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We consider quantum electrodynamics in noncommutative spacetime by deriving a Seiberg-Witten

map, nonperturbative in �, with fermions in the fundamental representation of the gauge group as an

expansion in the coupling constant. Accordingly, we demonstrate the persistence of UV/IR mixing in

noncommutative QED with charged fermions via a Seiberg-Witten map, extending the results of Schupp

and You [P. Schupp and J. You, J. High Energy Phys. 08 (2008) 107.].
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I. INTRODUCTION

The construction of renormalizable quantum field theo-
ries in noncommutative spacetime endowed with canonical
coordinate commutation relations ½x̂�; x̂�� ¼ i��� is a
long-standing problem, the solution of which is necessary
for the calculation of testable predictions for these theories.
They are expected to give hints of the underlying quantum
structure of spacetime, in particular, due to their appear-
ance in string theory [1] and in semiclassical situations,
where principles of quantum field theory and general rela-
tivity are combined [2]. Arguably, the most serious ob-
stacle for the formulation of these noncommutative
quantum field theories is the so-called UV/IR mixing,
giving rise to nonrenormalizable divergencies, which
seem to be a generic property of any quantum field theory
in noncommutative spacetime due to the inherent infinite
range of nonlocality induced by the noncommutativity.
Various solutions have been proposed to cure the problem.
(See, e.g., [3] for a review.)

In their seminal paper [1] on the connection between
noncommutative geometry and string theory, Seiberg and
Witten introduced a map, which relates gauge field theories
in noncommutative spacetime to ordinary commutative
ones, known as the Seiberg-Witten map. This map has
virtues, since many aspects of gauge theories, such as
observables and gauge fixing, are more easily understood
and dealt with in the language of ordinary theories. On the
other hand, it also has certain uniqueness ambiguities ex-
plored in [4]. Moreover, it does not seem to affect at all
some problems stemming from the noncommutativity, an
example of which is the no-go theorem [5,6], according to
which fields can transform nontrivially under only two
different gauge groups U?ðNÞ (see also [7]).

The appearance of UV/IR mixing in the usual formula-
tion of noncommutative gauge theories has been con-

firmed, e.g., in [8]. Therefore it is interesting to study
whether the Seiberg-Witten map affects the problem of
UV/IR mixing. Indeed, it has been argued, for example,
in [9],1 that the mixing of UV and IR sectors of noncom-
mutative theories is absent in the Seiberg-Witten formal-
ism. The study has been done also for noncommutative
Yang-Mills theories (see, e.g., [10,11]), up to the first order
in �, leading to the conclusion of one-loop renormalizabil-
ity. However, we suspect that this may be due to the
expansion in the noncommutativity parameter matrix � in
the �-expanded Seiberg-Witten map.2 In the
�-nonperturbative Seiberg-Witten map for noncommuta-
tive QED, the UV/IR mixing problem does appear, as we
shall demonstrate. The same argument has been expressed
by Schupp and You in [13], where they considered a non-
commutative model with a gauge field coupled with a
spinor field in the adjoint representation of the gauge
group, and showed the existence of an IR-divergent term
for the photon self-energy corrections. The adjoint repre-
sentation, however, corresponds to a chargeless particle but
with an electric dipole moment proportional to � [14–17],
and thus in their model the interaction vanishes at the
commutative limit �! 0. Therefore the model does not
correspond to a noncommutative theory of electrically
charged fermions, which should reduce to the ordinary
QED in the commutative limit.
In this paper, our primary goal is to extend the analysis

of Ref. [13] to the case of noncommutative QED with
charged fermions. We first derive a Seiberg-Witten map,
nonperturbative in �, for a gauge theory with a spinor field
in the fundamental representation of the gauge field, cor-
responding to charged fermions, as an expansion in the
coupling constant, and then demonstrate the persistence of
UV/IR mixing in the photon self-energy corrections.
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14476 Golm, Germany.
matti.raasakka@aei.mpg.de
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1In particular, in [9] it was shown that via a Seiberg-Witten
map the photon self-energy diagram can be renormalized up to
any finite order in � by shifting the nonrenormalizable terms up
to the next order.

