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The photon behavior in an arbitrary superposition of constant magnetic and electric fields is considered

on most general grounds based on the first principles like Lorentz, gauge, charge, and parity invariance.

We make model-independent and approximation-independent, but still rather informative, statements

about the behavior that the requirement of causal propagation prescribes to massive and massless branches

of dispersion curves, and describe the way the eigenmodes are polarized. We find, as a consequence of

Hermiticity in the transparency domain, that adding a smaller electric field to a strong magnetic field in

parallel to the latter causes enhancement of birefringence. We find the magnetic field produced by a point

electric charge far from it—a manifestation of magnetoelectric phenomenon. We establish degeneracies of

the polarization tensor that—under special kinematical conditions—occur due to space-time symmetries

of the vacuum left after the external field is imposed.
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I. INTRODUCTION

In this paper we concentrate on behavior of real and
virtual electromagnetic excitations of the vacuum filled
with constant and homogeneous electric (E) and magnetic
(B) fields that are superposed in such a way that both field
invariants F ¼ ðB2 �E2Þ=2 and G ¼ ðB � EÞ are differ-
ent from zero. This makes the most general case of a
constant in space and in time electromagnetic field, such
that neither electric nor magnetic component can be elim-
inated from it by a Lorentz transformation, but a special
reference frame always exists, where they are parallel or
antiparallel.

To study this problem in the (infrared) asymptotic region
of vanishing excitation momentum components k� ! 0,

� ¼ 1; 2; 3; 0, it suffices to know the effective action as a
functional on the class of constant homogenous back-
ground field. In this approximation all dispersion curves
of the excitations are straight lines passing through the
origin in the plane of the natural kinematical variables
(we refer to the special frame) k20 � k23, k

2
?, where k0 is

the energy of the excitation, and k3 and k? are its momen-
tum projections onto the common direction (chosen as axis
3) of E and B and onto the transverse plane, respectively.
All massive excitations, i.e. the ones with nonzero rest
energy k0jk¼0 � 0, are lost in this limit, only photons
survive. Within this framework the problem of photon
propagation in a constant background, where F and G
are both nonzero, was first studied by Plebański [1].
More recently, Novello et al. [2] observed an interesting
possibility that the constant background field may be geo-
metrized to be represented by an equivalent metric. The
present authors, too, paid attention to the infrared limit by
proving recently [3] the convexity property of the effective
Lagrangian as a function of both variables F and G in the

point G ¼ 0, based on the requirements of unitarity and
causal propagation.
To adequately consider excitations with any momentum,

one is obliged to appeal to the second-rank polarization
tensor as a function of arbitrary 4-momentum k�, the latter

being not restricted to any mass shell, i.e. with arbitrary
virtuality k2 ¼ k2 � k20 � 0. The needed polarization op-

erator was first studied by Batalin and Shabad [4] (see also
the book [5]), who found the general covariant structure
and eigenvector expansion (the diagonal form) of the po-
larization operator and photon Green function in the con-
stant field with both invariants F and G, taken nonzero
simultaneously, that follows exclusively from the Lorentz,
gauge, and charge invariance and parity conservation of
quantum electrodynamics (QED). They also calculated the
polarization operator as an electron-positron loop in the
external field of arbitrary strength. Such one-loop calcu-
lations were repeated by Bayer et al. and Urrutia [6]. The
latter author also studied in more detail the useful further
approximation of small external field and zero virtuality,
and observed some features, which, as a matter of fact, are
independent of this approximation, as well as of the one-
loop approximation itself. The one-loop polarization op-
erator was revisited in [7] and, under simplifying kinemati-
cal conditions, was separately calculated in [8].
The ardor of investigators towards the study of light

propagation in the field that contains electric component
in any Lorentz frame was damped by the fact that within
the loop expansion such a field is, according to Schwinger
[9], unstable with regard to spontaneous electron-positron
pair production. A special theory for handling such fields
was developed in [10]. After exploited in one-loop calcu-
lations of the polarization operator in [11] this theory
indicated, with the help of the general analysis of
Ref. [12], that C invariance (the Furry theorem) is violated,
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while PT invariance (the Onsager theorem) is preserved,
hence there is no CPT. Once the Schwinger effect is
unknown beyond the loop expansion, it is ignored in the
analysis of the present paper, based exclusively on the
general principles, to which this effect contradicts.

During the years that followed most efforts were devoted
to the important special case of the one-invariant field with
G ¼ 0 and F � 0 that corresponds to a purely magnetic
field in a special Lorentz frame. We shall refer to it as
‘‘magneticlike.’’ The general analysis of Ref. [4] is also
valid in this case, whereas the corresponding one-loop
polarization operator is contained in the formulas of that
work as a simple limit G ¼ 0, analyzed specifically a bit
later in [13]. This limiting polarization operator was re-
calculated separately by Tsai [14]. It must be pointed out
that the one-loop polarization operator in a magneticlike
field for vanishing virtuality, k2 ¼ 0, had been known ear-
lier, after the important papers by Adler et al. [15]. The
simplification k2 ¼ 0 is sufficient for considering small
dispersion and has been permanently playing a significant
role in astrophysical applications. It does not serve, how-
ever, the case when large deviations from the vacuum
dispersion law take place, as is the case when cyclotron
resonances of the vacuum polarization at the thresholds of
creations of free [13] or mutually bound [16–18] electron-
positron pairs are exploited to produce the photon capture
[19] by a strong magnetic field of pulsars. Besides, the
assumption that k2 ¼ 0 completely excludes massive states
and, moreover, the whole of one of the three polarization
modes that cannot carry massless excitations.

The reason why the magnetic field attracted so much
attention was, of course, the discovery of extremely strong
magnetic fields (up to �1014–1015 G) in the vicinity of
many compact astronomical objects (soft gamma-ray re-
peaters, anomalous x-ray pulsars, and some radio pulsars)
identified with rotating neutron stars [20]. Still stronger
magnetic fields (B� 1016–1017 G) were predicted to exist
at the surface of cosmological gamma-ray bursters if they
are rotation-powered neutron stars similar to radio pulsars
[21]. Correspondingly, propagation of photons in a strong
magnetic field has been extensively studied aimed at ap-
plications to the theory of electromagnetic radiation of
strongly magnetized neutron stars (for a review, see
[22]). In parallel, some more academic features of non-
linear electrodynamics in a magnetic field were clarified,
such as the linear growth of dielectric constant with the
magnetic field [23], dimensional reduction of the Coulomb
field of a point source [24], and the upper bound to the
magnetic field due to positronium collapse [25]. Also the
notion of the anomalous magnetic moment of the photon
was introduced [26], especially interesting in the large-
field limit owing to the above linear growth [27].

In the meanwhile little attention has been paid to the
admixture of the electric field. One of the reasons was that,
although the electric field is generated along the magnetic

field lines in the magnetospheres of rotating, strongly
magnetized neutron stars [28], the component Ek in the

vicinity of all compact astronomical objects mentioned
above is sufficiently small (Ek=B � 1) [28] as compared

to the magnetic field. Hence, at first sight, Ek could result

in only minor corrections [29]. However, it may not be the
case at least for some processes that are forbidden without
the electric field ðEk ¼ 0Þ and might be allowed at Ek � 0.
Splitting of photons in a strong magnetic field (�þ B !
�0 þ �00 þ B) is one of the candidates to be such a process.
The point is that in a magneticlike field splitting of one
photon mode is allowed, while splitting of the other is
strictly forbidden [15,30]. As far as we are aware, the
polarization selection rules for photon splitting have never
been satisfactorily considered in the case of Ek � 0. Also,
it is not clear beforehand how the processes that depend on
the resonance will behave under inclusion of even a small
electric field.
On the other hand, extremely strong electric fields with

the strength as high as �ð10–102ÞE0 are predicted to exist
at the surface of bare strange stars that are entirely made of
deconfined quarks, where E0 ¼ m2

e=e ’ 1:3� 1016 V=cm
is the characteristic electric field value [31]. These electric
fields are directed perpendicular to the stellar surface and
prevent ultrarelativistic electrons of quark matter from
their escape to infinity. The surface magnetic fields are
expected to be more or less the same for neutron and
strange stars (from & 109 G to �1015 G or even higher),
and therefore, at the surface of strange stars the ratio Ek=B
may be both � 1 and � 1, i.e., it may be practically
arbitrary.
In this paper we are elaborating consequences of the

general structure of the polarization operator, established
in [4], for the propagation and polarization of photons and
massive vector excitations of the vacuum in the presence of
a constant background field with both field invariants
different from zero. Also some observations are made
depending on the one-loop approximation. These are ex-
iled to Appendix B.
In Sec. II we present a kinematical orthogonal basis and

the decomposition of the eigenvectors of the polarization
operator over it. We also present a simpler form of this
decomposition valid in the limit, where the mixing be-
tween the basic vectors is small, as for small admixture
of an electric field to a large magnetic one, and under
special kinematical conditions. We establish, as a conse-
quence of Hermiticity, that this admixture leads to increas-
ing the birefringence and strengthening Adler’s kine-
matical bans [15] for photon splitting in a magnetic field.
We discuss how Adler’s CP-selection rules are modified in
the case of the general field under consideration. We find in
the infrared limit four invariant functions, on which the
three polarization operator eigenvalues and eigenvectors
depend, in terms of the field derivatives of the effective
action to see explicitly that the eigenvalues disappear in the
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zero point of the 4-momentum as a consequence of gauge
invariance.

