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We study the QCD phase structure in the three-flavor Nambu–Jona-Lasinio model, incorporating the

interplay between the chiral and diquark condensates induced by the axial anomaly. We demonstrate that

for an appropriate range of parameters of the model, the interplay leads to the low temperature critical

point in the phase structure predicted by a previous Ginzburg-Landau analysis. We also show that a Bose-

Einstein condensate (BEC) of diquark molecules emerges in the intermediate density region, and as a

result, a BEC-BCS crossover is realized with increasing quark chemical potential.
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I. INTRODUCTION

The phases of strongly interacting matter described by
quantum chromodynamics (QCD) at finite temperature T
and quark chemical potential � is being actively studied
theoretically, as well as experimentally in ultrarelativistic
heavy ion collisions at RHIC (Relativistic Heavy Ion
Collider) and in the near future at the LHC (Large
Hadron Collider). At low T and �, the hadronic phase is
realized with chiral symmetry dynamically broken by con-
densation of quark-antiquark pairs, the chiral condensate
h �qqi. On the other hand, at low T and high � a color
superconducting (CSC) phase [1], characterized by forma-
tion of quark-quark pairs—a diquark condensate hqqi—is
expected to appear owing to the attractive one-gluon ex-
change interaction or the instanton-induced interaction in
the quark-quark channel. At high T for any �, the quark-
gluon plasma (QGP) phase [2] is realized with both the
chiral and diquark condensates melted away. Recent lattice
QCD Monte Carlo simulations at � ¼ 0 show that there is
indeed a thermal crossover from the hadronic phase to the
QGP phase [3–5].

Nevertheless, the first-principles lattice technique based
on importance sampling is not applicable to QCD at finite
� due to the complex fermion determinant. This is why our
understanding of the transition from the hadronic phase to
the CSC phase relevant to the compact star physics is still
immature and we have to basically rely on specific models
of QCD, such as the Nambu–Jona-Lasinio (NJL) model
[6–9], the Polyakov–Nambu–Jona-Lasinio (PNJL) model
[10–13], and the random matrix theory (RMT) [14–16].
These model studies together with the lattice QCD results
have revealed the possible existence of the critical point
[17,18] at high T between the hadronic phase and the QGP
phase (see, however, [19]).

Recently, we have pointed out the possibility of a new
low temperature critical point between the hadron phase
and the CSC phase in three-flavor QCD, on the basis of

model-independent Ginzburg-Landau (GL) theory [20,21]:
the attraction between the chiral and diquark condensates
induced by the axial anomaly leads to this critical point and
an associated smooth crossover. Figure 1 illustrates the
dense three-flavor QCD phase diagram with the new criti-
cal point at low T [21]. This may provide a mechanism of
continuity between hadronic matter and quark matter
(hadron-quark continuity) conjectured by Schäfer and
Wilczek [22]. Moreover, the idea of hadron-quark continu-
ity is corroborated by recent studies on the spectral con-
tinuity of Nambu-Goldstone modes [21] and vector mesons
[23], and the formal similarity of the partition functions in
the universal regime between the low and high � regimes
in three-flavor QCD at finite size, large compared with the
inverse gap, but small compared with the pion Compton
wavelength [24]. In two-flavor QCD, similar new critical
points have also been found in the NJL model [25–27],

FIG. 1. Schematic phase structure with two light (up and
down) quarks and a medium heavy (strange) quark. In the
hadronic phase, q �q pairs condense, while in the color super-
conducting (CSC) phase, the dominant condensation is qq pair-
ing. In the quark-gluon plasma (QGP), all symmetries are
restored without any pairing, while in the coexistence (COE)
region q �q and qq pairings coexist. The double line denotes a
first-order phase transition. Adapted from Ref. [21].
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although their origin is related to a repulsive vector-
channel four-fermion interaction [25], or electric charge
neutrality and �-equilibrium conditions [26,27] rather
than the axial anomaly. These studies may imply smooth
crossovers not only as a function of T at low � but also as
a function of � at low T in the realistic QCD phase
diagram.

The Ginzburg-Landau analysis for three-flavor QCD in
Refs. [20,21] depends on the assumption that the magni-
tudes of the chiral and diquark condensates are sufficiently
small near the phase boundaries, which may not be justi-
fied over the entire region in the QCD phase diagram and
for strongly first-order phase transitions. The question is
unanswered as to whether such a new critical point induced
by the axial anomaly does really emerge in the
ð�; TÞ-plane within the framework of phenomenological
models with reasonable parameters.

