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We construct a Lifshitz-like version of five-dimensional (5D) QED which is UV completed and reduces

at low energies to ordinary 5D QED. The UV quantum behavior of this theory is very smooth. In

particular, the gauge coupling constant is finite at all energy scales and at all orders in perturbation theory.

We study the IR properties of this theory, when compactified on a circle, and compare the one-loop energy

dependence of the coupling in the Lifshitz theory with that coming from the standard 5D QED effective

field theory. The range of validity of the 5D effective field theory is found to agree with the more

conservative version of naive dimensional analysis.
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I. INTRODUCTION

Quantum field theories in more than four space-time
dimensions have received a lot of attention in the past ten
years. They allow us to address standard well-known prob-
lems in four-dimensional (4D) physics, such as the gauge
and/or flavor hierarchy problems, from a different perspec-
tive, leading to novel scenarios, such as the possibility of
having a fundamental TeV-sized quantum gravity scale [1]
or a TeV scale naturally generated by an extreme redshift
effect from a warped extra dimension [2]. Extra dimen-
sional (ED) field theories are nonrenormalizable and re-
quire an ultraviolet (UV) completion. There is little doubt
that such UV completions exist, in particular, in string
theory where ED are predicted and necessary.
Constructing string theory models which reduce at low
energies to the ED models considered in the literature is
a difficult task. As a matter of fact, we do not know
sufficiently simple and concrete UV completions of ED
field theories.

The aim of this paper is to concretely provide a UV
completion of ED theories. For simplicity, we will focus
our attention on a specific simple model which is QED in
five dimensions (5D) compactified on a circle, although
our construction is more general and can allow for a
possible UV completion of any 5D (or higher) gauge
theory. Our model is of the Lifshitz type [3,4], where
Lorentz invariance is explicitly broken at high energies.
In these theories, the presence of higher derivative (in the
spatial directions only) quadratic terms improves the UV
behavior of the particle propagator, without introducing
ghostlike degrees of freedom. This kind of UV completion
does not require the introduction of extra degrees of free-
dom, but rather modifies the propagation of the already
existing ones.

The quantum UV behavior of our Lifshitz 5D QED is
incredibly simple. The photon anomalous dimension van-
ishes to all orders in perturbation theory and correspond-
ingly the electric charge is completely finite. This

phenomenon is explained by the fact that the UV theory
formally looks like a nonrelativistic theory for which par-
ticle–antiparticle creation is suppressed at high energies.
Another marginal coupling in the theory, magneticlike, is
shown to be UV free, so the theory is UV completed and
perturbative at any energy scale (neglecting gravity, of
course).
After having studied the UVone-loop renormalization of

the theory, we turn our attention to its infrared (IR) behav-
ior. In particular, we show in some detail that the universal
IR energy dependence of the finite gauge coupling (electric
charge) in the Lifshitz theory coincides with that computed
in the effective field theory, as it should. En passant, we
explicitly show that the decoupling of heavy massive states
in 5D effective theories is less efficient than in 4D; the
effect of massive particles in 5D does not vanish as 1=M2,
like in 4D, but only as 1=M, in agreement with the known
fact that the sensitivity of an effective theory to its UV
completion is higher in 5D than in 4D.
The whole one-loop energy behavior of the 4D inverse

square coupling g�2
4 is the following: starting from the IR,

for energies much smaller than the compactification scale,
g�2
4 decreases logarithmically, for a small window above

the compactification scale it decreases linearly and then for
yet larger energies g�2

4 tends to a constant, with the one-
loop correction going to zero as 1=E1þ�, with � ¼
Oðg24Þ> 0.
Estimates based on naive dimensional analysis (NDA)

[5] or on the unitarity of scattering amplitudes (see e.g. [6])
show that the energy range of validity of phenomenolog-
ically interesting ED theories is quite limited, sometimes at
the edge of not being present at all. By using our UV-
completed model, we can better quantify the cutoff � of
the effective 5D QED, identifying it with the scale where
the higher derivative Lifshitz operators become relevant.
More precisely, � is defined as the scale where the UV-
dependent one-loop photon vacuum polarization correction
becomes of the same order as the calculable one in the
effective 5D theory, with the asymptotic value of the
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coupling still in the perturbative range. The resulting cutoff
turns out to be approximately equal to the one predicted by
a conservative NDA estimate:

� *
48�

5

1

R

�
1

g24
� 1

g24;1

�
; (1.1)

with g4 evaluated at the compactification scale 1=R and
g4;1 its asymptotic UV value, as computed in the Lifshitz

theory. We are not taking into account here many other
effects that can sensitively change the estimate of �, such
as the number of particle species or, for S1=Z2 orbifolds-
interval compactifications, possible additional localized
Lagrangian terms or warp factors. When these effects are
considered in phenomenologically promising 5D theories,
the estimate (1.1) is lowered by 1 order of magnitude or
more.

Lorentz invariance is explicitly and maximally broken in
the UV in Lifshitz-type theories and it is not automatically
recovered in the IR, E<�, unless a fine-tuning is imposed
[7,8] or some dynamical mechanism advocated. Aside
from the above tuning, other experimental constraints,
mainly of astrophysical origin, severely constrain the pa-
rameters of our theory, which should not be considered too
seriously as a realistic UV completion, at the present stage
at least. Yet we believe that the construction underlying it
can be very useful to build renormalizable 5D theories.

The structure of the paper is as follows. In Sec. II, after a
very brief review of the construction of Lifshitz-like theo-
ries, we present our model. In Sec. III the renormalization
group (RG) flow in the UV regime E>� is studied and it
is, in particular, shown that the theory is UV completed and
perturbative at any energy scale in a wide range of parame-
ter space. In Sec. IV we study the IR behavior, E<�, of
the gauge coupling in the Lifshitz theory.1 We analyze the
RG flow of the coupling from an effective 5D point of view
and compare it with the UV model in Secs. IVA and IVB.
In Sec. IVC we determine the cutoff of the 5D effective
theory as determined from the Lifshitz model. In Sec. V we
show how Lorentz invariance can be recovered at low
energies and briefly comment on astrophysical bounds. In
Sec. VI we conclude. In the Appendix an analytic formula
for the energy behavior of the coupling is derived.