In Sec. III this property is used to ground the statement
that there always exist massless excitations to be identified
with photons present in two polarization modes, whereas
any number of massive branches may be present in all the
three modes.

By restricting the group velocity of an excitation to be
below the speed of light, we establish that in the special
frame each dispersion curve is limited from above in the

plane (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k23

q
, jk?j) by a straight line that crosses the

dispersion curve at jk?j ¼ 0 and is inclined to the coor-
dinate axes at the angle of 45� (see Fig. 1). Massless
branches are restricted to the exterior of the light coneffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k23

q
	 jk?j, whereas massive ones may cross it.

In Sec. IV we describe polarizations of electric and
magnetic fields of the eigenmodes and find the large-
distance behavior of the magnetic field produced by a point
electric charge placed in the background electromagnetic
field.

In Sec. V we establish degeneracies of the polarization
operator that result from the symmetries of the external
field.

Appendix A is technical. In Appendix B we present one-
loop approximation for one of the invariant functions
responsible for mixing eigenmodes in the limit of small
electric admixture to the external magnetic field,G ! 0. It
has cyclotron resonances starting with the second threshold
of electron-positron pair creation by a photon in a magnetic
field. Therefore, the mixing does not affect the photon
capture effect at the first threshold important for radiation
formation in the pulsar magnetosphere. Appendix C serves
the use of the idea of group velocity in Sec. III. We

illustrate how its definition should be extended to the
abnormal dispersion domain so that it might be kept below
the velocity of light in that domain, too.

II. POLARIZATION OPERATOR, ITS
EIGENVECTORS AND EIGENVALUES

Before starting, technical conventions are in order.
There are two field invariants F ¼ 1

4F��F�� and G ¼
1
4F��

~F�� of the background fields and two Lorentz-scalar

combinations kF2k and k ~F2k of the background field
strength tensor F�� and momentum k� of the elementary

excitation, subject to the relation

k ~F2k

2F
� k2 ¼ kF2k

2F
: (1)

The dual field tensor is defined as ~F�� ¼ i
2 ����ßF�ß,

where the completely antisymmetric unit tensor is fixed
in such a way that �1234 ¼ 1. We use the notations ð ~FkÞ� 

~F��k�, ðFkÞ� 
 F��k�, F

2
�� 
 F��F��, ðF2kÞ� 
 F2

��k�,

kF2k 
 k�F
2
��k�, k2 
 k2 þ k24 ¼ k2 � k20, and are

working in Euclidian metrics with the results analytically
continued to Minkowsky space; hence, we do not distin-
guish covariant and contravariant indices. The scalar var-
iables

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þG2

qr
; E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þG2

qr
(2)

make the meaning, respectively, of the magnetic, B ¼
B ¼ jBj, and electric fields, E ¼ E ¼ jEj, in the (special)
Lorentz frame, where B and E are directed along the same
axis chosen as axis 3 in what follows. The designation
‘‘,’’ will establish correspondence between quantities
relating to the general Lorentz frame and the values these
take in the special frame. Referring to the fact that in the
special frame the momentum-containing invariants be-
come

k ~F2k ¼ B2ðk23 � k20Þ � E2k2?;

kF2k ¼ �B2k2? þ E2ðk23 � k20Þ;
(3)

we shall use the equivalence relations

k2B2 þ kF2k

B2 þ E2
, k23 � k20;

k2E2 � kF2k

B2 þ E2
, k2? (4)

throughout the paper.
Polarization operator ���ðx; yÞ is responsible for small

perturbations above the constant-field background. It fol-
lows from the translation- Lorentz, gauge, PT, and charge
invariance [4,5] that its Fourier transform can be presented
in a diagonal form

k

m

k0
2 k3

2 1 2

FIG. 1. Disposition of dispersion curves. The lower bold solid
line is the massless (photon) dispersion curve restricted from
above by the light cone k2 ¼ 0, presented by the thin solid line.
The upper solid bold line, representing a massive branch, cannot
pass higher than the straight dotted line, originating from its
crossing with the vertical axis according Eq. (27). The dashed
lines show a quasi-interception.
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���ðk; pÞ ¼ 	ðk� pÞ���ðkÞ;

���ðkÞ ¼
X3
a¼1

ßa
[ðaÞ
� [ðaÞ

�

ð[ðaÞÞ2 ;
(5)

where [ðaÞ
� are its eigenvectors

���[
ðaÞ
� ¼ ßa[

ðaÞ
� ; a ¼ 1; 2; 3; 4; (6)

while the eigenvalues ßa are scalar functions of F, G,
kF2k, and k ~F2k.

The fourth eigenvector is trivial, [ð4Þ
� ¼ k�, so the fourth

eigenvalue vanishes, ß4 ¼ 0, as a consequence of the 4-
transverseness of the polarization operator, ���k� ¼ 0.

All eigenvectors are mutually orthogonal, [ðaÞ
� [ðbÞ

� � 	ab;

this means that the first three are 4-transversal, [ðaÞ
� k� ¼ 0.

In the special case, where the second field invariant
disappears, G ¼ 0, the three meaningful eigenvectors

[ð1;2;3Þ
� are known [4,5,13] in the universal final form:

[ð1Þ
� jG¼0 ¼ ðF2kÞ�k2 � k�ðkF2kÞ;

[ð2Þ
� jG¼0 ¼ ð ~FkÞ�; [ð3Þ

� jG¼0 ¼ ðFkÞ�:
(7)

This case implies that in the special frame only a magnetic,
when F> 0, or only electric, when F< 0, field exists. In
the limit k2 ¼ 0 modes 2, 3 correspond to Adler’s [15] ?
and k modes, respectively, whereas mode 1 becomes pure
gauge. Vectors (7) may be used as a convenient orthogonal
basis also when no external field is present. But whenG �
0, they no longer diagonalize the polarization operator
already because the vectors ð ~FkÞ� and ðFkÞ� stop being

mutually orthogonal, since their scalar product �k ~FFk ¼
Gk2 is now nonzero.