The purposes of this paper are twofold. First, using the
three-flavor NJL model incorporating the interplay be-
tween the chiral and diquark condensates induced by the
axial anomaly, we study the location of the new critical
point predicted in [20,21]. We demonstrate that this critical
point indeed appears in the phase diagram for an appro-
priate range of parameters. Second, we show that the axial
anomaly also triggers, in this model, a crossover between a
Bose-Einstein condensed state (BEC) of diquark pairing
and Bardeen-Cooper-Schrieffer (BCS) diquark pairing.
This BEC-BCS crossover is identical in structure to that
in nonrelativistic condensed matter systems [28–30]; and is
discussed for relativistic systems [31–40]: the change in
size of Cooper pairs at lower � within the QCD
Schwinger-Dyson approach [31], the relativistic BEC-
BCS crossover of diquark pairing in the NJL-type model
[32,34,36–39] and the diquark-quark model [33,35], and a
possible evolution from baryons in nuclear matter to di-
quarks in quark matter with increasing � [40] are eluci-
dated. Remarkably, as we will show in this paper, in
relativistic quark matter at high � the axial anomaly
enhances the attractive interaction between quarks, leading
to the emergence of a BEC state of diquark pairing.

To illustrate the essential physics induced by the axial
anomaly and to avoid complications of charge neutrality
and �-equilibrium conditions, we assume SU(3) flavor
symmetry mu ¼ md ¼ ms � mq throughout this paper.

The generalization to include these effects will be reported
elsewhere.

This paper is organized as follows. In Sec. II, we for-
mulate the three-flavor NJL model incorporating the inter-
play between the chiral and diquark condensates induced
by the axial anomaly. In Sec. III, we discuss the phase
structures with and without the interplay. In Sec. IV, we
show that the interplay leads not only to the new critical
point but also to the BEC-BCS crossover of the diquark
pairing at high density. Section V is devoted to a summary
and concluding remarks.

II. NJL MODELWITH AXIAL ANOMALY

The Lagrangian of the Nambu–Jona-Lasinio (NJL)
model with three-flavors consists of three terms:

L ¼ �qði��@
� �mq þ��0ÞqþLð4Þ þLð6Þ; (1)

where q ¼ ðu; d; sÞT is transpose of the quark field, mq is a

flavor-symmetric quark mass (mu ¼ md ¼ ms). Lð4Þ and
Lð6Þ are the four-fermion interaction and six-fermion in-

teraction, respectively. The standard choice of Lð4Þ is [6–
9],

L ð4Þ ¼ Lð4Þ
� þLð4Þ

d ; (2)

Lð4Þ
� ¼ G

X8
a¼0

½ð �q�aqÞ2 þ ð �qi�5�aqÞ2�

¼ 8G trð�y�Þ; (3)

L ð4Þ
d ¼ H

X
A;A0¼2;5;7

½ð �qi�5�A�A0C �qTÞðqTCi�5�A�A0qÞ

þ ð �q�A�A0C �qTÞðqTC�A�A0qÞ�
¼ 2H tr½dyLdL þ dyRdR�; (4)

where �ij � ð �qRÞjaðqLÞia, ðdLÞai � �abc�ijkðqLÞjbCðqLÞkc,
and ðdRÞai � �abc�ijkðqRÞjbCðqRÞkc, with a, b, c and i, j, k

the color and flavor indices, and C the charge conjugation
operator. tr is taken over the flavor indices. The flavor U(3)
generators �a (a ¼ 0; � � � ; 8) are normalized so that
tr½�a�b� ¼ 2	ab, and �A and �A0 with A, A0 ¼ 2, 5, 7 are
antisymmetric generators of flavor and SU(3) color, re-
spectively. The coupling constants G and H with dimen-
sion ðmassÞ�2 are assumed to be positive. Starting from the
one-gluon exchange interaction and apply a simple Fierz
transformation, we obtain the ratio H=G ¼ 3=4. However,
we treat G and H as independent parameters of the effec-
tive Lagrangian and as detailed in Sec. III take the values
common in the literature.
The four-fermion interactions introduced above are in-

variant under SUð3ÞL � SUð3ÞR � Uð1ÞA � Uð1ÞB symme-

try. The interaction Lð4Þ
� produces attraction of q �q pairs in

the color-singlet and spin-parity 0� channel, inducing
dynamical breaking of chiral symmetry with formation of

a chiral condensate [41]. Similarly Lð4Þ
d leads to attraction

of qq pairs in the color-anti-triplet and spin-parity 0�
channel, inducing color-flavor locked (CFL) superconduc-
tivity with formation of a diquark condensate [42].
The six-fermion interaction in our model consists of two

parts,

L ð6Þ ¼ Lð6Þ
� þLð6Þ

�d: (5)