II. THE MODEL

The key point of the construction of Lifshitz-like theo-
ries is to break Lorentz invariance, so that one is allowed to
introduce higher derivative terms in the spatial derivatives
and quadratic in the fields, without necessarily introducing
the dangerous higher time derivative terms that would lead
to violations of unitarity. The UV behavior of the propa-
gator is improved and theories otherwise nonrenormaliz-
able become effectively renormalizable. In Lifshitz-like

theories an invariance under ‘‘anisotropic’’ scale transfor-
mations is imposed:

t ¼ �zt0; xi ¼ �xi0; �ðxi; tÞ ¼ �ðz�dÞ=2�0ðxi0; t0Þ;
(2.1)

where i ¼ 1; . . . ; d parametrizes the spatial directions, �
denotes a generic field, and z is an integer, sometimes
called a critical exponent. We will always assume to be
in the preferred frame where spatial rotations and trans-
lations are unbroken symmetries. According to Eq. (2.1),
we can assign to the coordinates and to the fields a
‘‘weighted’’ scaling dimension:

½t�w ¼ �z; ½xi�w ¼ �1; ½��w ¼ d� z

2
: (2.2)

The renormalizability properties of Lifshitz-like theories
have been extensively studied for scalar, fermion [4], and
gauge theories [9]. The usual power-counting argument for
the renormalizability of a theory is essentially still valid,
provided one substitutes the standard scaling dimensions
of the operators by their ‘‘weighted scaling dimensions’’
[4], i.e. by the dimensions implied by the assignment (2.2).
Here we will focus on QED in 5D. The weighted dimen-

sions of the photon and fermion fields are easily fixed by
looking at their time component kinetic terms. We have

½c �w ¼ d

2
; ½A0�w ¼ dþ z� 2

2
; ½Am�w ¼ d� z

2
:

(2.3)

Notice that A0 and Am necessarily have different weighted
dimensions, since no time derivative acts on A0. Equations
(2.3) are consistent with gauge invariance, requiring

½g�w ¼ ½@0�w � ½A0�w ¼ ½@m�w � ½Am�w ¼ 2� dþ z

2
:

(2.4)

Here and in what follows, m, n, and p are indices running
over all spatial directions, including the compact direc-
tions. The Lifshitz version of QED is hence renormalizable
in d spatial dimensions, provided that

z ¼ d� 2: (2.5)

In what follows we focus our attention on the case z ¼ 2
and d ¼ 4, i.e. 5D QED. For simplicity, we take c to be an
ordinary Dirac field, despite the fact that at high energy the
absence of SOð5Þ invariance might allow one to construct
two independent spinors related by �0, which is a sort of
‘‘chirality’’ matrix. In order to simplify the structure of the
Lagrangian, we impose the conservation of a Z2 symmetry
C, a combination of the usual charge conjugation and
parity in the extra direction:

1A reader more interested in the IR properties of our model
might want to skip Secs. II and III and go directly to Sec. IV.
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c Cðx0; xi; yÞ ¼ C �c Tðx0; xi;�yÞ;
AC
0 ðx0; xi; yÞ ¼ �A0ðx0; xi;�yÞ;

AC
i ðx0; xi; yÞ ¼ �Aiðx0; xi;�yÞ;

AC
y ðx0; xi; yÞ ¼ þAyðx0; xi;�yÞ;

(2.6)

where the matrix C is the usual charge conjugation matrix
for spinors as defined in D ¼ 3þ 1 Lorentz-invariant
theories, y is the compact coordinate, and i ¼ 1, 2, 3
runs over the noncompact spatial directions. The most
general Lagrangian with weighted marginal and relevant
couplings and invariant under (2.6) is the following:

L ¼ 1

2
F2
m0 �

c2�
4
F2
mn �

a2�

4�2
ð@mFnpÞ2

þ �c ði 6D0 � icc 6D�MÞc � ac

�
jDmc j2

� i�

�3=2
Fmn

�c�mnc ; (2.7)

where 6D0 ¼ �0ð@0 � iðg= ffiffiffiffi
�

p ÞA0Þ, 6D ¼ �mð@m�
iðg= ffiffiffiffi

�
p ÞAmÞ, and � is a high-energy scale parametrizing

the strength of the higher derivative operators. The sym-
metry (2.6), in combination with SOðdÞ rotational invari-
ance, is crucial to get rid of several otherwise allowed
terms, such as �c�0c , �cD0c , F3

mn, etc. Below the scale
� the theory defined by (2.7) flows to the usual 5D QED,
provided that cc ¼ c� to sufficient accuracy. For simplic-

ity, in the following we will use units in which � ¼ 1.

III. UV BEHAVIOR

In this section we compute the one-loop evolution of the
marginal couplings in the UV regime, E � 1. We regular-
ize the theory using dimensional regularization in the
spatial directions only (d ¼ 4� �) and renormalize using
a minimal subtraction scheme where only the poles in 1=�
are subtracted, with no finite term. Being Lorentz symme-
try absent in this regime, it is convenient to work in the
Coulomb gauge

@mAm ¼ 0: (3.1)

Compactification effects and all relevant couplings can be
neglected at these scales, allowing us to easily perform the
integration over the virtual energy exchanged in the one-
loop graphs. We then set cc ¼ c� ¼ M ¼ 0. The fermion

propagator can be written as

� iG0
c ð!;pÞ ¼ Pþ

!� acp
2 þ i�

þ P�
�!� acp

2 þ i�
;

(3.2)

where ! and p denote energy and momentum, respec-
tively, and P� ¼ ð1� �0Þ=2. We have explicitly written
the i� factors for reasons that will soon be clear. Similarly,
the spatial components of the photon propagator are

G0
�;mnð!;pÞ ¼ i

�
�mn � pmpn

p2

�

� 1

ð!� a�p
2 þ i�Þð!þ a�p

2 � i�Þ :
(3.3)

In Eqs. (3.2) and (3.3) the superscript 0 stands for cc ¼
c� ¼ 0. As can be seen from the Feynman rules reported in

Fig. 1, no ! terms appear in the vertices, so that the !
integration can easily be performed using the residue theo-
rem. By denoting q and !q the virtual momentum and

energy running in the loop diagram, the !q dependence

will only appear through the fermion and photon propaga-
tors. All nonvanishing loop diagrams we will consider
involve one photon propagator (whose momentum we
identify with q) and one or two fermion propagators. In
general, for n fermion propagators, the loop graph will be
proportional to

Kn ¼
Z d!q

2�

Yn
i¼1

�iG0
c ð!i þ �i!q; pi þ �iqÞ

ð!q � a�q
2 þ i�Þð!q þ a�q

2 � i�Þ ;