WhenG � 0, the first eigenvector is expressed in terms
of the fields by the same formula as in (7):

[ð1Þ
� ¼ ðF2kÞ�k2 � k�ðkF2kÞ;

ð[ð1Þ ~FkÞ ¼ ð[ð1ÞFkÞ ¼ 0;

ð[ð1ÞÞ2 ¼ k2ðk2E2 � kF2kÞðk2B2 þ kF2kÞ
, k2ðB2 þ E2Þ2k2?ðk23 � k20Þ (8)

and the first eigenvalue is given by the formula

ß1 ¼ k2ðB2 þ E2Þ
k2B2 þ kF2k

�1 , k2

k23 � k20
�1; (9)

where the scalar function of the fields and momentum �1

here, as well as other�’s below, is a linear superposition of
the polarization tensor components ���. The other two

eigenvectors are the linear combinations

[ð2;3Þ
� ¼ �2�3c

�
� þ ½�2 ��4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 ��4Þ2 þ 4�2

3

q
�cþ�
(10)

(where the square root is understood algebraically:
ffiffiffiffiffiffi
Z2

p
¼

Z, and not jZj) of two orthonormalized vectors:

c�� ¼ BðFkÞ� þ Eð ~FkÞ�
ðB2 þ E2Þ1=2ðk2E2 � kF2kÞ1=2

, BðFkÞ� þ Eð ~FkÞ�
ðB2 þ E2Þjk?j

;

cþ� ¼ i
EðFkÞ� �Bð ~FkÞ�

ðB2 þ E2Þ1=2ðk2B2 þ kF2kÞ1=2

, EðFkÞ� � Bð ~FkÞ�
ðB2 þ E2Þðk20 � k23Þ1=2

;

ðcþc�Þ ¼ ðc�[ð1ÞÞ ¼ ðc�kÞ ¼ 0; ðc�Þ2 ¼ 1;

(11)

thereby of the former basic vectors ð ~FkÞ� and ðFkÞ�, too.
The corresponding two eigenvalues are

ß2;3 ¼ 1
2½�ð�2 þ�4Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 ��4Þ2 þ 4�2

3

q
�: (12)

The scalar coefficients in the linear combination (10) can-
not be expressed in a universal way in terms of the field and
momentum, but are irrational functions of the polarization
tensor components. The reason is that the polarization
operator is a linear combination of four independent ma-
trices with four scalar coefficients, whereas there may be
only three eigenvalues in accordance with three polariza-
tion degrees of freedom of a vector field. (When G ¼ 0,
the number of independent matrices reduces to three.) The

orthogonality ðbð2Þbð3ÞÞ ¼ 0 is explicit in (10). The
Lorentz-invariant coefficients �1;2;3;4 are functions of the

background fields and momenta. Expressions for them as
simple linear superpositions of the components ���,

�1 ¼
ðkF2Þ����ðF2kÞ�

ðB2 þ E2Þðk2E2 � kF2kÞ ; �2 ¼ �c�����c
�
� ;

�3 ¼ �c�����c
þ
� ; �4 ¼ �cþ����c

þ
� (13)

are obtained in Appendix A from a less transparent repre-
sentation to be found in [4,5]; their calculations in one-loop
approximation of QED are given in [4,5].
The transparency domain of momenta is such a region

where absorption is absent. The electron-positron pair
production by a photon is an example of absorption. The
region, where it is kinematically allowed, is not the trans-
parency domain. The absence of absorption of small per-
turbation of the background field is reflected in the
property of Hermiticity [12] of the matrix ���. It is

symmetric when the charge conjugation invariance holds
[5,12] (no charge-asymmetric plasma background, no
spontaneous pair creation). Hence, in the transparency
region all the components of��� are real in the case under

consideration, once the charge conjugation invariance is
assumed. Then, all �’s defined by (13) are also real there,
except the region k23 � k20 > 0 (or, in invariant terms,

k2B2 þ kF2k > 0) wherein �3 becomes imaginary due to
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(11) and (13). (We shall see later that dispersion curves
cannot get into this region without violating the stability.)
In this exceptional region the quantity under the square
root in (10) and (12) stops being manifestly positive.
Nevertheless, it should remain non-negative, since eigen-
values of a Hermitian matrix should be real.

The dispersion equations that define the mass shells of
the three eigenmodes are

ßaðk ~F2k; kF2k;F;G2Þ ¼ k2; a ¼ 1; 2; 3: (14)

We have explicitly indicated here that the eigenvalues
should be even functions of the pseudoscalar G.

When, due to a certain reason, �3 is small as compared
to j�2 ��4j, the small mixing of eigenmodes is obtained
by expanding (10) in powers of�3=j�2 ��4j. In this way
we get, with the linear accuracy in �3, after normalizing
out the common factors 2 and 2�3=ð�2 ��4Þ,

[ð2Þ
� ¼ ��3c

�
� þ ð�2 ��4Þcþ�;

[ð3Þ
� ¼ ð�2 ��4Þc�� þ�3c

þ
�:

(15)

Such a situation occurs, first of all, when the electric field is
small as compared to the magnetic one, which we shall
discuss now, and also for two cases of special kinematical
conditions considered in Sec. V.

In the limiting regime of small G ! 0, one has E 

G=B. So E is a pseudoscalar, hence c�� is a vector, and cþ� a

pseudovector, the same as ðFkÞ� and ð ~FkÞ�, respectively,
are. Then, from (10) it follows that �3 is a pseudoscalar
vanishing linearly:�3 �G 
 ðEBÞ ! 0. [This fact is also
in agreement with the infrared limit (20) below, since L
depends onG2, and with the one-loop result in [4,5] ]. The

eigenvector [ð2Þ
� given by Eq. (10) with the upper sign in

front of the square root becomes in this limit cþ� � ~Fk�, as

prescribed by (7). On the contrary, the eigenvector [ð3Þ
�

given by Eq. (10) with the lower sign becomes c�� � Fk�,

because the coefficient in front of cþ� in (10) decreases as

�2
3. The coefficient �3 becomes responsible for mixing

eigenmodes, characteristic of an external magnetic field
due to the perturbation caused by electric field. (See
Appendix B for the linearly vanishing G ! 0 limit of �3

as calculated within one-loop approximation of quantum
electrodynamics.)

The difference between ß1 and ß2 in Eq. (12) is respon-
sible for the birefringence, inherent to the problem of light
propagation already when G ¼ 0. Bearing in mind that
�2;4 are scalars and may, thus, contain the pseudoscalar G

only in even powers, while �3 contains only odd powers,
from (12) it may be concluded, prior to any dynamical
calculations, that the birefringence is enhanced as soon as
an extra field, small in magnitude, is added in parallel to the
already existing single-invariant field to produce small G:

jß2 � ß3j ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 ��4Þ2 þ 4�2

3

q
j � j�2 ��4j: (16)

This is true in the domain k20 > k23, where �3 is real. We

discuss later why dispersion curves should lie just in this
domain. Therefore, the dispersion curves of modes 2, 3
tend to repulse from each other [32]. Thereby, Adler’s
kinematical selection rules [15] that ban some processes
of one photon splitting into two in a magnetic field are
strengthened if an electric field is added. As for his
CP-selection rules [33], those now should be applied to
the eigenwaves, given as (10), and read as follows: among
the three � states involved into the reaction � ! �� there

may be only two or none of mode-2 states, since [ð2Þ
� is a

pseudovector, while [ð1;3Þ
� are vectors. However, any state,

prepared as an eigenstate in the magnetic field alone may
decay into two like states under the perturbation caused by
the electric field disregarding the initial CP bans, since the
electric field introduces the pseudoscalar G.
The infrared limit, k� ! 0, of the polarization operator

is important. To get it, it is sufficient to have at one’s
disposal only the effective Lagrangian LðF;GÞ, from
where the dependence on the time and space derivatives
of the field F�� is disregarded [34]. In the limit of vanish-

ing momenta the invariant coefficients �1;2;3;4 are qua-

dratic functions of k� expressed in terms of the

(momentum-independent) derivatives LF ¼ @L=@F,
LFF ¼ @2L=@F2, LGG ¼ @2L=@G2, and LFG ¼
@2L=@F@G as follows:

�1jk�!0 ¼ ðk23 � k20ÞLF; (17)

�2jk�!0 ¼ �k2LF � k2
?ðB2LFF þ E2LGG þ 2GLFGÞ;

(18)

�4jk�!0 ¼ �k2LF þ ðk23 � k20ÞðE2LFF þ B2LGG

� 2GLFGÞ; (19)

�3jk�!0 ¼ ðk2
?Þ1=2ðk20 � k23Þ1=2fLFGðB2 þ E2Þ

� ðLGG þ LFFÞGg: (20)

We have written these formulas referring to the special
frame. The equivalence relations (4) allow one to immedi-
ately restore their invariant form valid in any frame.
Equations (17)–(20) are obtained using the definition of
the polarization operator components as the second deriva-
tives with respect to vector-potentials components (see,
e.g. [3]). Insofar as one is interested in the quantities
�ijk�!0 up to one-loop accuracy, one should either take

the Heisenberg-Euler expression for L here or pass to the
infrared limit in the expressions for �i calculated within
one-loop approximation in [4]. The two-loop approxima-
tion for L is also available [35].
From Eqs. (17)–(20) the vanishing of the eigenvalues in

the zero-momentum point
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ßajk¼0 ¼ 0; a ¼ 1; 2; 3 (21)

follows. This property is, in the end, a consequence of the
gauge invariance that requires that the effective Lagrangian
should depend only on the field strengths, and not
potentials.