Lð6Þ
� is the standard Kobayashi-Maskawa-’t Hooft (KMT)

interaction [43,44],
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L ð6Þ
� ¼ �8Kðdet�þ H:c:Þ: (6)

This interaction, invariant under SUð3ÞL � SUð3ÞR �
Uð1ÞB symmetry but not under Uð1ÞA symmetry, accounts
for the axial anomaly in QCD due to instantons. For
positive coupling constant K with dimension ðmassÞ�5,
as we assume, the 
0 meson has a larger mass than the
other pseudo Nambu-Goldstone bosons ð�;
;KÞ. The
term (6) serves the role in the QCD phase structure of
making the chiral phase transition first-order as a function
of T at � ¼ 0 for massless three-flavor limit [45].

As pointed out in [20,21], the instanton couples the
diquark condensate and the chiral condensate, which modi-
fies the QCD phase structure in the intermediate density
region. The effective interaction between the chiral and
diquark pairing fields is described by a six-fermion term,

L ð6Þ
�d ¼ K0ð½ðdyRdLÞ�� þ H:c:Þ; (7)

which has SUð3ÞL � SUð3ÞR � Uð1ÞB symmetry but
breaks Uð1ÞA symmetry explicitly. It is this term that is
responsible for the low temperature critical point. We
assume K0 > 0, so that qq pairs in the positive parity
channel, hdLi ¼ �hdRi, are energetically favored, as sug-
gested from the weak-coupling instanton calculations
[46,47]. Since the term (7) acts as an external field for �,
it washes out the first-order chiral phase transition at
intermediate density for sufficiently large K0jhdRij2
[20,21]. If we start from the instanton vertex and apply a
simple Fierz transformation, we obtain the ratioK0=K ¼ 1.
However, since there is no a priori reason that K and K0
have this ratio in the effective Lagrangian level, we keep
them as independent parameters.

The favorable condensates by the interaction Lð4Þ þ
Lð6Þ are the flavor-symmetric chiral and diquark conden-
sates in the spin-parity 0þ channel, defined by

�	ij ¼ h �qiaqjai; (8)

s	AA0 ¼ hqTC�5�A�A0qi: (9)

Here the condensate order parameters � and s, which are
proportional to the order parameters � and d defined in the
previous Ginzburg-Landau analysis [20,21], are related to
the parameters � and dL;R defined below Eq. (4) by

�	ij ¼ 2h�iji; (10)

s	ai ¼ 2hðdLÞaii ¼ �2hðdRÞaii: (11)

We work at the mean-field level, linearizing the the
products of operators X and Y as X2 ! 2hXiX � hXi2,
XY ! hXiY þ hYiX � hXihYi, and X2Y ! hXi2Y þ
2hXihYiX � 2hXi2hYi. Subtraction of the constant terms
avoids double counting the interactions. In mean-field
deviations from factorization are partially compensated
for by redefinition of the coupling constants G, H, K,

and K0. Then Lð4Þ and Lð6Þ reduce to

Lð4Þ
� ! 4G� �qq� 6G�2;

Lð4Þ
d ! H½s�ðqTC�5�A�AqÞ þ H:c:� � 3Hjsj2;

Lð6Þ
� ! �2K�2 �qqþ 4K�3;

Lð6Þ
�d ! �K0

4
jsj2 �qq� K0

4
�½s�ðqTC�5�A�AqÞ þ H:c:�

þ 3K0

2
jsj2�: (12)

Here and below we implicitly sum over A ¼ 2, 5, 7 unless
otherwise stated.
To derive the thermodynamic potential, it is most con-

venient to work in the Nambu-Gor’kov formalism; we
introduce the bispinor field

� ¼ 1ffiffiffi
2

p ðq; qCÞT; (13)

with qC ¼ C �qT (and �qC ¼ qTC) the charge-conjugate
quark field. Then the linearized form of the NJL
Lagrangian becomes

L ¼ ��S�1��U: (14)