2We should point out that even in the �-expanded formalism
with Seiberg-Witten map, NCQED appears to be nonrenorma-
lizable in the first order in � [12].
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II. �-NONPERTURBATIVE SEIBERG-WITTEN
MAP WITH CHARGED FERMIONS

The Seiberg-Witten map, as introduced in Ref. [1], is a
technique to induce a gauge orbit preserving mapping

ðA�;�Þ� ðÂ�; �̂Þ between gauge fields and gauge trans-

formation parameters in commutative and noncommuta-
tive spacetimes, respectively. The map has previously been
realized either as an expansion in the noncommutativity
parameters ��� or in the gauge field A� as established for

an Abelian gauge field theory in [13,18,19] (in the respec-
tive order). However, there is a third way, namely, an
expansion in the coupling constant, which is the one we
shall use in the following.3 This is particularly convenient,
since for the usual perturbation theory of QED we shall
perform an expansion in the coupling constant in any case.
Accordingly, we are able to avoid performing multiple
expansions by taking terms of the expansion series of
Seiberg-Witten map appropriately into account. We will
also add a spinor field in the fundamental representation of
the gauge field into the picture, thus inducing a map

ð�; A�;�Þ� ð�̂; Â�; �̂Þ.
The strategy in deriving the �-nonperturbative Seiberg-

Witten map, in a nutshell, is first to relate two gauge field
theories in noncommutative spacetimes with infinitesi-
mally differing noncommutativity parameter matrices,
say � and �0, to each other in a gauge orbit preserving
way, and then to integrate this relation from the origin �0 �
0 to some constant matrix �1 along a path in the space of
4� 4 real-valued antisymmetric matrices. Thus, let us
have two noncommutative gauge field theories with spinor
fields, denoted by T ½���; A�;�� and T 0½�0��; A0�;�0�,
where the arguments are the noncommutativity parame-
ters, the gauge fields and the spinor fields, respectively. Let
us also introduce the notation

�0��� ��� ¼ ����; A0��A� ¼ a�; �0 ��¼ c :

(1)

As prescribed, we assume that ���� are infinitesimal, and
that the fields depend smoothly on the noncommutativity
parameters, so that a�, c and all their partial derivatives

are also infinitesimal.
Let us now consider a map of the fields from T to T 0.

We may think of the fields inT 0 as depending on the fields
in T according to this mapping, namely4

A0� � A0�ðAÞ ¼ A� þ a�ðAÞ and

�0 � �0ð�; AÞ ¼ �þ c ð�; AÞ: (2)

Now, we apply a gauge transformation in the theory T
with a gauge transformation parameter �. For a noncom-
mutative gauge field theory a gauge transformation is given
by the formulas5

��A� ¼ @��þ ig½�; A��?; ��� ¼ ig� ?�; (3)

where g is the coupling constant and the noncommutative
?-product is the Moyal product defined as

f ? g ¼ exp

�
i

2
��� @

@x�
@

@y�

�
fðxÞgðyÞjx¼y: (4)

The fundamental requirement for the Seiberg-Witten map
is that it should preserve the gauge equivalence classes of
the theory, so that the transformation � in T corresponds
to a gauge transformation

�0 � �0ð�; AÞ ¼ �þ �ð�; AÞ (5)

in T 0:

A0�ðAþ ��AÞ ¼ A0�ðAÞ þ ��0A
0
�ðAÞ; (6)

�0ð�þ ���; Aþ ��AÞ ¼ �0ð�; AÞ þ ��0�
0ð�; AÞ:

(7)

By substituting the formulas (1) and (3) into (6) and (7),
and using the relation

f ?0 g ¼ feði=2Þ@
 �ð�þ��Þ��@

!�

g

¼ f ? gþ i

2
����ð@�fÞ ? ð@�gÞ; (8)

we arrive at the equations

a�ðAþ ��AÞ � a�ðAÞ � @��ð�; AÞ � ig½�ð�; AÞ; A��?
� ig½�; a�ðAÞ�? ¼ �g

2
����f@��; @�A�g? (9)

and

c ð�þ ���; Aþ ��AÞ � c ð�; AÞ � ig� ? c ð�; AÞ
� ig�ð�; AÞ ?� ¼ �g

2
����ð@��Þ ? ð@��Þ (10)

for �, a� and c . As found by Seiberg andWitten in [1] (for

g � 1), the Eq. (9) is solved by

� ¼ �g

4
����fA�; @��g?;

a� ¼ � g

4
����fA�; @�A� þ F��g?;

(11)
3Since an expansion in ��� may obscure the possible UV/IR

mixing of the noncommutative theory, a �-nonperturbative ap-
proach is essential.