III. DISPERSION CURVES

In the special frame dispersion equations (14) can be
represented in the form

ßaðk20 � k23; k
2
?; B

2; E2Þ ¼ k2? þ k23 � k20; a ¼ 1; 2; 3

(22)

and their solutions that express the energy k0 of the ele-
mentary excitation of a given mode a in terms of its spatial
momentum components k3, k? have the following general
structure, provided, in the end, by the invariance of the
external field under rotation around axis 3 and the Lorentz
boost along this axis,

k20 ¼ k23 þ faðk2?Þ; a ¼ 1; 2; 3; (23)

where the dispersion functions faðk2?Þ certainly depend

also on the external fields.
In this point we are going to apply the causality principle

in the form of the requirement that the modulus of the
group velocity, vgr ¼ @k0=@k, calculated on each mass

shell (23), be less than or equal to the speed of light in
the free vacuum c ¼ 1 to see what consequences follow for
the disposition of dispersion curves. Before doing this we
have to make some necessary reservations. So long as we
are in the transparency domain of momentum space the
group velocity is the speed of (the maximum of) a wave
packet, which may be used for a signal transmission (see,
e.g., [36]). Therefore, it should not exceed unity, since
otherwise—in violation of causality—by an appropriate
Lorentz transformation the response can be done preceding
the disturbance [37]. It was demonstrated in [38] that the
presence of an external agent, e.g. the background field,
violating the Lorentz invariance, is not an obstacle for
constructing the ‘‘time-machine,’’ once a superluminal
signal is at one’s disposal—under the condition that the
external agent is itself subjected to Lorentz transformation.

On the contrary, in the domain of absorption and abnor-
mal dispersion, the wave packet is diffused and/or ab-
sorbed before it can transmit a signal. It is a common
statement that then the group velocity exceeds unity with-
out contradicting the causality, since it no longer can be
interpreted as a signal speed. In Appendix C, working
within the customary optic context, we introduce an ex-
tension of the notion of the group velocity from the trans-
parency to absorption domain following the definition
vgr ¼ @k0=@k ) @ðRe k0Þ=@k, whereas the standard ex-

tension, in fact, is vgr ¼ @k0=@k ) @k0=@ðRekÞ, here Re
denotes real part. This enables us to keep the (so extended)

group velocity below unity within the domain of abnormal
dispersion, too.
Below in this section we shall establish the disposition

of dispersion curves in the transparency domain as it
follows from the restrictedness of the group velocity pos-
tulate. Based on Appendix C, we admit that the configu-
ration of dispersion curves established should survive the
abnormal dispersion, provided the dispersion curves are
understood as giving the dependence of the real part,
Reðk20 � k23Þ, as a function of the real variable k2?.
The restriction imposed on the group velocity is

jvgrj2 ¼
�
@k0
@k3

�
2 þ

�������� @k0
@k?

��������2¼ k23
k20

þ
��������k?
k0

f0a
��������2

¼ k23 þ ðf0aÞ2k2?
k23 þ faðk2?Þ

	 1; (24)

where f0a ¼ dfaðk2?Þ=dk2?. This imposes the obligatory

condition on the form and location of the dispersion curves
(23) in the transparency domain, i.e. on the function faðk2?Þ
[remember that k23 þ faðk2?Þ � 0 due to (23)]:

k2?

�
dfaðk2?Þ
dk2?

�
2 	 faðk2?Þ: (25)

This inequality requires first of all that faðk2?Þ � 0, hence
no branch of any dispersion curve may get into the region
k20 � k23 < 0. If it might, the photon energy k0 would be

imaginary within the momentum interval 0< k23 <
�faðk2?Þ, corresponding to the vacuum excitation expo-

nentially growing in time. This sort of ghost would signal
the instability of the vacuum with a background field.
Inequality (25) further requires that

df1=2a ðk2?Þ
dk?

	 1; or f1=2a ðk2?Þ 	 f1=2a ð0Þ þ k?; (26)

where m ¼ f1=2ð0Þ is the rest energy (mass) of the ele-
mentary excitation: m2 ¼ ðk20 � k23Þjk?¼0 ¼ k20jk3¼k?¼0.

The inequality

ðk20 � k23Þ1=2 	 mþ k? (27)

that follows from (26) and (23) is an obligatory restriction
imposed by causality principle on the dislocation of dis-
persion curves in the presence of constant magnetic and
electric fields, at least as long as these are solutions to
dispersion equations (22) with real energy k0 (for real
values of momentum components k1;2;3). In the empty

space the restriction that appears in the similar way is k0 	
k0jk¼0 þ jkj. It is certainly obeyed by the free massive

particle: k0 ¼ ðk2 þm2Þ1=2 	 mþ jkj, where m ¼
ðk0Þjk¼0.
The gauge invariance property (21) implies via Eq. (14)

that for each mode there always exists a dispersion curve
with m2 ¼ fað0Þ ¼ 0, which passes through the origin in
the ðk20 � k2k; k

2
?Þ plane. It is such a branch that is to be
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called a photon, since it is massless in the sense that the
energy k0 turns to zero for the excitation at rest, k3 ¼ k? ¼
0 (although, generally, k2 � 0 where k � 0). Other
branches for each polarization mode a may also appear
provided that a dynamical model includes a massive exci-
tation of the vacuum with quantum numbers of a photon,
for instance the positronium atom [5,16–18] or a massive
(pseudo)scalar particle (axion) in a gauge-invariant inter-
action with the electromagnetic field [39]. Note that, while
the number of polarization modes of a vector particle is
three—in correspondence with the dimension of the space
and, hence, with the number of degrees of freedom—the
dispersion curve for each of the three modes may have any
number of branches, e.g. an infinite number of excited
positronium branches. The energy on a dispersion curve
should be real, since the dispersion equation (14) supplies
poles to the photon propagator [4,5],

D��ðkÞ ¼
X3
a¼1

[ðaÞ
� [ðaÞ

�

ð[ðaÞÞ2
1

k2 � ßaðkÞ
(28)

(defined up to arbitrary longitudinal part�k�k�), and these

should not get into a complex plane. If the state is unstable
and should therefore decay, its energy must have an imagi-
nary part, indeed, but in this case the pole is located on a
nonphysical sheet of the complex plane, whose presence
must be provided by branching points in the polarization
operator to be introduced within an approximation where
the state is expected to be unstable. An example of such a
situation is given by the cyclotron resonance [13] approxi-
mation of the polarization operator in a magnetic field. The
corresponding dispersion equations are cubic with respect
to energy squared. Out of its three solutions, one corre-
sponds to a stable state and, therefore, is real, whereas the
other two mutually complex conjugated branches respon-
sible for the photon decay/capture to electron-positron
pairs belong to nonphysical sheets of the complex-energy
plane. Neither of these solutions can be disregarded.

On the other hand, the number of massless modes is, as a
matter of fact, not three, but only two, as it should be for a
photon. The point is that the massless branch of the dis-
persion curve for mode 1 does not correspond to any real
elementary excitation, except for two special cases. It
follows from (9) and (17) that

ß1jk�¼0 ¼ k2
@LðF;GÞ

@F
: (29)