(3.4)

with!i and pi external energies and momenta and�i some
constants. Since PþP� ¼ 0, Eq. (3.4) reduces to two
terms, proportional to Pþ and P�. The former (the latter)
have all fermion poles in the lower-half (upper-half)
! plane, so that by appropriately closing the contour at
infinity, we can always avoid all fermion poles. Hence we
get

FIG. 1. Feynman rules of the Lifshitz 5D QED theory in the
Coulomb gauge. The momenta are all incoming.
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Kn ¼ i

2a�q
2

Yn
i¼1

�
Pþ

�ia�q
2 þ ac ð�iqþ piÞ2 �!i

þ P�
�ia�q

2 þ ac ð�iqþ piÞ2 þ!i

�
: (3.5)

A. Vacuum polarization

The vacuum polarization of the photon is easily com-
puted in this theory and turns out to identically vanish. The
fermion loop given by two trilinear vertices vanishes due to
the integration over!, since we can always choose to close
the contour of integration in the upper-/lower-half ! plane
with no poles, as in Eq. (3.4). The same result can be
checked to hold in the Euclidean. After standard manipu-
lations, it is easy to see that the loop is proportional to

Z 1

�1
d!E

!EðpE þ!EÞ � ab

ð!2
E þ a2Þ½ð!E þ pEÞ2 þ b2� ¼ 0; (3.6)

vanishing for any positive a and b. Here pE ¼ i! and
!E ¼ i!q are the Wick rotated energies. Interestingly

enough, this result is not only valid at one-loop order but
to all orders in perturbation theory. Consider first higher
loop graphs constructed from the one-loop graph by adding
photon lines only. Since, for cc ¼ 0, the trilinear and

quartic vertices commute with P�, any such graph with
an arbitrary number of fermion propagators will split in the
sum of two terms of the kind

Tr
Yn
i¼1

Vi

�
Pþ

!þ!�ðiÞ � ac ðpþ k�ðiÞÞ2 þ i�

þ P�
�!�!�ðiÞ � ac ðpþ k�ðiÞÞ2 þ i�

�
; (3.7)

where! and p are the energy and momentum of the virtual
fermion running in the loop,!�ðiÞ and k�ðiÞ are the sum of

the energies and the momenta of the photons attached to
the fermion lines at the vertices Vj one encounters in

arriving at the propagator i. Note that the UV vertices Vi

(see Fig. 1) commute with P�. Exactly as before, Eq. (3.7)
identically vanishes when integrated over !.

When the components of the external photon are spatial,
there is in addition a tadpole graph associated with the
quartic vertex (see Fig. 1). This is trivially vanishing in
dimensional regularization since (after Wick rotation)

Z
d!ddk

ac k
2 þm

!2 þ ðac k
2 þmÞ2 /

Z
ddk1 ¼ 0: (3.8)

Since a single fermion loop, dressed with an arbitrary
number of photons, vanishes, any graph with an arbitrary
number of fermion loops clearly vanishes as well. These
results also extend to the compact case, since the spatial
momenta do not play any role in the argument, as long as
cc ¼ 0.

The apparently strange absence of any quantum correc-
tion in the photon propagator when cc ¼ 0 has a simple

physical explanation in the total decoupling, in the Lifshitz
regime, of particle and antiparticles. In other words, the
decomposition of the propagator as in Eq. (3.2) is telling us
that electrons and positrons in the Lifshitz regime behave
similarly to standard electrons and positrons in the non-
relativistic low-energy regime. In particular, there is no
way to create a particle–antiparticle pair and hence con-
servation of the charge forbids any virtual pair production
in the vacuum.
In conclusion, no radiative corrections at all (finite or

infinite) are induced to the photon two-point function when
cc ¼ 0. It then follows that in the UV the � functions

associated with the coupling constant g and the parameter
a�, as well as the anomalous dimensions of A0 and Am,

vanish to all orders in perturbation theory:

�g ¼ �a� ¼ �A0
¼ �Am

¼ 0: (3.9)

B. Fermion propagator

The one-loop correction to the fermion propagator �ðpÞ
is given by the two graphs in Fig. 2. The tadpole graph (b),
as well as the exchange of a virtual temporal photon in
graph (a), is easily shown to vanish in dimensional regu-
larization. The only nontrivial contribution is given by the
exchange of spatial photons in graph (a). We get

There is no need to introduce a Feynman parameter to
compute the graph (3.10). As previously explained, one
can first integrate over !q, using the residue theorem, and

then over q by using dimensional regularization. Defining
the counterterms �Zc and �Zac

as

FIG. 2. One-loop graphs contributing to the correction of the
fermion propagator.
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we get

�Zc ¼ � 1

�

12�2

16�2a�ða� þ ac Þ2
;

�Zac
¼ 1

�

3

16�2

�
g2ac

a�ða� þ ac Þ �
4�2

ða� þ ac Þ3
�
;

(3.12)

from which one easily derives the � function for ac :

�ac
¼ �ac ð�Zac

��Zc Þ

¼ 3a2c

16�2

�
g2

a�ða� þ ac Þ þ
4�2

a�ða� þ ac Þ3
�
: (3.13)

C. The electric vertex

In analogy to the path-integral derivation of the standard
Lorentz-invariant Ward identity in scalar QED, one finds
the following identity:

!pV
0ð!p; p;!k; kÞ � pmVmð!p; p;!k; kÞ

¼ gðGf
c ð!p þ!k; pþ kÞ�1 �Gf

c ð!k; kÞ�1Þ; (3.14)

where V0 and Vm are the full time and spatial components

of the electric vertex, and Gf
c is the full fermion propa-

gator, including all radiative corrections. The one-loop
corrections to the electric vertex are then related to the
fermion counterterms in Eq. (3.12). Denoting by �V0 and
�Vm the divergent terms of the one-loop corrections to the
time and spatial components of the electric vertex, we have

�V0 ¼ ig�0�ZV0
; �Vm ¼ �igac ð2kþ pÞm�ZVm

:

(3.15)

The Ward identity (3.14) immediately gives

�ZV0
¼ �Zc ; �ZVm

¼ �Zac
: (3.16)

Since there is no radiative correction to the photon propa-
gator, the coupling constant g is consistently not renormal-
ized:

g0Zc ¼ gZV0
! g0 ¼ g; g0Zac

¼ gZVm
! g0 ¼ g:

(3.17)

We have checked, at one-loop level (for cc ¼ c� ¼ 0) the

validity of Eqs. (3.14), (3.15), and (3.16).