4Precisely which arguments are needed here depends on, and
is revealed by, the solutions found below, but for clarity they are
already given here. Moreover, we have dropped the Lorentz
indices of the arguments for simplicity, since it is clear how
they are resumed.

5We do not worry about gauge fixing here, since we shall
ultimately fix it in the commutative QED to which we arrive in
Sec. III. Therefore, the Faddeev-Popov ghost fields are not
needed.
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where F�� � @�A� � @�A� � ig½A�; A��? is the field

strength. Using (11), we find for the Eq. (10) the solution

c ¼ �g

2
����

�
A� ? ð@��Þ þ 1

2
ð@�A�Þ ?�

�
: (12)

As prescribed, the next step in constructing the Seiberg-
Witten map, nonperturbative in �, is to integrate these
relations along a path in the space of real-valued antisym-
metric matrices to obtain a relation between gauge theories
in a commutative spacetime and in a noncommutative one
with finite noncommutativity parameters ���. There are
certain ambiguities related to choosing a particular path,
following from the observation that successive Seiberg-

Witten maps do not commute in general, and thus there is
an infinite number of free parameters related to the path
fixing. Some but not all of these correspond to gauge
transformations and field redefinitions, as explored in [4].
However, for simplicity, we choose to consider a straight
path6 �: ½0; 1� ! f� 2 R4�4j� antisymmetricg such that
�ðsÞ ¼ s�1, where �1 is the constant matrix reached at s ¼
1. Let us denote the fields, now considered as dependent on
the spacetime coordinates x� and the noncommutativity
parameters ���, as A�ðx;�Þ and �ðx; �Þ. Integrating the

variation (9) along the straight path � and using integration
by parts, we get for the gauge field the equation

A�ðx;�1Þ ¼ A�ðx; 0Þ þ lim
y!x

�
�g���1

4

eði=2Þ�	
ð@=@x	Þð@=@y
Þ
i
2�

��
1

@
@x�

@
@y�

� ½A�ðx;�Þð@�A�ðy; �Þ þ F��ðy;�ÞÞ þ ð@�A�ðx; �Þ

þ F��ðx;�ÞÞA�ðy; �Þ� þ g���1
4

X1
n¼2
ð�1Þn e

ði=2Þ�	
ð@=@x	Þð@=@y
Þ

ði2���1 @
@x�

@
@y�
Þn

�Yn
k¼2

��k�k

1

�

���k�k

�
� ½A�ðx; �Þð@�A�ðy; �Þ

þ F��ðy;�ÞÞ þ ð@�A�ðx;�Þ þ F��ðx;�ÞÞA�ðy; �Þ�
�
�¼�1
�¼0

; (13)

and similarly for the spinor field the equation

�ðx;�1Þ¼�ðx;0Þþ lim
y!x

�
�g���1

4

eði=2Þ�	
ð@=@x	Þð@=@y
Þ
i
2�

��
1

@
@x�

@
@y�

�
�
A�ðx;�Þð@��ðy;�ÞÞþ1

2
ð@�A�ðx;�ÞÞ�ðy;�Þ

�

þg���1
4

X1
n¼2
ð�1Þn e

ði=2Þ�	
ð@=@x	Þð@=@y
Þ

ði2���1 @
@x�

@
@y�
Þn

�Yn
k¼2

��k�k

1

�

���k�k

�
�
�
A�ðx;�Þð@��ðy;�ÞÞþ1

2
ð@�A�ðx;�ÞÞ�ðy;�Þ

��
�¼�1
�¼0

:

(14)

The inverse spacetime partial derivative operators in (13)
and (14) are to be understood as defined via Fourier trans-
formation. Then, the series can be calculated iteratively in
powers of the coupling constant g, since �

�� A� ¼ OðgÞ and
�
��� ¼ OðgÞ, so the variations in the sums give terms of
ever increasing powers in g.