Hence, the light cone k2 ¼ 0 is a guaranteed solution to the
dispersion equation (14) for mode 1 in the vicinity of the
origin k� ¼ 0. Can there exist massless excitations in

mode 1 other than k2 ¼ 0? The answer is ‘‘no,’’ because
from (29) it follows that k2 ¼ 0 is the only possibility for a
dispersion curve of mode 1, as it approaches the origin
k� ¼ 0. Now, from Eq. (8) it is seen that both electric and

magnetic fields in mode 1 disappear at k2 ¼ 0, since on this
mass shell the elementary excitation is pure gauge, unless

either k2E2 � kF2k� k2? ¼ 0 or k2B2 þ kF2k� k23 �
k20 ¼ 0, in which cases the common factor k2 can be

normalized out from [ð1Þ
� (8). These exceptional cases

propose kinematical conditions for degeneracy of the po-
larization tensor to be discussed in Sec. V. For the first of
them, the one of parallel propagation, k2? ¼ 0, the mode-1

photon is actual, while, on the contrary, the mode-2 photon
no longer exists, the mode-2 excitation becoming massive,
as argued below in Sec. V. The overall number of massless
degrees of freedom, therefore, is again two. Note that
although k? ¼ 0 may seem to be an isolated point, as a
matter of fact this is not the case: every nonparallel propa-
gation k? � 0 reduces to perpendicular propagation k3 ¼
0 by a Lorentz boost along axis 3, which does not lead us
out of the special frame. In the second exceptional case,
k23 � k20 ¼ 0, again the mode-1 photon is actual, but the

mode-3 photon does not exist according to Sec. V. So the
number of massless degrees of freedom is two in this case,
too.
We concluded above in this section that the causality

requires that in the plane (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k23

q
, k?), when k0;1;2;3 are

all real, the photon dispersion curves (m ¼ 0) are located
outside or coincide with the light cone: k2 � 0.
(Remember that the light cone k2 ¼ k2 � k20 ¼ 0 is the

mass shell of a photon in the vacuum without an external
field.) However, unlike the case indicated below Eq. (25), a
violation of this ban would not lead to a complex-energy
ghost or directly signalize the vacuum instability, but
would mean the presence of a superluminal wave, known
as tachyon. On the other hand, massive branches of the
dispersion curves as restricted by the condition (27) with

m ¼ f1=2ð0Þ � 0may well cross the light cone and pass to
its exterior. They may even quasi-intercept with the mass-
less (photon) branches or with branches possessing differ-
ent m. The quasi-interceptions—i.e. the would-be
interception of dispersion curves of two states taken as
independent within a certain approximation—would result
in the mutual repulsion of the dispersion curves leading to
formation of mixed states, polaritons, an example of which
is given by a photopositronium—a mixed state between a
photon and the electron-positron bound state created by it
in a strong magnetic field [5,16–18]. This situation is
illustrated by Fig. 1. As noted above there are grounds to
believe that the same pattern of dispersion curves holds
also when at least one of the dispersion curves corresponds
to an unstable state subject to quasi-interception with
another curve.
The refraction index squared n2a is defined for photons of

mode a on the mass shell (23) as

n2a 
 jkj2
k20

¼ 1þ k2? � faðk2?Þ
k20

: (30)

It follows from (26) with m ¼ f1=2ð0Þ ¼ 0 that the refrac-
tion index, outside an abnormal dispersion band, is greater
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than unity—the statement common in standard optics of
media [this is certainly not true for (massive) plasmon
branches]. Consequently, the modulus of the phase velocity

in each mode v
ph
a ¼ ðk0=jkj2Þk equal to 1=na is, for the

photon proper, also smaller than the velocity of light in the
vacuum c ¼ 1. This is not the case for a massive—e.g.
positronium—branch of the photon dispersion curve,

where jvpha j> 1 without any impact for causality.
Now that we established that for photons one has k2 �

k20, or k
2 � 0, we see from the dispersion equation (14) that

the eigenvalues ßa are non-negative in the momentum
region, where the photon dispersion curves lie, i.e. the
polarization operator is a non-negatively defined matrix
there.

We have yet to comment on the possibility of violations
of the causal propagation requirement not associated with
abnormal dispersion that may result from calculations
depending on certain approximations or models. Such
violations are known for photon propagation in external
metrics [40], also under the conditions where the Casimir
effect should take place [41], and in the noncommutative
electrodynamics with the external field [42]. In view of the
discussion in [38] these violations should be, at least in
some cases, thought of as serious trouble for the relativity
theory.

Within our present context we have to note that, too, in a
constant background magnetic field the group velocity (in
mode 2) becomes, for magnetic fields of the Planck order
of magnitude, B> Bcr

2 ¼ ðm2=eÞ expf1:79þ 3
=�g,
where m and e are the electron mass and charge, and � ¼
1=137 is the fine structure constant, greater than unity
[3,43], provided we rely on one-loop calculations of the
polarization operator or of the effective Lagrangian. To
avoid the discrepancy with the basic principle of causality,
we must be thinking of a probable mechanism that would
make a production of such fields impossible—in analogy
with the customary attitude towards ‘‘the perfectly rigid
body’’ that is ruled out, already because it would produce
ground for a faster-than-light sound wave. In our case we
are seemingly able to indicate such a mechanism. The
point is that for the magnetic field, smaller than the value
Bcr
2 , above which the dispersion curve of mode 2 enters the

interior of the light cone, forbidden for it by the causal
propagation requirement, but larger than B ¼ Bcr

3 ¼
ðm2=eÞ expf0:79þ 3
=�g< B2, the magnetic field be-
comes unstable, since the dispersion curve is situated in
the region of negative k20 � k23 in the field interval Bcr

3 <
B< Bcr

2 .

IV. ELECTROMAGNETIC FIELDS OF SMALL
PERTURBATIONS OF THE BACKGROUND FIELD

A. Polarization of eigenmodes

In the special frame some peculiarities can be revealed
about orientations of electric and magnetic fields in the

virtual or real eigenmodes, formed out of eigenvectors [ðaÞ
l

as of 4-potentials according to the standard rules eðaÞm ¼
iðk4[ðaÞ

m � km[
ðaÞ
4 Þ, hðaÞm ¼ i"mnl[

ðaÞ
n kl. To this end let us

write down the eigenvector [ð1Þ
� (8) (after normalizing it)

and the basic vectors c�� (11), in the special frame:

[ð1Þ
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jð[ð1ÞÞ2j
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k23

q
ffiffiffiffiffiffiffiffijk2jp

k?
jk?j
k3jk?j
k20�k23

�ik0jk?j
k20�k23

0
BBB@

1
CCCA

�

;

c�� ¼
½k?���
jk?j
0
0

0
B@

1
CA

�

; cþ� ¼
0

�k0ffiffiffiffiffiffiffiffiffiffi
k20�k23

p
ik3ffiffiffiffiffiffiffiffiffiffi
k20�k23

p

0
BBB@

1
CCCA

�

:

(31)

The upper positions in every column are occupied by two-
component vectors in the perpendicular plane (1; 2); next
go the third and fourth components. The normalizing factor

is jð[ð1Þ
� Þ2j ¼ ðE2 þ B2Þ2ðk20 � k23Þjk2jjk?j2. Here � is the

unit vector along axis 3 and ½k? � �� stands for the vector
product: ½k? � ��m ¼ "mnsðk?Þn�s. The difference k20 �
k23 is understood to be non-negative for real excitations, but
may be imaginary for virtual ones.

From the normalized expression in (31) for [ð1Þ
� , we find

for the electric and magnetic fields in mode 1:

e ð1Þ ¼ k0
k?
jk? j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk2j

k20 � k23

s
;

hð1Þ ¼ ½k? � �� k3
jk? j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk2j

k20 � k23

s
:

(32)

Naturally, the electric and magnetic fields in mode 1 are
oriented in the same way as in the single-invariant external
field: they both lie in the plane, orthogonal to the external
fields, they are mutually orthogonal; besides, the magnetic

field is transverse, ðhð1ÞkÞ ¼ 0, while the electric field,

generally, is not: ðeð1ÞkÞ � 0; it is transverse for the special
case of propagation along the external fields k? ¼ 0. It is
seen again that a massless excitation is possible in mode 1
as long as it propagates along the external field, otherwise
the fields (32) vanish if k2 ¼ 0, unless k? ¼ 0, when the
square root turns to unity.
The electric fields carried by the vectors cþ� and c�� ,

respectively, are

eþ ¼ fk?k3 þ �ðk23 � k20Þg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 þ E2Þ

ðk2B2 þ kF2kÞ

s

¼ k?
k3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k23 � k20

q þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 � k20

q
;

ðeþe�Þ ¼ 0; ðeþkÞ � 0;

(33)
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e� ¼ ½k? � ��k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2 þ E2Þ

ðk2E2 � kF2kÞ

s

¼ ½k? � �� k0
jk?j ; ðe�kÞ ¼ 0; (34)

while their magnetic fields are

hþ ¼ ½k? � �� k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 � k20

q ; h� ¼ �k?
k3
k?