D. The magnetic vertex

The one-loop correction to the magnetic coupling � is
given by the following graph:

A straightforward computation fixes the counterterm to be

The �2g terms do not lead to divergences, while those of
the �g2 terms are exactly compensated by the fermion
wave function counterterms in Eq. (3.12). We get

�� ¼ ��ð�Z� � �Zc Þ ¼ �3

�2a�ða� þ ac Þ2
: (3.20)

E. RG flow in the deep UV

The UV evolution of couplings is greatly simplified
since �a� ¼ �g ¼ 0. Only ac and � undergo a quantum

evolution, according to Eqs. (3.13) and (3.20). At the
perturbative level no fixed points, other than the trivial
ac ¼ � ¼ 0, may arise. For stability reasons, a� must be

positive, whereas ac can have any sign. For any choice of

a� and ac , the magnetic coupling � grows in the UV, so

that the theory does not seem to be asymptotically free.
However, the effective coupling constant in the theory, the
one that controls the perturbative expansion, is not �, but a
combination of � with a� and ac , similarly for the gauge

coupling constant g. On dimensional grounds, the effective
couplings are

� � g2

a�
fe

�
a�
ac

�
; � � �2

a�a
2
c

fm

�
a�
ac

�
; (3.21)

where fe and fm are dimensionless functions, depending
only on the ratio a�=ac . The theory is UV completed if, for

E ! 1, � and � remain perturbative, and is UV free if �,
� ! 0 in the limit.
Let us denote by t ¼ logE=E0 and let us first assume that

ac ð0Þ> 0. In this case, �ac
> 0 and ac grows in the UV.

The parameter ac is not a proper coupling constant and

perturbativity is not necessarily lost when it grows large. It
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is lost only if fe and/or fm in Eq. (3.21) grow with some
powers of ac =a�. On the contrary, the regime of large ac

is expected to be smoother and smoother, since ac enters

also in the fermion propagators. We now argue that fe and
fm cannot have terms that grow like anc , with n > 0. Since

no fermion loops are allowed, given any graph, any addi-
tional one-particle irreducible loop is obtained by adding a
photon line and two vertices to a preexisting fermion line,
thus obtaining two additional fermion propagators. The
photon propagator gives no factors of ac , while the two

fermion propagators a factor 1=a2c . If both vertices are

electric, proportional to gac , we then get ðgac Þ2 �
1=a2c ¼ g2. If they are both magnetic, we get �2 �
1=a2c ¼ �2=a2c . Hence for large ac , fe, and fm tend to a

constant, and the effective coupling constants of the theory
become

�0 � g2

a�
; �0 � �2

a�a
2
c

: (3.22)

Being a� and g constant along the RG flow,

�0ðtÞ ¼ �0ð0Þ (3.23)

and �0, if small at t ¼ 0, remains so at all scales, without
being asymptotically free. Setting a� ¼ 1, for simplicity,

the UV flow of �0, for large ac is given by

_� 0 ¼ 1

2�2
�2

0 �
3

8�2
g2�0; (3.24)

where a dot stands for a derivative with respect to t.
Solving Eq. (3.24), we get

�0ðtÞ ¼ e�3g2t=8�2
�0ð0Þ

�
1þ 4�0ð0Þ

3g2
ðe�3g2t=8�2 � 1Þ

��1
:

(3.25)

Equation (3.25) shows that �0 is asymptotically free in the
UV, going to zero powerlike, provided that 4�0ð0Þ< 3g2.

When ac ð0Þ< 0, one has to distinguish the two cases

jac ð0Þj< a� and jac ð0Þj> a�. In the latter, jac j grows
and all the considerations made for ac > 0 apply. In

particular, �0 is UV free. In the former case, instead,
jac j decreases, �0 increases, and the coupling explodes

in the UV.
Summarizing, the theory is UV completed and pertur-

bative for 4�0ð0Þ< 3g2, ac > 0, and ac <�a�. The

effective magnetic coupling �0 goes to zero, while the
electric one �0 remains constant.

F. Relevant couplings

In this section, for completeness, we compute the UV
evolution of the parameters cc and c� in Eq. (2.7). This is

easily done by considering again the one-loop fermion and
photon corrections, when these parameters are nonvanish-

ing. For simplicity, we will set the magnetic coupling and
the fermion mass to zero, � ¼ M ¼ 0.
Let us first consider cc . The counterterm (3.11) contains

an extra term, so that now

After a straightforward computation, we get

�Zcc ¼ 1

�

g2

32�2

aca� þ a2� � 6a2c
ac a�ðac þ a�Þ : (3.27)

Since �Zc ¼ 0 when � ¼ 0, Eq. (3.27) directly gives the

� function for cc :

�cc ¼ �cc�Zcc ¼ g2cc

32�2

ac a� þ a2� � 6a2c
aca�ðac þ a�Þ : (3.28)

The RG evolution of c� is derived by computing the

vacuum polarization of the spatial photon components
�mn ¼ �1

mn þ�2
mn:

We do not write the tadpole contribution �2
mn to �mn,

given by the contraction of the fermion lines in the quartic
interaction (see Fig. 1). It is energy and momentum inde-
pendent and it is easily shown to ensure that �mnð0; 0Þ
vanishes, as dictated by gauge invariance. Spatial SOð4Þ
rotations and time reversal allow one to write �mn in the
following form:

�mnð!;pÞ ¼ i�mn!
2f1ð!2; p2Þ

þ iðpmpn � �mnp
2Þf2ð!2; p2Þ; (3.30)

with f1 and f2 real functions. As already discussed, when
cc ¼ 0, all photon vacuum polarization terms vanish.

Hence f1 and f2 must be proportional to c2c . On dimen-

sional grounds,2 this implies that the function f1 is finite.
On the other hand, the function f2, associated with the

2Recall that in the Lifshitz regime cc and p have effectively
the dimension of a mass, while ! that of a mass squared.
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operator F2
mn, can develop a logarithmic divergence, which

will be responsible for the RG evolution of c2�. We leave to

the next section a detailed study of the function f1 and
focus now on the computation of the divergence of f2. The
latter is easily computed by taking the c2c term of f2ð0; 0Þ.
The counterterm �Zc� canceling the above divergence is

found

from which we get

�c2�
¼ �c2��Zc� ¼ � g2c2c

8�2ac

: (3.32)

The RG Eqs. (3.13), (3.28), and (3.32) can easily be solved
in the deep UV regime when ac � a�, in which case we

approximately have

ac ðtÞ ’ ac ð0Þeð3g2=16�2Þt; c2c ðtÞ ’ c2c ð0Þe�ð3g2=8�2Þt;

c2�ðtÞ ’ c2�ð0Þ þ 2

9

c2c ð0Þ
ac ð0Þ ðe

�ð9g2=16�2Þt � 1Þ: (3.33)

Notice that the UV RG behavior of c2c and c2� does not

significantly affect the physical speed v ¼ d!=dp of the
photon and fermion, that at these energies is dominated by
the classical Lifshitz regime and linearly increases with
energy, v ’ 2!.

