge Q ¼ 2�
R
drr�ðrÞ are quantized ac-

cording to

� ¼ � 2�

e
and Q ¼ k�: (29)

Substituting the Ansatz Eqs. (26) and (27) into Eqs. (21)
and (22) we get the BPS vortex equations given by

dg

dr
¼ ga

r
; (30)

k2

4e2g2
B2

w
¼ V; (31)

which substituted into Eq. (24) gives

jD�’j2 ¼ �2

�
dg

dr

�
2 þ V

w
: (32)

We note that solutions of the first order equations (30)
and (31) do satisfy the second order equations of motion
(4) and (8).

For further reference we also need to write the Eqs. (7)
and (8) as

d

dg

� ffiffiffiffiffiffiffiffiffiffi
V=w

p
g

�
¼ � 2e2

k
wg; (33)

dðkA0Þ
dr

¼ 2ewa
g2

r
; (34)

which, in particular, gives that V and w are not
independent.

We also need to write the energy density, the spatial
component of the current density, the magnetic and angular
momenta which, respectively, are given by

" ¼ 2w

�
dg

dr

�
2 þ 2V; (35)

j
 ¼ 2ewa
g2

r
; (36)

�z ¼ 2�e
Z

drrwag2; (37)

Lz ¼ 4�e
Z

drrwag2A0: (38)

We note that the procedure used in this section, to get to
the first order equations, started with the conditions P 1 ¼
P 2 ¼ 0. This is motivated by Ref. [34], and it shows
explicitly that the choice of the potential Vð’Þ depends
on the choice of !ð’Þ. Thus, neither the potential nor the
function wðj’jÞ used to generalize the Chern-Simons
model are arbitrary functions anymore.

IV. STANDARD SELF-DUAL VORTICES

In this section we review the vortex solution of the
standard Chern-Simons model that is recovered by setting
wðj’jÞ ! 1. We use Eq. (33) to get

g

2

dV

dg
¼ V � 2e2

k
g3

ffiffiffiffi
V

p
(39)

whose solution gives the potential of the standard Chern-
Simons model, which is

VS ¼ e4

k2
g2ð1� g2Þ2: (40)

Here we have adjusted the integrating constant according
to the vortex boundary conditions.
The first order equations (30) and (31) then become

dg

dr
¼ a

r
g; (41)

eB ¼ � 2e4

k2
g2ð1� g2Þ; (42)

which can be integrated numerically from the infinity up to
the origin. For this, we need to write down the asymptotic
solutions at the infinity which are

gðr ! 1Þ ¼ 1� CK0ðmrÞ; (43)

Pðr ! 1Þ ¼ CmrK1ðmrÞ; (44)

with Ki the modified Bessel functions, m ¼ 2e2=k and C a
constant which can be adjusted to get the suitable boundary
conditions at the origin.
Also note that as

eA0 ¼ m

2
ðg2 � 1Þ; (45)
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it comes that near the origin A0ðr ! 0Þ ! �e=k, while
faraway from it A0ðr ! 1Þ ! 0.

In the figures, we setm ¼ 1 and plot the Higgs potential,
the Higgs and gauge fields, and the electric and magnetic
fields. For that we used the asymptotic solutions

eBðr ! 1Þ ¼ �m2CK0ðmrÞ; (46)

eEðr ! 1Þ ¼ m2CK1ðmrÞ; (47)

1

e
�ðr ! 1Þ ¼ �2mCK0ðmrÞ; (48)

1

e
j
ðr ! 1Þ ¼ 2mCK1ðmrÞ: (49)

For further reference it is also necessary to write the
asymptotic solutions for the energy density, magnetic,
and angular momenta given by

"ðr ! 1Þ ¼ 2m2C2½K2
0ðmrÞ þ K2

1ðmrÞ�; (50)

1

e

d�z

dr
ðr ! 1Þ ¼ 2�mCr2K1ðmrÞ; (51)

dLz

dr
ðr ! 1Þ ¼ �4�m2C2r2K1ðmrÞK0ðmrÞ: (52)

V. GENERALIZED SELF-DUALVORTICES

In this section we give an example of a vortex solution
for the model introduced in Sec. II. In order to make a
choice for w we first note from Eq. (33) that if w is not a
constant it changes the position of the zeros of the potential
and its maximum amplitude when compared with those for
the standard Chern-Simons potential. We choose w such
that the zeros of V are the same as the zeros of the Higgs
potential of the standard Chern-Simons model. A possible
choice for w is w ¼ 3ð1� g2Þ2 which, from Eqs. (33) and
(34), gives

V ¼ 3e4

k2
g2½1� g2�8; (53)

eA0 ¼ � e2

k
½1� g2�3: (54)

Thus, the electric field is given by

eE ¼ � 6e2

k

g2a½1� g2�2
r

; (55)

while the first order equations (30) and (31) become

dg

dr
¼ ga

r
; (56)

eB ¼ � 6e4

k2
g2½1� g2�5: (57)

The energy density, the polar component of the current
density, the magnetic, and angular momenta are, respec-
tively, given by

" ¼ 6½1� g2�2
��

dg

dr

�
2 þ e4

k2
g2½1� g2�6

�
; (58)

j
 ¼ 6e
g2a½1� g2�2

r
; (59)

�z ¼ 6�e
Z

drrag2½1� g2�2; (60)

Lz ¼ ��k

e2
: (61)

Note that this particular choice for w allows the exis-
tence of vortices. In fact, the vacuummanifold of the Higgs
potential is a dot and a circle which are not simply con-
nected and the energy density is localized (see [40]). In
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FIG. 1 (color online). The potentials for the standard and
generalized models, plotted in a function of the Higgs field,
with black/higher and red/lower lines, respectively.
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particular, the electric and magnetic fields vanish near the
origin and faraway from it. Note that faraway from the
origin the vortex solution approaches the standard vortex
solution and therefore the asymptotic solutions are also
given by Eqs. (43), (44), and (46)–(52). Also note that there
is no divergence in any physical quantity. All this can be
seen from the plots in Figs. 1–6, where we show and
compare the generalized vortex solution with the one of
the standard Chern-Simons model.