þ �k?;

ðh�kÞ ¼ ðhþh�Þ ¼ ðh�e�Þ ¼ 0: (35)

The orthogonality of the electric fields ðeþe�Þ ¼
ðeð1Þe�Þ ¼ 0, seen in Eqs. (32)–(34), originates from the
fact that, in the special frame, the time component of one of
their mutually orthogonal (cþc� ¼ 0), and 4-transversal
(c�k ¼ 0) vector potentials c�� disappears: c�0 ¼ 0. The 3-

vector e� is directed along the axis (call it axis 1), or-
thogonal to the plane, where the external fields and the
propagation vector k lie [the plane ð3; 2Þ]. The vector eþ
lies in that plane. It makes the universal angle

� ¼ arctanðk3k?=ðk20 � k23ÞÞ (36)

with the direction of the external fields 3. Also the mag-
netic field h� lies in the plane spanned by the external
fields and the propagation direction, while hþ is orthogo-
nal to this plane.

We are in a position to conclude that electric fields in the

eigenmodes 2 and 3, eð2;3Þ, responsible for massless exci-
tations, lie both in the common plane, spanned by the
vectors e�,

e ð2;3Þ
� ¼ �2�3e

�
� þ ½�2 ��4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 ��4Þ2 þ 4�2

3

q
�eþ�; (37)

one of which (e�) is orthogonal to the plain, where the
external fields and the propagation momentum k lie, while
the other ( eþ) belongs to that plane and makes the angle
(36), that depends only on momentum components, with
the external fields. The fields (37) are not, generally, mu-
tually orthogonal, since e� are not unit-length vectors.
Also the magnetic fields of the modes 2, 3 lie in the
common plane spanned by the two vectors h� and are
linearly combined of them with the same coefficients as in
(37). It can be checked that the electric and magnetic fields
in each mode are mutually orthogonal, of course:

ðhð2;3Þeð2;3ÞÞ ¼ 0.
In the special case of only one invariant different from

zero,�3 �G 
 ðE=BÞ ! 0, the eigenvectors [ð2;3Þ
� (7) are

the same as c�� (11) owing to (10), hence e�, Eqs. (33) and
(34) and h�, Eq. (35), become the electric and magnetic
fields of the corresponding eigenmodes, coinciding with
their expressions known from Refs. [4,13] with the par-
ticular property, that the electric field of mode 2 lies in the
plane (3; 2), while that of mode 3 is orthogonal to this

plane, known for the special case of zero virtuality, k2 ¼ 0,
from Ref. [15].

B. Magnetoelectric effect

In the magneticlike field it is known that virtual photons
of mode 2 are carriers of electrostatic [3,24] forces,
whereas those of modes 1 and 3 are responsible for mag-
netostatic interaction [3]. These statements follow from the
representation (31) for the basic vectors, that become
eigenvectors in that special case, and from the diagonal
representation of the Green function (28) that allows one to
write electric and magnetic fields created by various (static
included) configurations of small—as compared to the
background field—charges and currents. The mixing of
the basic vectors (10) in eigenmodes 2 and 3 for the general
external field with G � 0 makes these statements no lon-
ger true in what concerns these modes, mode 3 remaining
as it was. Moreover, thanks to the mixing, a static electric
charge, if placed in the external field with the both invar-
iants different from zero, gives rise not only to an electric
field, as usual, but also to a magnetic field of its own, like a
magnetic charge or moment. Also stationary currents pro-
duce some electric admixture to their customary magnetic
fields.
Here we consider this analogue to the magnetoelectric

effect known in crystals [44] using the field of a pointlike
static charge q taken at rest in the special frame as an
example. We set the 4-current corresponding to this source
in the coordinate space x as j�ðxÞ ¼ q	�0	

3ðxÞ, where
	�0 is the Kronecker symbol and 	3ðxÞ is the Dirac delta

function. Integrating this current with the Green function
(28) we obtain for the vector-potential produced by the
point charge (see [24] for a more detailed explanation if
needed)

A�ðxÞ ¼ q

ð2
Þ3
Z

D�0ð0;kÞ expð�ikxÞd3k: (38)

Here the argument 0 of the Green function stands for k0.
Among the basic vectors (31) there is only one whose
fourth component remains nonzero in the static limit k0 ¼
0. It is cþ� . It participates in the eigenvectors [

ð2;3Þ
� in accord

with (10). Hence, only these two eigenvectors will remain
in the decomposition (28) of D after it is substituted into
(38). On the other hand, the contribution of the basic vector
c�� may only supply the spatial components to the vector

potential (38), whereas cþ� cannot. Bearing in mind that

Eqs. (31) imply in the static limit, k0 ¼ 0, that

cþi ¼ c�0 ¼ 0; cþ0 ¼ 1; c�i ¼ ½k? � ��i
jk?j ;

i ¼ 1; 2; c�3 ¼ 0;

(39)

the spatial part of the latter is
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AiðxÞ ¼ q

ð2
Þ3
Z X

a¼2;3

[ðaÞ
i [ðaÞ

0

ð[ðaÞÞ2
expð�ikxÞd3k

k2 � ßa

¼ q

ð2
Þ3
Z

c�i
�3 expð�ikxÞd3k
ðk2 � ß2Þðk2 � ß3Þ

;

i ¼ 1; 2 A3ðxÞ ¼ 0:

(40)

To find the large-distance behavior of this field note that it
is determined by the limit k ¼ 0 in the preexponential
factor in the integrand. Therefore, we set ß2;3 ¼ 0 and

use Eq. (20) for �3:

�3jk�!0 ¼ ijk?jk3M;

M ¼ LFGðB2 þ E2Þ � ðLGG þ LFFÞG: (41)

Then

A ðx?; x3Þjjxj!1 ’ qM

ð2
Þ3
Z

ik3½k? � �� expð�ikxÞd3k
k4

:

(42)

This vector in the two-dimensional plane orthogonal to the
external fields is directed as ½x? � ��, since the coordinate
vector x? in that plane fixes the only direction on which
the integral may depend. The length of (42)

jAjjxj!1 ’ qM

8


1

jxj (43)

decreases via the Coulomb law with the radial distance jxj
from the charge. The vector potential and the magnetic
field carried by it at large distances are

Aðx?; x3Þjjxj!1 ’ ½x? � ��
jx?j

qM

8


1

jxj ;

h3 ¼ qM

8


�
1

jxjjx?j �
jx?j
jxj3

�
; h? ¼ qM

8


x?
jx?j

x3
jxj3 :
(44)

The last two equations together make a magnetic field
oriented along the radius vector (when q is positive) in
the upper half plane x3 > 0 and opposite to the radius
vector in the lower half plane:

h ¼ x

jxj
qM

8


1

jxj2
x3
jx?j : (45)

The magnetic lines of force make a pencil of straight lines
passing through the origin where the charge is located and
go radially from/to the charge with their density being the
cotangent of the observation angle increasing towards the
axis 3, where it is singular. The magneton qM=ð8
Þ is
proportional to the pseudoscalar G; in perturbation theory
it has the fine structure constant � as its overall factor. The
result (45) is approximation independent, but holds true
only as long as the magnetic field produced by the charge
may be considered as a small perturbation of the back-
ground field.

It is worth noting that an analogous magnetoelectric
phenomenon should be present in a plasma with external
magnetic field. The reason is again in the mixing—after
plasma is added—of basic vectors [12] (see also [5]),
which are electric and magnetic carriers in the magnetized
vacuum alone. If the plasma is charge symmetric, e.g.
consists of equal numbers of positively and negatively
charged otherwise identical particles, say electrons and

positrons, the vector [ð1Þ
� jG¼0 from (7) linearly combines

with the pseudovector [ð2Þ
� jG¼0 ¼ ð ~FkÞ�, to become an

eigenvector, unlike the situation considered above, while

[ð3Þ
� jG¼0 ¼ ðFkÞ� remains an eigenvector. The pseudosca-

lar, needed for this combination, is built of the same
pseudovector contracted with the vector of 4-velocity of
the plasma. It plays the role of G. For a more general
charge-nonsymmetric case, say, electron gas or a gas of
ionized atoms, the situation is even more rich, because all
the three basic vectors mix.