IV. IR BEHAVIOR AND CONNECTION WITH 5D
EFFECTIVE THEORIES

We now consider the behavior of the Lifshitz theory for
E � �. In particular, we will focus our attention on the
energy behavior of the finite function f1, defined in
Eq. (3.30). When the mass of the 5D fermion vanishes,
two different regimes arise in the IR: (i) 1=R � E � 1,
where the theory is reliably described by its uncompacti-
fied 5D version and (ii) E � 1=R � 1, where compactifi-
cation effects cannot be neglected. In order to distinguish
the two regimes, we will denote the latter as deep IR
regime. In this section we will distinguish 5D and 4D
gauge couplings by a subscript. What we have so far
denoted by g is replaced by g5 and the 4D coupling is
defined as

g25ðEÞ � 2�Rg24ðEÞ: (4.1)

A. RG behavior of the coupling in 5D effective field
theories

The RG evolution of the inverse square gauge coupling
in usual Lorentz-invariant 5D models is expected to have
the usual logarithmic behavior for E< 1=R, when the

theory reduces to a 4D gauge theory for the zero modes,
and a linear energy dependence for E> 1=R. Because of
the presence of the infinite tower of massive Kaluza-Klein
(KK) states, with increasing mass, schemes such as mo-
mentum subtraction are preferred to schemes such as mini-
mal subtraction, in the regime E> 1=R.3 The contribution
due to a massive 4D fermion to the mass-dependent
� function of the 4D gauge coupling g4 is well known
(see i.e. [11]):

�n ¼ g34
2�2

Z 1

0
dx

x2ð1� xÞ2E2

m2
n þ E2xð1� xÞ ; (4.2)

where E is the sliding RG (Euclidean) energy scale and
m2

n ¼ M2 þ n2=R2 is the mass of the KK mode n, where
we keep for the moment the 5D bulk mass M. For (anti-)
periodic fermions, n is an (half-)integer. The total
� function is simply given by summing over all possible
KK modes: �g ¼ P1

n¼�1�n. Performing the sum, we get

�g ¼ g34R

2�

Z 1

0
dx

x2ð1� xÞ2E2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ E2xð1� xÞp

�
�
coth�R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ E2xð1� xÞp

; n 2 Z;

tanh�R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ E2xð1� xÞp

; n 2 Zþ 1
2 :

(4.3)

Equation (4.3) gives the following RG behavior for g�2
4 :

g�2
4 ðEÞ ¼ g�2

4 ðE0Þ � 1

�2

Z 1

0
dxxð1� xÞ

�

8>><
>>:
log

sinhð�R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2xð1�xÞþM2

p
Þ

sinhð�R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0
xð1�xÞþM2

p
Þ ; n 2 Z;

log
coshð�R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2xð1�xÞþM2

p
Þ

coshð�R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0
xð1�xÞþM2

p
Þ ; n 2 Zþ 1

2 :

(4.4)

It is useful to see in detail the regimes of the vanishing
compactification radius, R ! 0, and of the decompactifi-
cation limit, R ! 1, for M ¼ 0 and M � E. When R !
0, independently ofM, for antiperiodic fermions, the argu-
ment of the logarithmic term approaches 1, giving no
running at all, as expected, being all KK modes decoupled
in this limit. On the other hand, for periodic fermions, we
get

g�2
4 ðEÞ ¼ g�2

4 ðE0Þ � 1

6�2
log

E

E0

; R! 0; M¼ 0;

(4.5)

3On the other hand, there are no problems in using dimen-
sional regularization if one is interested in the evolution of the
coupling below 1=R. KK modes can be integrated out and their
threshold corrections reliably computed in dimensional regulari-
zation; see e.g. [10].
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g�2
4 ðEÞ ¼ g�2

4 ðE0Þ � 1

60�2

E2

M2
þO

�
E4

M4

�
;

R ! 0; M � E � E0;

(4.6)

which reproduce the usual logarithmic contribution due to
a massless zero mode and the usual 1=M2 decoupling of a
massive state in 4D. When R ! 1, the hyperbolic trigo-
nometric functions in the argument of the logarithmic term
become equal and for both periodic and antiperiodic fer-
mions we get, for M ¼ 0,

g�2
5 ðEÞ ¼ g�2

5 ðE0Þ � 3

256�
ðE� E0Þ;

R ! 1; M ¼ 0;

(4.7)

where we have used Eq. (4.1). It is important to notice that
Eq. (4.7) does not give a quantitatively trustable behavior
of the coupling constant beyond one-loop level. Indeed, at
two-loop level, by dimensional analysis and unitarity, a
contribution to the right-hand side of Eq. (4.7)
	g25ðE0ÞE2 logER is expected. If we expand in g25ðE0Þ,
the two-loop term would be comparable or larger than
the second iteration of the one-loop term. The RG flow
for 1=R < E< 1 is hence not very useful.4 This issue is
however not important for what follows, because in our UV
completion of the theory at arbitrarily high energies we
demand to always remain in the perturbative regime.

The uncompactified and large mass limit is taken by
demanding MR � ER � E0R. In this limit we get

g�2
4 ðEÞ ¼ g�2

4 ðE0Þ � ER

60�

E

M
þO

�
E4R

M3

�
;

MR � ER � E0R: (4.8)

The decoupling in 5D is not as efficient as in 4D, with the
heavy particle effects vanishing as 1=M, as opposed to
1=M2, as in Eq. (4.8). In the 5D regime with E � 1=R,
the factor of R in the numerator of Eq. (4.8) enhances the

effect. Contrary to usual 4D theories, massive particles in
5D start to give a significant contribution to the gauge
coupling evolution at energies well before their masses.5

B. One-loop coupling behavior in the Lifshitz theory

The energy behavior of the coupling in the Lifshitz
model is obtained by studying the function f1, defined in
Eq. (3.30). Gauge invariance implies the following rela-
tions among the different photon polarization terms:

!�00 � pm�m0 ¼ 0; !�0n � pm�mn ¼ 0: (4.9)