III. NCQED VIA SEIBERG-WITTEN MAP

We now turn to consider exclusively the gauge group
Uð1Þ, i.e., quantum electrodynamics (QED). We need to
study the action of noncommutative QED (NCQED),

SNCQED ¼
Z

d4x

�
�̂� ? ði6@�mÞ�̂� 1

4
F̂�� ? F̂��

� e �̂� ? Â6 ? �̂

�
; (15)

in terms of the ordinary fields up to the second order in the

electromagnetic coupling constant e in order to catch all
the second-order contributions to the photon self-energy.
These arise from the diagrams drawn in Fig. 1. Denoting
the noncommutative fields by hats and dropping the lower
index from �1, we find the gauge field via the Eq. (13) up to

(a) (b)

(c) (d)

FIG. 1. Photon self-energy diagrams in the second order of e.6This is the case considered also in Ref. [13].
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second order in the coupling constant:

Âð0Þ� ¼ A�; Âð1Þ� ¼ �e
sinð12@1 ^ @2Þ

1
2 @1 ^ @2

�
��
� ~@�2 �

1

2
���@2�

�
A�ðx1ÞA�ðx2Þjx1¼x2 ¼ �

e

2
���A� ?s

1 ð2@�A� � @�A�Þ;

Âð2Þ� ¼ e2

4

�
sinð12@1 ^ @2Þ

1
2@1 ^ @2

sinð12 ð@1 þ @2Þ ^ @3Þ
1
2 ð@1 þ @2Þ ^ @3

þ cosð12@1 ^ @2Þ cosð12 ð@1 þ @2Þ ^ @3Þ � 1

½12 ð@1 þ @2Þ ^ @3�2
�

� f2½2~@�2 ~@�3 � ���@2 ^ @3��	
� þ 2½2ð~@1 þ ~@2Þ	 ~@�2 � �	�@1 ^ @2���

�

þ ½ð2��	 ~@�2 � ���ð3~@1 þ ~@2Þ	 � 2�	� ~@�1 Þ@2� � ð��� ~@	2 þ 2��	 ~@�2 Þ@3��gA�ðx1ÞA�ðx2ÞA	ðx3Þjx1¼x2¼x3 : (16)

Similarly for the spinor field, via the Eq. (14), we find

�̂ð0Þ ¼ �; �̂ð1Þ ¼ � e

2

eði=2Þ@1^@2 � 1
i
2 @1 ^ @2

�
1

2
~@1 þ ~@2

�
�
A�ðx1Þ�ðx2Þjx1¼x2 ¼ �

e

2
���

�
A� ?1 ð@��Þ þ 1

2
ð@�A�Þ ?1 �

�
;

�̂ð2Þ ¼ e2

4

��
sinð12@1 ^ @2Þ

1
2@1 ^ @2

eði=2Þð@1þ@2Þ^@3
i
2 ð@1 þ @2Þ ^ @3

� cosð12@1 ^ @2Þeði=2Þð@1þ@2Þ^@3 þ 1

½12 ð@1 þ @2Þ ^ @3�2
�
�

�
2~@�2

�
1

2
~@1 þ 1

2
~@2 þ ~@3

�
�

þ ���
�
1

2
@1 þ @3

�
^ @2

�
þ

�
eði=2Þ@1^@3 � 1

i
2@1 ^ @3

eði=2Þ@2^ð@1þ@3Þ
i
2@2 ^ ð@1 þ @3Þ

� eði=2Þ@1^@3eði=2Þ@2^ð@1þ@3Þ þ 1

½i2@2 ^ ð@1 þ @3Þ�2
�

�
�
1

2
~@1 þ ~@3

�
�
�
~@1 þ 1

2
~@2 þ ~@3

�
�
�
A�ðx1ÞA�ðx2Þ�ðx3Þjx1¼x2¼x3 ; (17)

where we have introduced the notations ~u� :¼ ���u� and
u ^ v :¼ u��

��v� for any four-vectors u�, v�, and
7

f ?1 g :¼ eði=2Þ@1^@2 � 1
i
2@1 ^ @2

fðx1Þgðx2Þjx1¼x2 ;

f ?s
1 g :¼ 1

2
ff; gg?1

¼ sinð12@1 ^ @2Þ
1
2@1 ^ @2

fðx1Þgðx2Þjx1¼x2 :
(18)

Clearly, the terms tend to get more complicated at each
order, which makes higher order calculations via
�-nonperturbative Seiberg-Witten map highly elaborate.