Here S�1ðpÞ is the inverse propagator in the momentum
space:

S�1ðpÞ ¼ ��p
� þ��0 �M ��5�A�A

����5�A�A ��p
� ���0 �M

� �
;

(15)

where the dynamical Dirac mass in the q �q-channel reads

Mð�; s;mqÞ ¼ mq � 4ðG� 1
2K�Þ�þ 1

4K
0jsj2; (16)

and the dynamical Majorana mass in the qq-channel reads

�ð�; sÞ ¼ �2ðH � 1
4K

0�Þs: (17)

They are both dependent on the order parameters, � and s.
The constant term needed to subtract double counting of
the interactions in L is

Uð�; sÞ ¼ 6G�2 þ 3Hjsj2 � 4K�3 � 3
2K

0jsj2�: (18)

The terms in Eqs. (16)–(18), are shown diagrammatically
in Figs. 2(a)–2(d), 3(a), 3(b), and 4(a)–4(d), respectively.
The chiral-diquark coupling (the K0-term) enhances the
attractions in both the �qq and qq channels.
The thermodynamic potential at temperature T and

quark chemical potential � is given by

� ¼ �T
X
n

Z d3p

ð2�Þ3
1

2
Tr ln

�
1

T
S�1ði!n; ~pÞ

�
þUð�; sÞ;

(19)

where Tr is taken over the bispinor space with the factor
1=2 in front to correct for double counting of degrees of
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freedom. Evaluating the trace and summing over the fer-
mionic Matsubara frequencies p0 ¼ i!n ¼ ð2nþ 1Þ�iT,
we arrive at the thermodynamic potential [9]:

� ¼ �
Z d3p

ð2�Þ3
X
�
f½16T lnð1þ e�!�

8
=TÞ þ 8!�

8 �

þ ½2T lnð1þ e�!�
1
=TÞ þ!�

1 �g þUð�; sÞ; (20)

where

!�
8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp ��Þ2 þ�2

1

q
; (21)

!�
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp ��Þ2 þ�2

8

q
; (22)

are the dispersion relations for the quasiquarks in the octet

and singlet representations, with Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, �1 ¼

2�, and�8 ¼ �. Equations (16) and (20) imply that �< 0
is energetically favored for nonzeromq. On the other hand,

s is generally complex and the thermodynamic potential is
a function of jsj2.

III. PHASE STRUCTURE

We now explore the effect of the attractive K0-term
induced by the axial anomaly on the phase structure in
the ð�; TÞ-plane of the three-flavor NJL model. The phase
structures can be determined numerically by looking for
the values of � and s that minimize the thermodynamic
potential in Eq. (20) globally. We follow the parameter
choice of [9] where the coupling constants G and K are
chosen to fit empirical mesonic quantities and the chiral
condensate in the QCD vacuum. Table I shows two sets of
parameters we adopt below. We vary the strength of the
chiral-diquark coupling (the K0 term) by hand. In order to
illustrate how the anomaly changes the conventional phase
structure and to avoid the complications of charge neutral-
ity and �-equilibrium, we assume SU(3) flavor symmetry,
mu ¼ md ¼ ms � mq.

FIG. 2. Four contributions to the Dirac mass M (constituent
quark mass). The chiral condensate � is denoted by a black
circle, the diquark condensate s by a black square, and s� by a
white square.

FIG. 4. Four contributions to the constant term U.

FIG. 3. Two contributions to the Majorana mass � (super-
conducting gap).

TABLE I. Two sets of parameters in the present three-flavor
NJL model: the current quark massmq, coupling constants G,H,

and K, with a spatial momentum cutoff � ¼ 602:3 MeV [9].
The dynamical quark mass M and the chiral condensate � in the
vacuum are also given.

mq [MeV] G�2 H�2 K�5 M [MeV] �1=3 [MeV]

I 0 1.926 1.74 12.36 355.2 �240:4
II 5.5 1.918 1.74 12.36 367.6 �241:9
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A. Without the chiral-diquark interplay