In the parametrization (3.30) of �mn, Eq. (4.9) fixes

�00 ¼ ip2f1ð!2; p2Þ; �0m ¼ i!pmf1ð!2; p2Þ:
(4.10)

The function f1 is responsible for a finite renormalization
of the photon kinetic term. The redefinition of the photon
field A ! A=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f1

p
brings the kinetic term back in ca-

nonical form, but in so doing we get a rescaled coupling
constant

g25ð!;p2Þ ¼ g25ð!0; p
2
0Þ

1þ f1ð!2; p2Þ � f1ð!2
0; p

2
0Þ
; (4.11)

where !0 and p0 are arbitrary. Because of the Ward
identity (3.14) there is no further renormalization of the
coupling. In the IR, by fine-tuning cc ¼ c� with sufficient

accuracy (see Sec. V), our model flows to a Lorentz-
invariant 5D theory. It is then unnecessary to study g25 as

a function of both energy and momentum. We set, after
having extracted the appropriate powers of p as given by
Eq. (4.10), p ¼ 0 and study the gauge coupling as a
function of the energy only. We take vanishing momentum
of the photon in the compact space. The function f1 is most
easily computed by looking at the �00 component of the
photon vacuum polarization for Euclidean energies ! ¼
iE. We have

5An equation very similar to Eq. (4.4) has been computed in [12] in dimensional regularization, but the 1=M decoupling of heavy
states was not emphasized, being decoupling not manifest in that scheme.

4We thank R. Rattazzi for this observation.
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with

rðp; qÞ ¼ a2c q
4ð1� xÞ þ a2c ðpþ qÞ4xþ c2c q

2ð1� xÞ
þ c2c ðpþ qÞ2x;

q2 ¼ qiqi þ n2

R2
: (4.13)

Expanding up to quadratic terms in the spatial momentum
p, and by integrating over !E and afterward over x, we get
the desired form of the function f1ðiE; 0Þ:
f4ðE; 1=RÞ � g�2

4 f1ðiE; 0Þ

¼ 1

3�2cc

X1
n¼�1

Z 1

0

� s2ð3~s4 þ 3~s2 � s2Þds
~s3ð1þ ~s2Þ3=2ð4~s2 þ 4~s4 þ	2Þ ; (4.14)

with

	 ¼ acE

c2c
; s ¼ qac

cc
; ~s2 ¼ s2 þ a2c n

2

c2cR
2
: (4.15)

At any energy scale, f4ðE; 1=RÞ gives the one-loop energy
behavior of the gauge coupling:

g�2
4 ðEÞ ¼ g�2

4 ðE0Þ þ f4ðE; 1=RÞ � f4ðE0; 1=RÞ: (4.16)

When E � 1=R, the sum over the KK modes in Eq. (4.14)
is reliably approximated by a continuos integration and we
get

f5ðEÞ � g�2
5 f1ðiE; 0Þ

’ 1

16�2ac

Z 1

0

s2ð3þ 4s2Þds
ð1þ s2Þ3=2ð4s2 þ 4s4 þ	2Þ ;

E � 1=R: (4.17)

Independently of the UV completion of the theory, the
energy dependence of the coupling constant at low ener-
gies should be dictated by its RG evolution. Indeed, the
logarithmic and linear terms in Eqs. (4.5) and (4.7) are
nonanalytic in E2, due to the IR behavior of the integrand,
and thus calculable. We did not find an explicit formula for
f4ðE; 1=RÞ, but its deep IR behavior can be extracted by
considering the n ¼ 0 R-independent KK mode only and
noticing that the IR divergence of the integrand comes
from small values of s so that we can simplify the inte-
grand. We get

f4ðEÞ � f4ðE0Þ ’ 2

3�2cc

Z 1

0

sð	2
0 �	2Þds

ð4s2 þ	2Þð4s2 þ	2
0Þ

¼ � 1

6�2cc
log

E

E0

;

E; E0 �
cc
R

; (4.18)

reproducing Eq. (4.5) for cc ¼ 1. In the uncompactified

limit, it is possible to write an approximate analytic for-
mula for f5ðEÞ (which gives the exact limit in both the UV
and the IR) from which the IR behavior (4.7) is computed:

f5ðEÞ ’ 1

16�2ac

�Z 1

0
ds

3s2

ð4s2 þ	2Þ

þ
Z 1

1
ds

4s

ð4s4 þ	2Þ
�

¼ 4�þ 6	� ð8þ 3	2Þ arctanð2	Þ
128�2ac	

: (4.19)

Expanding Eq. (4.19) for small 	, one finds

f5ðEÞ � f5ðE0Þ ¼ � 3

256�c2c
ðE� E0Þ þOðE2Þ;

E � cc
ac

;

(4.20)

reproducing the coefficient in Eq. (4.7), with cc ¼ 1.
In the deep UV regime, E � 1, Eq. (4.19) gives

f5ðEÞ ¼
c2c

32�a2c

1

E
þO

�
1

E2

�
; (4.21)

showing that the correction to the coupling vanishes like
1=E for E ! 1.6

At a more quantitative level, Eq. (4.19) is not a very
accurate approximation of f5ðEÞ in the whole E range. A
more reliable, but more complicated, analytic expression is
reported in the Appendix; see Eq. (A2). We plot, for
illustration, g�2

5 ðEÞ in the 5D uncompactified limit, as

given by Eqs. (4.7) and (4.17) (Fig. 3) and g�2
4 ðEÞ in the

4D compact case, as given by Eqs. (4.7) and (4.14) (Fig. 4).

C. Cutoff of the effective theory and comparison with
NDA estimates

The range of validity of 5D theories as perturbative and
calculable effective field theories is typically estimated, in
absence of a concrete UV completion, by using naive
dimensional analysis [5]. A possible definition of the
maximum energy scale � above which the theory breaks
down is derived from the photon vacuum polarization
term.7 When the one-loop correction becomes of the
same order as the tree-level term, calculability is certainly
lost. A naive often used estimate takes into account the
phase space of the loop integration, taken as in 5D un-
compactified space, giving

6The correction actually vanishes as 1=E1þ3g2=ð4�2Þ, due to the
UV RG evolution of cc and ac , as given by Eq. (3.33).