Since ðf ? gÞy ¼ gy ? fy for any functions (or, more

generally, matrices) f and g, �̂� � �̂
� ¼ �̂y�0.

Substituting (16) and (17) into the action (15), we find
the first order fermion-photon interaction term to be

Lð1Þ��A�
¼ �e �� ? A6 ?�� e

2
���

�
ð@� ��Þ ?1 A�

þ 1

2
�� ?1 ð@�A�Þ

�
? ði6@�mÞ�

� e

2
��� �� ? ði6@�mÞ

�
A� ?1 ð@��Þ

þ 1

2
ð@�A�Þ ?1 �

�
: (19)

Similarly, from (16) we find the photon-photon interaction
Lagrangian up to the first order in e to be

Lð1Þ
A3 ¼ � e

4

�
@�A� � @�A�; i½A�; A��?

� 1

2
���½@�ðA� ?s

1 ð2@�A� � @�A�ÞÞ

� @�ðA� ?s
1 ð2@�A� � @�A�ÞÞ�

�
?
: (20)

The second-order contributions are considerably more
complicated, but are obtained similarly by substituting
the expressions (16) and (17) into the action (15) and
picking up the terms with the factor e2. The Feynman
diagram vertex functions arising from the first- and
second-order parts of the action are given in Appendix A.

IV. PHOTON SELF-ENERGY CORRECTIONS

Now, using the vertex function (A1) from Appendix A,
we find for the second-order fermion loop correction to the
photon propagator arising from the diagram (a) in Fig. 1
the form:

���
ðaÞ ðkÞ ¼ �4e2

Z d4p

ð2�Þ4 �
�
T�� þ i

2

sinð14p ^ kÞ
1
4p ^ k

�
��

~p� 1

2
~k

�
�
k	T

	�e�ði=4Þp^k

�
�
~p� 1

2
~k

�
�
k	T

	�eði=4Þp^k
�
þ 1

4

sin2ð14p ^ kÞ
ð14p ^ kÞ2

�
�
~p� 1

2
~k

�
�
�
~p� 1

2
~k

�
�
k	k
T

	


�
; (21)

7Notice that our notation for these so-called ‘‘generalized
?-products’’ differs from that used in [13,18,19]. This is an
attempt to make the notation more systematic. The lower index
denotes the times of integration of the ?-product over the unit
interval, and the upper index ‘‘s’’ denotes symmetrization of the
product with respect to its arguments.
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where

T�� :¼ðp�kÞ�p�þp�ðp�kÞ�þ½m2�ðp�kÞ �p����

p2ðp�kÞ2 :

(22)

The first term in the integrand of (21) is the only one we get
in the commutative case, whereas the second and the third
terms are the contribution of noncommutativity. It is easy
to see that the extra terms vanish at the limit �! 0, and
thus we obtain the same result as for the commutative QED
at the commutative limit, in contrast with the result of
Schupp and You [13], which vanishes completely at the
commutative limit. This follows from their use of the
adjoint representation for the spinor field, leading one to
antisymmetrize the ?-products in the action, which gives
rise to a sine phase factor for the vertex function. In our
case of the fundamental representation for the fermions, on
the other hand, one does not antisymmetrize the
?-products, thus obtaining an exponential phase factor.
The exponential factors cancel out upon the multiplication
of complex conjugates arising from the two vertices of the
diagram (a), leading to the usual commutative contribu-
tion, while the sine factors arising from the vertices in the
adjoint representation do not cancel out upon
multiplication.

On the other hand, the integrand in (21) consists of two
parts: The first term along with parts of the second and the
third terms without phase factors constitute the divergent
‘‘planar’’ part of the correction

���
ðaÞpðkÞ :¼�2e2

Z d4p

ð2�Þ4�
�
2T��þ 1

1
2p^ k

��
~p� 1

2
~k

�
�

� k	T
	�þ

�
~p� 1

2
~k

�
�
k	T

	�

�
þ 1

ð12p^ kÞ2

�
�
~p� 1

2
~k

�
�
�
~p� 1

2
~kÞ�k	k
T	


�
; (23)

which should be regularized and renormalized in order to
obtain a finite outcome for the integral. The parts of the
second and the third terms with nontrivial phase factors, on
the other hand, constitute the ‘‘nonplanar’’ part of the
correction