VI. ENDING COMMENTS

In this work we have studied the presence of vortices in a
generalized Chern-Simons model. The idea is different
from the recent work [23], where the author has investi-
gated vortices in the Maxwell-Higgs model, modified to
accommodate generalized structure, with the kinetic term
being changed to a function of it. This study was done with
the numerical integration of the equations of motion, and
the modification there introduced has induced another
mass scale.

Here, our objective was to generalize the Chern-Simons
model in a way such that we could find first order differ-
ential equations. To do this, we have changed the kinetic

term jD�’j2 to wðj’jÞjD�’j2. We suppose that this modi-

fication leads to an effective planar field theory somehow
similar to the standard Chern-Simons model. Despite the
modification in the kinematic scalar field term, we could
write a first order framework and find vortices which are
qualitatively similar to the vortices of the standard Chern-
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FIG. 3 (color online). The spatial component of the gauge
field. Conventions as in Fig. 2.
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FIG. 2 (color online). The Higgs field as a function of the
distance r for the standard and generalized models. Conventions
as in Fig. 1. Note that in our model the vacuum is reached for a
larger distance than in the standard model; see Fig. 3 as well.
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FIG. 4 (color online). The electric field in units of e (black/red
dot-dashed lines for standard/our model). This is also the figure
for the polar current density j
 in units of k. Note that it is
smaller and spread over a larger distance than in the standard
model.
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Simons model. However, we could identify several prop-
erties of the BPS vortices which are quantitatively different
from the standard vortices, since the solutions can be
thicker than the standard solutions. These differences are
shown in all the figures, where we depict distinct features
of the vortices in both the generalized and standard Chern-
Simons models.

When compared to the model investigated in [23], an
important distinction which appears in our work is that the
modification we have included does not introduce another
mass scale in the system. To see this clearly, let us write the
potential in Eq. (53) in terms of dimensional quantities. It
writes

Vðj’jÞ ¼ 3e4

k2v6
j’j2ðv2 � j’j2Þ8; (62)

where v is the symmetry-breaking parameter of the model.
In this case, the mass scale M which we had to include at
the end of Sec. II can be seen asM ¼ v2, so we do not need
an extra mass scale, which had to be included in [23].

We are now examining how to obtain first order equa-
tions in a more general model, modifying the kinetic scalar
field term but including both the Maxwell and the Chern-
Simons terms. Also, we are studying the presence of
vortices in a Maxwell-Higgs model with the k-field modi-
fication similar to the case investigated in [23]. Preliminary
results indicate the presence of compact vortices, e.g., of
vortices with the scalar and gauge fields getting to their
vacuum values at finite distances from the origin.
Before ending the work, let us study the Bogomol’nyi

decomposition of the energy of the static solutions of the
first order equations found above. To make the calculation
explicit, we rewrite the energy density (13) in the form

" ¼ wjðD1 � iD2Þ’j2 þ
�

kB

2eg
ffiffiffiffi
w

p � ffiffiffiffi
V

p �
2

� ewg2B� kB

eg

ffiffiffiffi
V

w

s
� w

r

d

dr
ðg2aÞ: (63)

This result can be used to recover the standard case of the
Chern-Simons model. We make wðgÞ ¼ 1 to get to

" ¼ jðD1 � iD2Þ’j2 þ
�
kB

2eg
� e2

k
gðg2 � 1Þ

�
2

� eB� 1

r

d

dr
ðg2aÞ; (64)

with the standard potential

V ¼ e4

k2
g2ð1� g2Þ2; (65)

which leads to the first order equations obtained in Sec. III.
On the other hand, if we take wðgÞ ¼ 3ð1� g2Þ2 we get

" ¼ 3ð1� g2Þ2jðD1 � iD2Þ’j2 � 1

r

d

dr
ðað1� g2Þ3Þ

þ
�

kB

2eg
ffiffiffi
3

p ð1� g2Þ �
ffiffiffi
3

p
e2

k
gð1� g2Þ4

�
2
; (66)

where we used

V ¼ 3e4

k2
g2ð1� g2Þ8: (67)

We point out that an integration of r�1drðað1� g2Þ3Þ over
all planar space can be identified with an integration of
�BðrÞ the same space. This integration process gives the
magnetic flux � which is topologically invariant. In this
way, this result leads to the first order equations used
above, so the corresponding solutions are in fact BPS
states, with the energy bound being EB ¼ ej�j, where �
represents the flux of the magnetic field in the plane. We
note that the energy bound in the generalized model is the
same as the energy bound of the standard Chern-Simons
model.
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FIG. 5 (color online). The magnetic field in units of e. Note
that it is smaller and spread over a larger distance than in the
standard model. The same result applies for the charge density �.
Conventions as in Fig. 4.
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FIG. 6 (color online). The energy density. Conventions as in
Fig. 1.
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