7Strictly speaking, one should use physical observables to
identify the breakdown of the theory, yet we believe that the
photon propagator is a reliable quantity to look at.
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g25�
ð1Þ

24�3
¼ 1 ) �ð1Þ ¼ 12�2

g24

1

R
; (4.22)

where 24�3 is the 5D loop factor, and g24 is computed, say,
at the compactification scale 1=R. A closer inspection of
the 5D vacuum polarization diagram shows that further
factors of � arise from the momentum integration. A more
careful and conservative estimate would use the standard
4D loop factor to get

g25�
ð2Þ

16�2
¼ 1 ) �ð2Þ ¼ 8�

g24

1

R
; (4.23)

roughly a factor of 5 smaller than (4.22). Another similar
estimate can be given by comparing the one-loop term in
Eq. (4.7) to the classical one, g�2

5 ðE0Þ. In this way, we get

�ð3Þ ¼ 128

3g24

1

R
: (4.24)

All these estimates unambiguously show that there is not a
parametrically large range in energies (when g4 	 1)
where 5D theories are calculable and reliable effective
field theories. In this situation a factor of a few in the
cutoff estimate can make the difference in defining a model
reliable or not and it is hence very important to improve by
any means in discerning between the above estimates or
adding new ones.
Our Lifshitz-like UV completion can be quite useful in

this sense. The cutoff scale � should be here identified
with the Lifshitz cutoff scale (so far set to 1) which we now
make explicit as in Sec. II by setting ac ! ac =� in our

previous formulas. The impossibility of having a too large
window between 1=R and� is clearly visible in our theory.
If 1=R is too small with respect to �, the 5D linear regime
(4.7) of g�2 is too long before the Lifshitz operators come
to the rescue and perturbation theory breaks down. We can
compute which is the maximum allowed value for �R by
demanding that g�2

4 ðEÞ is definite positive for arbitrarily
high-energy scales. Since for E � �, f4 ’ 2�Rf5 goes to
zero [see Eq. (4.21)], taking E ¼ 1 and E0 ¼ 1=R in
Eq. (4.16), we get

0 � g�2
4;1 ¼ g�2

4 � f4

�
1

�R
;
1

�R

�
; (4.25)

where g4 ¼ g4ðE0 ¼ 1=RÞ and g4;1 ¼ g4ðE ¼ 1Þ.
Inverting Eq. (4.25) to get � as a function of R and g4 is
complicated. However, for �R � 1, Oð�RÞ KK modes
significantly contribute to f4 and we can safely replace f4
by its noncompact version f5, f4ð1=�R; 1=�RÞ ’
2�Rf5ð1=�RÞ. We can still approximate this expression
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0.6

0.8

1.0

1

g4
2

FIG. 4 (color online). Comparison between the exact Lifshitz
behavior as given by Eq. (4.14) (blue line) with the effective
coupling (4.4) for periodic fermions with M ¼ 0 (straight red
line). The energy is in units of 1=R. We have taken E0 ¼
1=ð10RÞ, g�2

4 ð1=ð10RÞÞ ¼ 1, ac ¼ 1, and � ¼ 25=R.
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FIG. 3 (color online). Left panel: g�2
5 as a function of the energy scale E in the uncompactified Lifshitz theory. Right panel:

Comparison between the Lifshitz behavior (blue line) with the 5D linear regime (4.7) (straight red line). The energy is in units of�. We
have taken E0 ¼ 0, g�2

5 ð0Þ ¼ 1, and ac ¼ 1.
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by evaluating f5 at zero
8:

f5ð0Þ ¼ 5�

96ac�
2
; (4.26)

from which we finally find (writing here � ! �Lif to
emphasize that it is the cutoff of the Lifshitz completion
of the theory)

�Lif *
48�ac

5

1

R

�
1

g24
� 1

g24;1

�
; (4.27)

where ac ¼ ac ð�Þ, essentially constant below � [7]. It is

reasonable that �Lif depends on ac , since the effective

scale regulating the low-energy fermion propagators is
�=ac and not �. Increasing ac , however, implies that

the Lifshitz regime takes over the usual 5D regime earlier,
and before reaching the scale � the 5D theory receives
sizable UV-sensitive corrections. This is illustrated in
Fig. 5, where we show how increasing ac allows a higher

cutoff �, but does not change the range of validity of the
effective field theory, which is always given by the scale
(4.27) with ac ¼ 1.

Comparing Eq. (4.27) with Eqs. (4.22), (4.23), and (4.24),
we see that for ac ¼ 1 the Lifshitz cutoff computation is

closer to the most conservative of the three NDA cutoff
estimates, Eq. (4.23), provided that g4;1 is not too small.

The more perturbative the UV completion is, the lower the
cutoff becomes.

V. IR EVOLUTION OF c� AND cc , FINE-TUNING
AND ASTROPHYSICAL CONSTRAINTS

The recovery of Lorentz invariance at low energy from
the Lifshitz 5D QED is not automatic, since there is no
mechanism enforcing c� ¼ cc . These parameters evolve

in the UVaccording to Eq. (3.33), but their IR evolution is
radically different. For simplicity, we focus only on the 5D
IR regime, 1=R < E<�. As explained before, in this
regime it makes sense only a perturbative expansion in
the coupling and thus the RG technique is not very useful.
We will nevertheless continue to use this language for
convenience and for homogeneity with the deep IR and
UV regimes, in which the RG flow is useful.
When E � �, we can safely neglect the higher-

derivative Lifshitz operators in the Lagrangian (2.7), and
we end up with the usual 5D QED, with c� � cc . When

c� � cc , Lorentz invariance is broken and both parameters

run. The IR� functions�IR
cc and�IR

c� are easily determined.

We take c� ¼ 1 as the initial condition, define �c ¼ cc �
c�, and assume �c � 1, so that we keep only up to linear

terms in �c. Let us first consider �IR
c� that can be deter-

mined by looking at the spatial components �mn of the
photon propagator corrections. In the one-loop vacuum
polarization photon diagram only one particle, the fermion,
enters. Modulo a rescaling the graph is Lorentz invariant
and correspondingly �IR

c� is proportional to the gauge cou-

pling � function. At linear order in �c, we find

�IR
c� ¼ k�g

2
5E�c; (5.1)

where k� ¼ �3=ð256�Þ. The � function �IR
cc is deter-

mined by looking at the one-loop fermion propagator

correction �. We define the functions f0;1c as

� ¼ i�0!f0c � icc�mpmf
1
c : (5.2)
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FIG. 5 (color online). Comparison between g�2
4 as a function of the energy scale E in the Lifshitz theory (blue lines), as given by

Eq. (A2), and the effective 5D coupling (4.7) (straight red lines). The energy is in units of 1=R. We have taken E0 ¼ 1=R and
g�2
4 ð1=RÞ ¼ 1. (a) ac ¼ 1 and � ¼ 25=R. (b) ac ¼ 10 and � ¼ 100=R. Despite the higher cutoff, the range of validity of the 5D

effective theory is lower in (b) than in (a).