���
ðaÞnpðkÞ :¼ 2e2

Z d4p

ð2�Þ4�
�

1
1
2p^ k

��
~p� 1

2
~k

�
�
k	T

	�

� e�ði=2Þp^kþ
�
~p� 1

2
~k

�
�
k	T

	�eði=2Þp^k
�

þ cosð12p^ kÞ
ð12p^ kÞ2

�
~p� 1

2
~k

�
�
�
~p� 1

2
~k

�
�
k	k
T

	


�
;

(24)

which is finite for nonvanishing ~k, and therefore does not
require regularization. The nonplanar part is the focus of
our attention, since it is usually the origin of the UV/IR

mixing problem: In the IR-limit of the external momentum
~k! 0, the nonplanar part is typically divergent, since the
oscillating phase factors, which otherwise dampen the
integral rendering it finite, approach unity. This gives rise
to the UV/IR mixing problem, since the Wilsonian renor-
malization scheme cannot be applied to such divergencies
[20]. To confirm this expectation, we proceed to calculate
the leading order contribution of the nonplanar part at the

limit ~k! 0 in the following.
To evaluate the first term in (24), we use the trick of

Schupp and You [13] by expressing them as

2e2
Z d4p

ð2�Þ4
1

1
2p ^ k

��
~p� 1

2
~k

�
�
k	T

	�e�ði=2Þp^k

þ
�
~p� 1

2
~k

�
�
k	T

	�eði=2Þp^k
�

¼ 2ie2
X

�¼�1

Z
d�I��ðk;�Þ; (25)

where

I��ðk;�Þ ¼
Z d4p

ð2�Þ4
�
~p� 1

2
~k

�
�
k	T

	�eði=2Þ�p^k: (26)

By performing a Wick rotation p� ¼ e�i �pi, where e�i ¼
diagði; 1; 1; 1Þ and �pi is the Euclidean momentum, and
using Schwinger parametrization

1

�p2 þm2 ¼
Z 1
0

d�e��ð �p2þm2Þ; (27)

we get

I��ðk;�Þ ¼ ie
�
i e

�
j

ZZ 1
0

d�d�
Z d4p

ð2�Þ2
�
�~p� 1

2
�~k

�
i

� ½ð �k2 � 2 �k � �pÞ �pj þ ð �p2 þm2Þ �kj�
� e��½ð �p� �kÞ2þm2���½ �p2þm2�þði=2Þ� �p��~k: (28)

We may render the momentum integral Gaussian by apply-
ing the change of variables

�q :¼ �p� �

�þ �
�k� i�

4ð�þ �Þ
�~k; (29)

after which we can perform the integration over �q. Further,
multiplying the integrand by

1 ¼
Z 1
0

dc�ðc� �� �Þ; (30)

changing the order of integrations, and applying the change
of variables � ¼ ca, � ¼ cb, we get

I��ðk;�Þ � ie�i e
�
j
��ik

ð4�Þ2
ZZ 1

0
dadb�ð1� a� bÞ

Z 1
0

dcc�3

�
��

i�

2
� i�3 �~k

2

64c

�
�~kk �k

j � i�

4
�kk
�~k
j
�

� e�cðab �k2þm2Þ�ð�2=16cÞ�~k2 ; (31)
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where the less IR-divergent terms are dropped out.8 The
dependence on a and b drops out, and the integrals over
them give unity. The integral over � is now straightforward
to perform. Moreover, the integral over c can be performed
and expressed for small k using the properties of modified
Bessel functions Krðx; yÞ [21]:
Z 1
0

dcc�r�1e�xc�y=c ¼ 2

�
x

y

�
r=2

Kr½2 ffiffiffiffiffi
xy
p �;

where Re½x�; Re½y�> 0;

and KrðzÞ � �ðrÞ
2

�
2

z

�
r
;

when 0< z� ffiffiffiffiffiffiffiffiffiffiffiffi
rþ 1
p

: (32)

We get for small �~k
2 � m�2 accordingly

i���
ðaÞnpðkÞ �

8e2

�2

~k�~k�

~k4
þ 4e2

�2

~~k
�
k� þ k�~~k

�

~k4
: (33)

The first term here is similar to the IR-divergent terms
found in the usual formulation of NCQED and by Schupp
and You [13]. The second term gives another quadratic IR-
divergence, which is gauge variant, and therefore should be
canceled, when all the second-order contributions in the
coupling constant are taken into account.