V. DEGENERACIES

We have to consider the degeneracies of the polarization
matrix taking place for two special kinematical conditions
owing to the symmetries of the external field.
For the real or virtual excitations directed parallel to the

external field in the special frame, the polarization operator
is symmetric under spatial rotations around the common
field direction 3, since the external field is invariant under
them, while the excitation does not introduce an additional
anisotropy in the perpendicular plane owing to the relation
k? ¼ 0. The symmetry of the polarization operator should
manifest itself as a degeneracy that implies that two out of
its three eigenvalues should coincide, and their correspond-
ing eigenvectors should transform through one another
under the symmetry transformations, while remaining ei-

genvectors. By inspecting (31) we see that [ð1Þ
� and c�� do

possess this mutual property, when k? ¼ 0, but cþ� does

not (recall that jk2j ¼ k20 � k23, once k? ¼ 0). Hence the

latter cannot be admixed to c�� in (10), and we conclude

that, the same as in the one-invariant external field,

�3 ¼ 0; and ß1 ¼ ß3; when k2? ¼ 0: (46)

(The condition k2?¼0 in the general frame should be

replaced by k2E2�kF2k¼0). Then Eqs. (10) and (12)
imply that

�1 ¼ ��2; when k2? ¼ 0: (47)

Now from (32)–(35) we see that, when k2? ¼ 0, modes 1

and 3 carry mutually perpendicular and equal in magnitude

transverse electric fields eð1Þ and eð3Þ ¼ e� polarized in the
plane orthogonal to their propagation direction and to the
external fields. The same is true for the magnetic fields in
these modes. Therefore, in this special case mode 1 does
correspond to a real photon, as explained in Sec. III.
Simultaneously, mode 2 becomes a purely longitudinal
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wave that may exist only as long as k23 � k20 � 0, since (33)
otherwise disappears, i.e. it may only be massive. The
conclusion is that the number of massless modes remains
two, as expected.

Another degeneracy of polarization operator is provided
by the kinematical situation k20 � k23 ¼ 0. This condition is
invariant under Lorentz boosts along the common direction
of the fields in the special frame. (Its invariant equivalent is
k2B2 þ kF2k ¼ 0). On the other hand, the external field in
the special frame is also invariant under this transforma-
tion: it does not lead out of this frame, since the constant
electric and magnetic fields are not transformed by it.
Hence, the polarization operator should be also invariant,
which implies that some two of its eigenvalues must coin-
cide, while the corresponding eigenvectors are transformed
through one another by the Lorentz rotation in the (3; 0)

hyperplane. This is the case for the vectors [ð1Þ
� and cþ� in

(31), since in the limit under consideration the 2-vector in
the upper row of the former is negligible as compared to

the other two components, and jk?j ¼
ffiffiffiffiffiffiffiffijk2jp

, so that [ð1Þ
�

matches cþ� as a Lorentz boost partner. On the contrary, the
vector c�� does not transform through any of them, because
it is Lorentz-boost invariant. We conclude that c�� and cþ�
can no longer mix together to form eigenvectors, but
should be eigenvectors separately. The mixture becomes
impossible if and only if�3 disappears from (10) and (12).

Then, according to (17), [ð2Þ
� becomes �cþ� , hence the

degeneracy is expressed as the relation

ß1 ¼ ß2; when k20 � k23 ¼ 0; (48)

accompanied by the relations

�3¼0; ��4ðk23�k20Þ¼k2�1; when k20�k23¼0: (49)

Now we use the fact that the electric fields in eigenmodes
are defined up to a common factor to renormalize them all

according to ~e ¼ eðk20 � k23Þ1=2. Then, under the special

kinematic condition under consideration k20 � k23 ¼ 0, the
electric fields in modes 1 and 2 [see Eqs. (32) and (33)] are

finite and equal in length j~eð1Þj ¼ j~eþj ¼ k?k3, while that
in mode 3 (34) disappears, ~e� ¼ 0. Consequently, this
degree of freedom is impossible. As pointed in Sec. III,
in the exceptional point k20 � k23 ¼ 0, the dispersion law

k2 ¼ 0 may correspond to an actual mode-1 photon. In
view of (48) it must be accompanied by a mode-2 partner.
For k2 ¼ 0 the electric fields in modes 1 and 2, besides the
fact that they are equal in size, become polarized in trans-

verse directions, ð~eþ~eð1ÞÞ ¼ jk?jk3k0
ffiffiffiffiffi
k2

p
¼ 0. Therefore,

we have again two photon degrees of freedom.
The symmetry relations (46)–(49) are confirmed in the

infrared limit by Eqs. (17)–(20) and—for any value k� of

the momentum—by the one-loop calculations in QED of
[4].

In a theory with the dual invariance, which is not QED,
another degeneracy is possible in the one-invariant case

G ¼ 0 [3] that equates the eigenvalues ß2 and ß3, since
under the continuous duality transformation the vector

[ð2Þ
� jG¼0 ¼ ð ~FkÞ� and the pseudovector [ð3Þ

� jG¼0 ¼
ðFkÞ� transform through each other.

VI. CONCLUSIONS

In this paper we studied the most general basis proper-
ties of small perturbations of the vacuum, filled with a
constant and homogeneous background electromagnetic
field with both of its invariants different from zero. To
this end the eigenvector decomposition of the polarization
operator with a contribution of three modes was exploited.
We saw how the eigenvectors characteristic of the one-
invariant (magnetic in a special frame) background field
are linearly combined with the help of dynamics-
dependent coefficients to form eigenvectors of the general
problem under investigation.
Among the vacuum perturbations special attention was

paid to the sourceless excitations that supply poles to the
photon propagator and satisfy three different dispersion
equations. These may be either massive or massless. In
the latter case they are called photons. The massless ex-
citations belong only to two modes, in accordance with two
polarization degrees of freedom of a gauge vector particle,
the photon. Massive excitations belong to all three modes,
since a massive vector field has 3 degrees of freedom.
These may have an unrestricted number of branches in
each mode depending on the properties of the correspond-
ing dispersion equation. We described admitted disposition
of various dispersion curves (in the appropriate momentum
plane) as it is restricted by the causal propagation require-
ment outside possible abnormal dispersion domains and
argued that it may be extended to these domains as well.
The eigenmodes are plane polarized, and the orientations
of their electric and magnetic fields with respect to propa-
gation direction and the direction of the background field
are described. We dwelled on the impact the admixture of
an electric field to a magnetic background may have on the
selection rules for photon splitting. We noted that such
admixture results in a larger separation between two differ-
ent dispersion curves enhancing the birefringence.
Among possible perturbations of the background caused

by small sources, we especially considered the magnetic
(part of the) field produced by a point static electric charge
and found its behavior far from the source.
We also established coincidences between eigenvalues

of the polarization operator (degeneracies) that, under
special relations between momenta, reflect the residual
rotational and Lorentz symmetries of the vacuum left after
the background field is imposed.
All the results are approximation independent, except

for the statement, based on the one-loop calculations, that
the mixing between modes is not resonant in the limit of
the small electric field at the first threshold of electron-
positron pair creation by a photon.
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APPENDIX A

Suppose the polarization operator ��� is known in

components. Then the invariant functions �i, i ¼
1; 2; 3; 4 involved in its eigenvalues and eigenvectors are
given following the receipts in [4,5] as

�1 ¼ dð1Þ� ���ðdð1Þ þ dð2ÞÞ�; �2 ¼ �cð1Þ� ���c
�
� ;

�3 ¼ �c�����c
ð3Þ
� ; �4 ¼ �cð3Þ� ���c

þ
� ; (A1)

where c�� are given by (11), and

dð1Þ� ¼ E2k� � iBðFkÞ� � ðF2kÞ� � iEð ~FkÞ�
21=2ðB2 þ E2Þ1=2ðk2E2 � kF2kÞ1=2

, E2k� � iBðFkÞ� � ðF2kÞ� � iEð ~FkÞ�
21=2ðB2 þ E2Þjk?j

; (A2)

dð1Þ� þ dð2Þ� ¼ 21=2
E2k� � ðF2kÞ�

ðB2 þ E2Þ1=2ðk2E2 � kF2kÞ1=2

, 21=2
E2k� � ðF2kÞ�
ðB2 þ E2Þjk?j

; (A3)

cð3Þ� ¼ i
B2k� þ EðFkÞ� þ ðF2kÞ� �Bð ~FkÞ�

ðB2 þ E2Þ1=2ðk2B2 þ kF2kÞ1=2

, B2k� þ EðFkÞ� þ ðF2kÞ� � Bð ~FkÞ�
ðB2 þ E2Þðk20 � k23Þ1=2

: (A4)

The notations used here are connected with those of
Refs. [4,5] as follows:

cð1;3Þ� ¼ i
ffiffiffi
2

p
dð1;3Þ� ; c�� ¼ iðdð1Þ� � dð2Þ� Þ= ffiffiffi

2
p

;

cþ� ¼ iðdð3Þ� � dð4Þ� Þ= ffiffiffi
2

p
:

(A5)

Using the orthogonality of the polarization operator to
vector k� and the orthogonality of the vector ðF2kÞ� to

the hyperplane spanned by the two vectors ðFkÞ� and

ð ~FkÞ�, and also the diagonal representation (5), we find

that many components of the vectors between which ���

is sandwiched disappear from (A1). Then we get the sim-
pler representations (13) for the �’s. Equation (13) for �1

agrees with Eq. (9) and with the relation ß1 ¼
[ð1Þ
� ���[

ð1Þ
� =ð[ð1ÞÞ2 that follows from (6), taking into ac-

count the length of the eigenvector [ð1Þ
� given in (8).