8We have numerically verified that the above two approxima-
tions lead to less than 10% deviations from the exact value for
�R	 10–30.
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In this way,

�IR
cc ¼ ccE

@

@E
ðf1c � f0c Þ: (5.3)

Although the functions f0;1c are gauge dependent, the latter

cancels in the difference so that �cc is gauge invariant. We

get

�IR
cc ¼ kc g

2
5E�c; (5.4)

where kc ¼ 25=ð1024�Þ. Equations (5.1) and (5.4) are

easily integrated giving

�cðEÞ ¼ �cðE0Þ½1þ g25ðE0Þk�ðE� E0Þ�ðkc�k�Þ=k� ;

cc ðEÞ ¼ cc ðE0Þ þ �cðE0Þ
kc

kc � k�

� ½1þ g25ðE0ÞkgðE� E0Þ�ðkc�k�Þ=k� : (5.5)

Plugging the values found for k� and kc in Eq. (5.5), we get

�cðEÞ ’ �cðE0Þ
½1þ g25ðE0Þk�ðE� E0Þ�3

: (5.6)

The factor �cðEÞ decreases toward the IR, as desired.
Unfortunately, the decrease one gets is not very efficient
to avoid the need of fine-tuning. Even if we pretend that
Eq. (5.6) is reliable beyond one-loop level, and take, for
example, E ¼ 1=R, E0 ’ 25=R, g24ðE0Þ ’ 4� (strong cou-
pling), �c decreases along the flow by at most 3 orders of
magnitude, whereas experimental bounds require �c &
10�21 for ordinary particles [13] (for electrons and photons
the bounds are slightly less severe, see e.g. [14]).
Nevertheless, by appropriately tuning �cðE0Þ, Lorentz in-
variance can always be achieved with the desired accuracy.
In the deep IR regime, the evolution of cc and c� will

change from a linear to a logarithmic behavior below 1=R.
No new qualitative features emerge and we will not report
the corresponding results.

Even if c� ¼ cc ¼ 1 to a sufficient precision in the deep

IR, the dispersion relations of photon and electrons in our
theory are modified:

viðpÞ ¼ d!i

dp
¼ 2a2i p

3 þ c2i pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i p

4 þ c2i p
2

q ¼ 1þ 3a2i p
2

2
þOðp�4Þ;

i ¼ c ; �; (5.7)

leading to an energy-dependent maximum allowed speed
for the two particles. Astrophysical bounds, particularly
coming from cosmic ray observations, generally constrain
the size of the aip

2 corrections above, pushing � to very
high scales for ai 	 1 (see e.g. [15] for an overview). We
have not systematically studied the bounds on � coming
from these experiments, but considered only a specific one,
which is quite likely not the most stringent one. It arises
from the time delay measured by the Fermi experiment in
the gamma ray burst GRB 080916C at redshift z ¼ 4:35

[16] and has the advantage of being purely kinematical.
This bound can be roughly cast in the following way:

jv2
�ð1 MeVÞ � v2

�ð10 GeVÞj & 10�17: (5.8)

Reinserting the scale � in Eq. (5.7), the bound (5.8) gives

� * 5� 109 GeVa�: (5.9)

VI. CONCLUSIONS

We have constructed a renormalizable, UV-completed,
Lifshitz-like theory that reduces at low energies to the
standard QED in 5D. This is the simplest and most con-
crete UV completion of a ED theory we are aware of, with
excellent UV properties. In particular, the gauge coupling
constant is finite to all orders in perturbation theory. The
one-loop behavior of the coupling is described, at all
energy scales, by Eq. (4.14). We have shown in detail
how Eq. (4.14) reproduces, as it should, the energy behav-
ior of a coupling constant in 4 and 5 dimensions at lower
energies. We have then derived a bound on the size of the
cutoff in the 5D QED theory, based on our UV completion.
Our results show that the often used NDA estimate (4.22) is
too optimistic, while the more conservative estimate (4.23)
is more reliable.
Admittedly, our UV completion is not very well moti-

vated. One has to impose a severe fine-tuning to recover
Lorentz invariance at low energies [7,8]. Moreover, the
Lifshitz cutoff is severely constrained by astrophysical
data, as shown e.g. in Eq. (5.9). Nevertheless, we think
our model can be useful, at least seen as a toy UV-
completion mechanism of effective ED theories. Several
issues related to the calculability of higher dimensional
nonrenormalizable theories and the UV sensitivity of ob-
servables can concretely be addressed using generaliza-
tions of our QED Lifshitz construction. Given the
simplicity of the theory, we think that all the necessary
generalizations needed to construct a UV completion of
phenomenologically interesting models (interval compac-
tifications, localized brane terms, warp factors, etc.) should
not represent a too complicated task.
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APPENDIX: AN APPROXIMATE ANALYTIC
EXPRESSION FOR f5ðEÞ

This approximation is found by decomposing the inte-
gral over s appearing in Eq. (4.17) in two:

R1
0 ds ¼R

1
0 dsþ

R1
1 ds, and simplifying the integrand in the two

regimes as follows:
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f5ðEÞ ’ 1

16�2ac

�Z 1

0
ds

3s2

ð4s2 þ 4s4 þ	2Þ þ
Z 1

1
ds

4s

ð4s2 þ 4s4 þ	2Þ
�
: (A1)

The s integration can now be performed and we obtain the following expression for f5ðEÞ:

f5ðEÞ ¼ 1

128�2ac

�3 ffiffiffi
2

p ½ð�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�	2

p Þ arctanð
ffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffi
1�	2

pp Þ þ	 arctanð
ffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffi
1�	2

pp Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�	2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�	2
pq

�
4½ð�þ 2 arctanð 3ffiffiffiffiffiffiffiffiffiffiffiffi

�1þ	2
p ÞÞ
ð1�	Þ � ð�� 2 arctanð 3ffiffiffiffiffiffiffiffiffiffiffiffi

�1þ	2
p ÞÞ
ð	� 1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � 1

p
�
; (A2)

with	 as in Eq. (4.15). Despite the appearance of negative square roots for any	, the function f5ðEÞ is real. Equation (A2)
turns out to be a very good approximation of Eq. (4.17).
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