Having found the gauge invariant IR-divergence in (33),
we proceed to confirm the absence of canceling terms. The
calculations, though more elaborate, follow precisely the
same scheme as the one above. To make them manageable

we only consider contributions of the form a~k�~k�, where a
is a scalar quantity. The second term in (24) and the other
nonplanar second-order contributions coming from the
Fig. 1 diagrams (b), (c) and (d) also give rise to quadratic

divergencies of the form c~k�~k�=~k4, where c is a constant.
For all of the contributions we find c > 0, and thus they
cannot cancel the IR-divergence of (33). Hence we con-
clude that the noncommutative QED formulated here via
�-nonperturbative Seiberg-Witten map suffers from the
UV/IR mixing problem.

V. CONCLUSIONS AND REMARKS

We have found that UV/IR mixing is present in the
photon self-energy corrections of noncommutative QED
defined via �-nonperturbative Seiberg-Witten map for a
straight path in �-space. The result further demonstrates
that UV/IR mixing is a generic property of noncommuta-
tive quantum field theories, and is not cured in general by
the approach via Seiberg-Witten map, contrary to some
claims previously made in the literature.

A question remains open, though, whether the result
holds generally for all possible integration paths in
�-space. It is not ruled out that by modifying the integra-
tion path one could get rid of the divergence, although on
mathematical grounds this seems unlikely, at least, for
paths obtainable from the straight one by smooth deforma-
tions. Of course, answering the question properly requires
a rigorous analysis, which we postpone to a future study.
In the case of a scalar field theory in noncommutative

spacetime, as, for example, in [20], the destruction of UV/
IR mixing by �-expansion becomes immediately obvious:
The expansion in � spoils the oscillatory behavior of the
phase factors in the nonplanar contributions, which would
otherwise render the nonplanar contributions finite for
nonvanishing external momenta, thus giving rise to the
UV/IR mixing problem. The same is true in our case for
the photon self-energy corrections [e.g., Eq. (21)].
Therefore, a nonperturbative approach in � is essential in
analyzing the renormalizability of noncommutative quan-
tum field theories, and the UV/IR mixing, in particular. The
present results, as well as those obtained by Schupp and
You, are in harmony with the �-exact analysis in Ref. [8]
(where NCQED is not defined by means of a Seiberg-
Witten map), seeming to suggest that the NCQED models
in Refs. [9–11], defined perturbatively in �, which are
renormalizable at the one-loop level and in the first order
in �, might not have a nonpertubative definition in terms of
� (in the absence of supersymmetry). This state of affairs
might resemble the situation in ordinary QED, which exists
as a renormalizable theory when treated perturbatively in
the coupling constant, but seems not to exist as a non-
perturbative theory.
In Ref. [20] a satisfactory explanation is given for the

mixing as a direct result of the infinite nonlocality of
?-product, and thus it is deeply rooted in the very definition
of noncommutativity of spacetime. It therefore seems un-
likely that the resulting divergencies could be made vanish,
at least, without modifying the theory itself by introducing
new terms in the Lagrangian, which suppress the contribu-
tions of the IR sector. This has been done for a noncom-
mutative scalar field theory in [22–24] and for
noncommutative QED in [25,26]. For some other attempts,
see [27–29]. Reducing the nonlocality of the noncommu-
tative field theories to a finite range is also an option which
has been preliminarily exploited in [30,31].
All in all, whatever the direction, more work is to be

done before we are to overcome the obstacles arising
from the nonlocality in noncommutative quantum field
theories.
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APPENDIX: VERTEX FUNCTIONS

In the following, we consider that the momenta are
incoming everywhere and are denoted by pi’s for fermions
and ki’s for photons.