We first show the phase structures without theK0-term in
Fig. 5. Panels (a) and (b) show the results of the case of
massless quarks, I, and finite mass quarks, II, respectively.
The phase diagram contains of a normal (NOR) phase
defined by � ¼ s ¼ 0, a Nambu-Goldstone (NG) phase
defined by � � 0 and s ¼ 0, and a color superconducting
(CSC) phase defined by � ¼ 0 and s � 0.1 The chiral

phase transition between the NG and NOR (or NG and
CSC) phases is first-order, with the chiral condensate �
changing discontinuously, while the color superconducting
phase transition between the CSC and NOR phases is
second-order, with the diquark condensate s changing
continuously but not smoothly with a discontinuity in the
diquark susceptibility @s=@T.
In case II, the current quark mass changes first-order

chiral phase transition to a crossover at high temperature,
whereas the first-order transition at high density region still
remains, as shown in Fig. 5(b). As a result, the second-
order critical point, the Asakawa-Yazaki point [17,18],
appears in the ð�; TÞ-plane. The QCD critical point moves
down towards the �-axis with increasing quark mass mq.

The region �� 0 is characterized by explicit breaking of

FIG. 5. The phase structure in the ð�; TÞ-plane in the three-
flavor NJL model without the axial anomaly for (a) case I,
massless quarks, and (b) case II, finite mass quarks. Phase
boundaries with a second-order transition are denoted by a single
line and a first-order transition by a double line. The dashed-dot
line at high T in panel (b) shows the effective chiral crossover
line, at which the susceptibility @�=@T peaks. See the text for
further detail.

FIG. 6. Phase structure in the ð�; TÞ-plane in the three-flavor
NJL model with the axial anomaly for (a) massless quarks, and
(b) finite mass quarks. The phase boundaries with a second-order
transition are denoted by a single line and a first-order transition
by a double line. The BEC-BCS crossover (dotted) line in (a) and
(b) is defined by � ¼ Mð�; TÞ, the dynamical quark mass.

1Even when chiral symmetry is broken only slightly (�� 0)
by the current quark mass, we use the same classification in
terms of NOR, NG and COE as in Fig. 5(b).
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chiral symmetry by the quark mass, while in the region
� � 0, chiral symmetry is dynamically broken.

B. With the chiral-diquark interplay

When the strength of the chiral-diquark coupling due to
axial anomaly, K0, is relatively small (K0 < 4:1K in case I
and K0 < 3:8K in case II), the topologies of the phase
structures remain unchanged, as one sees in Figs. 5(a)
and 5(b). On the other hand, once K0 exceeds a critical
value K0

c, the topological structure of the phase diagram
changes as seen in Fig. 6 (shown for K0 ¼ 4:2K): as
discussed in [20,21] using the Ginzburg-Landau approach,
the K0-term, which acts as an external field for �, turns the
first-order chiral phase transition into a crossover, and
leads to a low T critical point at intermediate density. As
a result, the coexistence (COE) phase defined by � � 0
and s � 0 spreads over the higher density region across the
second-order phase boundary from the NG phase in both
cases I and II. The emergence of the COE phase is con-
sistent with the model-independent result that the chiral
condensate � is proportional to the instanton density (or
the strength of the axial anomaly) in the CFL phase [47].

In Fig. 7, we depict K0
c as a function of K for several

values of the current quark mass, mq ¼ 0, mq ¼ 5:5 MeV,

andmq ¼ 140:7 MeV. The K0
c-line separates the crossover

and first-order regions; the chiral-diquark coupling K0
favors the crossover, while the triple chiral coupling K

favors first-order. As mq increases, the crossover region

is enlarged since the current quark mass acts as an external
field on the chiral condensate, weakening the chiral
transition.

IV. BEC-BCS CROSSOVER INDUCED BY THE
AXIAL ANOMALY

The axial anomaly, for sufficiently large chiral-diquark
coupling K0, not only triggers the low T critical point, but
also a BEC-BCS crossover in the COE phase, as discussed
in [40] in qualitative analogy with the cold atomic gases in
condensed-matter physics. Physically the BEC regime is
characterized by quark-pair sizes small compared to the
interparticle spacing, while in the BCS regime the pair size
is large compared with the interparticle spacing. The pos-
sibility of a BEC-BCS crossover in a color superconductor,
and the presence of a BEC regime, was first pointed out in
[31] by looking at the change in size of the pairs with
density. As shown later within an NJL-type model such a
BEC regime appears for sufficiently large pairing attrac-
tion,H, in the qq-channel [38]. The novel feature we stress
here is that the axial anomaly helps to realize the BEC
regime through its contribution to the effective qq coupling
in (17),

H0 � H þ 1
4K

0j�j: (23)