Equations (13) for �2;3;4 agree with Eqs. (6), (10), and

(12), but cannot be deduced from them, because the latter
are invariant under a similarity transformation that changes
the components of ���.

The linear combinations �i of the polarization operator
components are calculated in [4] in one-loop approxima-
tion, the calculational details being presented in [5] on the
basis of [45]. The latter reference as well as [6,7] contains
also calculations of alternative sets of four scalar coeffi-
cient functions of an appropriate set of basic matrices in
terms of which the polarization operator may be expressed.
However, the set of functions �i is preferred to them all,
because the eigenvalues are given the simplest in their
terms.

APPENDIX B

In this Appendix we write the linear in electric field
correction into invariant function�3 for the case, where an
electric field, much smaller than the magnetic field, is
added parallel to the latter (this wording refers to the
special Lorentz frame). The linear part of �3 defines the
leading contribution into the mixing of photon eigenmodes
in a magnetic field due to the perturbation introduced by
the electric field. We present it here as a result of one-loop
calculations of quantum electrodynamics in the external
magnetic field.
Using (11) and notations (7), the expansion (15) of the

slightly perturbed eigenvectors over the eigenvectors in a
magnetic field alone becomes

[ð2Þ
� ¼ � ð�2 ��4Þ

ðk2B2 þ kF2kÞ1=2 [
ð2Þ
� jG¼0

þ
�

Gð�2 ��4Þ
B2ðk2B2 þ kF2kÞ1=2 �

�3

ð�kF2kÞ1=2
�
[ð3Þ
� jG¼0;

[ð3Þ
� ¼ ð�2 ��4Þ

ð�kF2kÞ1=2 [
ð3Þ
� jG¼0 þ

�
Gð�2 ��4Þ
B2ð�kF2kÞ1=2

� �3

ðk2B2 þ kF2kÞ1=2
�
[ð2Þ
� jG¼0: (B1)

It is understood that �2 ��4 in the right-hand side are
taken at G ¼ 0. In writing these equations we took into
account that�2;4 are even, and�3 is an odd function ofG.

It is seen from (12) that at G ¼ 0 the quantity ��4 is
the polarization operator eigenvalue ß2 in a magnetic field.
Analogously, ��2 ¼ ß3. These quantities in the one-loop
approximation are known [4,13]. Now we shall write�3 in
the same approximation by calculating the G ¼ 0 limit of
the corresponding expression from [4]:

�3 ¼ � �

4


G

F

��kF2k

2F

�
1=2

��k ~F2k

2F

�
1=2

�
Z 1

0

�d�

sinh2�

Z 1

�1
d�ð1� �Þ2sinh2 �ð1þ �Þ

2

� exp

�
kF2k

2F

sinhðð1þ �Þ=2Þ�Þ sinhðð1� �Þ�=2Þ
sinhðef�Þ

� k ~F2k

2F

1� �2

4ef
��m2

e�

ef

�
: (B2)
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Here � ¼ 1=137 is the fine structure constant,me and e are

the electron mass and charge, and f ¼ ffiffiffiffiffiffiffi
2F

p
. Note that this

expression vanishes, indeed, either if � kF2k
2F , k2? ¼ 0, or

if � k ~F2k
2F , k20 � k23 ¼ 0, as it should in accordance with

what the symmetry of the external field prescribes, as it
was established in the body of this article, Eqs. (46) and
(49). The integral (B2) has an infinite number of branching
points, the same as�1;2;4, with singular inverse square-root

behavior—the cyclotronic resonances at thresholds of
electron-positron pair creation by a photon [5,13].
However, the lowest-lying resonance is not in the point
(in the variables, referring to the special frame) k20 � k23 ¼
4m2

e, like in ß2 ¼ ��4, but in the point k
2
0 � k23 ¼ ½ðm2

e þ
2efÞ1=2 þme�2, like in ß3 ¼ ��2, because this value
borders the convergence domain of the � integration in
(B2). This means that the (small as compared with the
magnetic) electric field cannot affect the phenomenon of
the mode-2 photon capture with its adiabatic conversion
into a free [19] or bound [16] electron-positron pair in the
lowest Landau level.

APPENDIX C

Here we reproduce the simplest description of the phe-
nomenon of abnormal dispersion [36] and modify it in such
a way as to illustrate the mutual repulsion of the dispersion
curves of the photon and of an unstable massive state, and
to introduce the ‘‘extended group velocity’’ that does not
exceed the speed of light.

We deal with an isotropic homogeneous medium with-
out spatial dispersion considered in its rest frame. Let the
polarization be determined by a polelike contribution of a
massive unstable state with constant complex energy
squared �k20 ¼ m2 � i�:

ßðk20Þ ¼
�g

k20 � �k20
; (C1)

where g > 0 is a positive coupling constant, �> 0 is
responsible for absorption. For further simplification we
restrict ourselves to the one-dimensional case: k1 ¼ k,
k2;3 ¼ 0. Then the dispersion equation is

k2 ¼ k20 þ
g

�k20 � k20
: (C2)

Equation (C2) defines the momentum k as a complex
function of the real frequency variable k0. The real part
of this complex function (as laid out along the horizontal
axis) is given by the zigzag-shaped curve in Fig. 2. Bearing
in mind that the refraction index is defined as nðk0Þ ¼
Re k=k0, one can redraw this curve as the well-known
zigzag curve, presenting the dependence of the refraction
index on frequency k0 or on the wavelength � ¼ jkj�1 �
k�1
0 in the case of abnormal dispersion. The abnormal

dispersion band in Fig. 2 is the interval of k0, where the
decline of the dispersion curve is anomalous,

ðdk0=dRe kÞ< 0, in other words, where the group velocity
is directed opposite to the phase velocity k0=k. The width
of this band shrinks to nothing in the no-absorption limit
� ! 0. Near the two edges of the abnormal dispersion
band the modulus of the group velocity, defined as
jdk0=dRe kj, is not restricted by unity.
Let us now solve the dispersion equation (C2) with

respect to k20:

k20 ¼
k2 þ �k20

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k2 � �k20

2

�
2 þ g

s
: (C3)

These are two complex functions of the real variable k2.
The real parts of their square roots give the two discon-
nected dispersion curves Re k0ðkÞ shown in Fig. 3.
Physically, they should be viewed as the result of repulsion
of the two primary dispersion curves: the one of the un-

1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

Re k

k 0

FIG. 2. Abnormal dispersion. The dotted line is the vacuum
dispersion law k0 ¼ k, the horizontal line is the unstable particle
dispersion law k0 ¼ m. The solid line is the frequency k0 plotted
against the real part of momentum Re k according to Eq. (C2). k0
and Re k are taken in arbitrary mass scale M. Values of the
parameters in Eq. (C2) are chosen as m ¼ ffiffiffi

5
p

M, � ¼ 0:2M2,
and g ¼ M4.

1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

k

R
e

k 0

FIG. 3. Mutually repulsed dispersion curves as solid lines. The
rest is the same as in Fig. 2.
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stable massive state, Re k0 ¼ m, and the other of the
photon, k0 ¼ k, that quasi-intercept in the point k0 ¼ k ¼
m. The patterns in Figs. 2 and 3 coincide in the limit � ¼

0, but otherwise are essentially different. The ‘‘extended
group velocity’’ defined on the dispersion curves (C3),
@Re k0=@k, is positive and less than unity.
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Pérez Rojas and E. Rodriguez Querts, Phys. Rev. D 79,
093002 (2009); arXiv:0808.2958.
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