Although H ’ 0:9G alone is not enough to produce the
diquark BEC (see Fig. 5), the chiral-diquark coupling K0
increases H0 sufficiently for a BEC to develop (see Fig. 6).
Analytically, the distinction between the BEC and BCS

regimes lies in the nature of the quasiparticle dispersion
relations, Eqs. (21) and (22). For�>M, the minima of the
dispersion relations are at nonzero momentum p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �M2

p
, with excitation gaps �1 and �8, a structure

characteristic of the BCS regime. On the other hand, for
�<M, the minima of the dispersion curves are at p ¼ 0,
a structure characteristic of the BEC regime [29].
Figures 6(a) and 6(b) show the curve � ¼ Mð�; TÞ as
the dotted line in the COE region. A BEC of bound
diquarks exists between the solid and dotted lines. (Note
that at T ¼ 0 the dotted line ends at � ¼ 286:6 MeV in
case I and at � ¼ 297:8 MeV in case II, reflecting the
decrease of Mð�; T ¼ 0Þ from its vacuum value, Table I.)
The structure of the crossover from BEC to BCS, at the

NG-BEC and NOR-COE boundaries in Fig. 6, is most
clearly defined in terms of the diquark correlation function

GDð�;xÞ � �4H2hT�½sAð�;xÞsyAð0; 0Þ�i; (24)

with sAð�;xÞ ¼ qTð�;xÞC�5�A�Aqð�;xÞ (no summation
over A). In the random phase approximation (RPA), this
correlation function in the complex frequency (z) plane at
temperatures above the diquark condensation temperature
Tc is given by

FIG. 7. Critical lines in the ðK;K0Þ-plane at T ¼ 0 for several
values of the current quark mass mq (K0�

5 � 12:36). Chiral

phase transition is realized as a smooth crossover in the region
above the corresponding line while it is of first-order below the
line.
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G�1
D ðz;q ¼ 0Þ ¼ 1

4H0 � 4
X
	

Z
p
�

d3p

ð2�Þ3
1� 2fðEp 	�Þ
2ðEp 	�Þ 	 z

;

(25)

where fð�Þ ¼ 1=ðe�=T þ 1Þ is the Fermi distribution func-
tion and � is the ultraviolet cutoff. As we see from
Eq. (25), GD has a branch cut on the real axis for z �
2ðM��Þ (as well as a branch cut for z 
 �2ðMþ�Þ
from the antiparticle contribution).

In the regime �<Mð�;TÞ, for sufficiently large H0,
GDðz; 0Þ has a pole on the real frequency axis for 0 
 z ¼
MDð�; TÞ � 2� 
 2ðM��Þ, with MDð�; TÞ the mass of
a bound diquark. The system undergoes a BEC condensa-
tion when, at a given temperature, this pole first reaches
zero frequency, G�1

D ð0; 0Þ ¼ 0 [30,32,48]; thus the condi-
tion

2� ¼ MDð�; TÞ; (26)

determines the NG-BEC boundary (Fig. 6). With increas-
ing � the branch cut starting at 2ðM��Þ eventually
reaches down to z ¼ 0, at which point the pole at the origin
begins to move to complex values in the second Riemann
sheet. For �>Mð�; TÞ, the condition G�1

D ð0; 0Þ ¼ 0 de-
fines the onset of BCS pairing, studied in detail in
Ref. [49], and determines the NOR-COE boundary
(Fig. 6).

Because of the abrupt change of � across the first-order
transition line, the NG-BEC and NOR-COE boundaries are
not smoothly connected; the former touches the first-order
line at higher temperature than the latter (see Fig. 6). As
discussed more fully in [21], this difference can be under-
stood by noting that a larger chiral condensate � reduces
the density of states at the Fermi surface and simulta-
neously increases the effective qq coupling H0 [see
Eq. (23)]. Since the latter effect dominates in the present
parameter set, the critical temperature for diquark pairing
is larger on the left side of the double line.

The behavior of the Dirac massM, the Majorana mass or
gap�, and the bound diquark massMD associated with the
phase diagram in Fig. 6(b), are plotted in Fig. 8 as functions
of � for three temperatures, T ¼ 0, 62, and 80 MeV. At
zero temperature, we see the successive transitions from
the NG phase, the BEC regime in the COE phase, to the
BCS regime in the COE phase, with increasing �. The
onset of BEC at � ¼ 279:2 MeV is determined by the
condition MD � 2� ¼ 0. For T ¼ 62 MeV, we see rather
the successive transitions from the NG phase, the BEC
regime in the COE phase, the NOR phase, to the BCS
regime in the COE phase, with increasing�. The transition
from the BEC regime in the COE phase to the NOR phase
is first-order at � ¼ 284:5 MeV, with both M and �
jumping discontinuously. The two phase transitions, from
the NG phase to the BEC regime in the COE phase, and
from the NOR phase to the BCS regime in the COE phase,
signal the onset of a nonzero Majorana mass. Both tran-

sitions are correctly described in terms of the diquark
correlation function [see Eq. (25)]. For T ¼ 80 MeV, the
system undergoes a first-order transition, from the NG
phase to the NOR phase at � ¼ 260:7 MeV, which takes
place before bound diquarks start to condense.
Finally we consider the effect of the chiral-diquark

coupling K0 on the phases at T ¼ 0. Figure 9 shows the
phase diagram in the ð�;K0Þ-plane for massless quarks. (A

FIG. 8. The Dirac mass (M) and the Majorana mass (�) as
functions of � for T ¼ 0 MeV (top), 62 MeV (middle), and
80 MeV (bottom). The excitation gap of the bound diquark in the
medium, MD � 2�, extracted from the isolated zero of Eq. (25),
is also shown. The parameters are the same as in Fig. 6(b).
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similar structure holds for finite mass quarks.) For small
K0, the system has an NG phase and a COE phase separated
by a first-order line indicated by the double line which
eventually terminates for large K0 at the critical point P. On
the other hand, for K0 sufficiently large compared with the
cubic coupling, K, of the chiral field, a BEC regime of
bound diquarks appears across a second-order phase tran-
sition (solid line) from the NG phase at a critical chemical
potential � ¼ MD=2; the phase boundary joins the first-
order line at the critical end point Q. The dotted line, � ¼
Mð�; TÞ, shows the BEC-BCS crossover; for somewhat
smaller K0, a novel first-order transition from the BEC to
BCS regimes appears between P and Q, with discontinuous
changes of both the chiral and diquark condensates.

V. DISCUSSION

We have explored here the phase structure of dense
three-flavor matter using the Nambu–Jona-Lasinio model
incorporating the attraction between the chiral and diquark
condensates induced by the axial anomaly. We demon-
strated that the low temperature critical point between
the hadronic phase and the color superconducting phase
predicted by the previous Ginzburg-Landau analysis
[20,21] indeed appears in the phase diagram for suffi-

ciently large chiral-diquark coupling. We have also shown
in Eq. (23) that the axial anomaly enhances the attractive
interaction between quarks, leading to the emergence of a
Bose-Einstein condensate (BEC) of diquark molecules. As
a result, a BEC-BCS crossover in the diquark pairing
appears in the coexistence phase, which has both nonzero
chiral and diquark condensates.
In the phase diagram of the NJL model derived here, the

BEC regime is realized adjacent to the lower density
Nambu-Goldstone phase of massive quarks. In QCD, how-
ever, the low density phase is in reality nuclear matter;
There remains the important problem of learning how the
gas of bound diquarks and unpaired quarks undergoes a
transition to a gas of three-quark bound states, or nucleons,
at low density. Describing this transition will require going
beyond the mean-field approximation, and RPA, to take
into account residual interactions between the diquarks and
unpaired quarks. Recent work [50,51] on mixtures of
bosonic and fermionic atoms indicates a phase diagram
very reminiscent of this scenario in QCD.
It is also important to make our phase diagram more

realistic by including effects such as the Fermi momentum
mismatch induced by a strange quark mass, charge neutral-
ity and �-equilibrium. Open questions include whether the
low temperature critical point can survive in an inhomoge-
neous chiral crystalline phase [52,53] or the Fulde-Ferrell-
Larkin-Ovchinnikov phase [54–59], and how the phase
structure obtained here is affected by the confinement-
deconfinement phase transition characterized by the
Polyakov loop [10–13]. We defer these problems to future
publications.
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FIG. 9. The phase diagram in the ð�;K0Þ-plane at T ¼ 0 for
massless quarks, with the NG and COE phases. The BEC-BCS
crossover in the COE phase for largeK0 is shown as a dotted line.
The critical point and the critical end point are denoted by P and
Q, respectively.
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[46] T. Schäfer, Phys. Rev. D 65, 094033 (2002).
[47] N. Yamamoto, J. High Energy Phys. 12 (2008) 060.
[48] G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, and D.
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