For the first order vertex functions we get the expres-
sions

V�
��A�
ðp1; p2Þ ¼ �ie��eði=2Þp1^p2 � ie

2
ð~p1 � ~p2Þ�

� ðp6 1 þ p6 2Þ e
ði=2Þp1^p2 � 1

p1 ^ p2

; (A1)

V�1�2�3

A3 ðk1; k2; k3Þ ¼ 2e sin

�
k1 ^ k2

2

�
�

�
ðk1 � k2Þ�3��1�2

þ 1
1
2 k1 ^ k2

½ðk�1

1 k�1 � k21�
�1�Þ

� ð2~k�2

3 �
�3
� � k3��

�2�3Þ�
�

þ fsymm:g; (A2)

where fsymmg denotes terms symmetrizing the previous
contributions with respect to the photons ðki; �iÞ.
For the second-order vertex functions we similarly find

V
�1�2
��A2�
ðk1; k2; p1; p2Þ ¼ � ie2

4

���
sinð12 k1 ^ k2Þ

1
2 k1 ^ k2

eði=2Þp1^p2

i
2p1 ^ p2

� cosð12 k1 ^ k2Þeði=2Þp1^p2 � 1

ði2p1 ^ p2Þ2
�
�

�
ð~p1 � ~p2Þ�1 ~k

�2

1 �
1

2
��1�2

� ðp1 � p2Þ ^ k1Þ þ
�
eði=2Þp2^k1
i
2p2 ^ k1

eði=2Þk2^p1 � 1
i
2 k2 ^ p1

� eði=2Þp2^k1eði=2Þk2^p1 � 1

ði2p2 ^ k1Þ2
�
� 1

4
ð~p1 � ~p2 þ ~k2Þ�1

� ð~p1 � ~p2 � ~k1Þ�2

�
ðp6 2 �mÞ �

��
sinð12 k1 ^ k2Þ

1
2 k1 ^ k2

eði=2Þp1^p2

i
2p1 ^ p2

� cosð12 k1 ^ k2Þeði=2Þp1^p2 � 1

ði2p1 ^ p2Þ2
�

�
�
ð~p2 � ~p1Þ�2 ~k�1

2 �
1

2
��2�1ðp2 � p1Þ ^ k2

�
þ

�
eði=2Þp2^k1
i
2p2 ^ k1

eði=2Þk2^p1 � 1
i
2 k2 ^ p1

� eði=2Þp2^k1eði=2Þk2^p1 � 1

ði2p2 ^ k1Þ2
�
� 1

4
ð~p2 � ~p1 þ ~k1Þ�2ð~p2 � ~p1 � ~k2Þ�1

�
ðp6 1 þmÞ þ 1

4

eði=2Þk1^p1 � 1
i
2 k1 ^ p1

� eði=2Þk2^p2 � 1
i
2 k2 ^ p2

ð~p1 � ~p2 � ~k2Þ�1ð~p2 � ~p1 � ~k1Þ�2ðp6 1 þ k6 1 þmÞ þ i
eði=2Þk1^p1 � 1

i
2 k1 ^ p1

eði=2Þp2^k2

� ð~p1 � ~p2 � ~k2Þ�1��2 þ i
eði=2Þk2^p2 � 1

i
2 k2 ^ p2

eði=2Þp1^k1ð~p2 � ~p1 � ~k1Þ�2��1 þ 4i
sinð12 k1 ^ k2Þ

1
2 k1 ^ k2

� eði=2Þp1^p2

�
~k�1

2 ��2 � 1

2
��1�2k6 2

��
þ fsymmg; (A3)

V
�1�2�3�4

A4 ðk1; k2; k3; k4Þ ¼ �e2
��
sinð12 k1 ^ k2Þ

1
2 k1 ^ k2

sinð12 k3 ^ k4Þ
1
2 k3 ^ k4

� cosð12 k1 ^ k2Þ cosð12 k3 ^ k4Þ � 1

ð12 k3 ^ k4Þ2
�

�
��

~k�1

2
~k�2

3 �
1

2
��1�2k2 ^ k3

�
��3
� þ

�
ð~k1 þ ~k2Þ�3 ~k�1

2 �
1

2
��3�1k1 ^ k2

�
��2
�

þ 1

2

�
��2�3 ~k

�1

2 þ ��1�3 ~k
�2

1 �
1

2
��1�2ð3~k1 þ ~k2Þ�3

�
k2� � 1

2

�
��2�3 ~k

�1

2 þ
1

2
��1�2 ~k

�3

2

�
k3�

�

� ðk24���4 � k�4 k
�4

4 Þ �
1

2

sinð12 k1 ^ k2Þ
1
2 k1 ^ k2

sinð12 k3 ^ k4Þ
1
2 k3 ^ k4

�
��2
�
~k�1

2 �
1

2
��1�2k2�

�

�
�
�
�4

�
~k
�3

4 �
1

2
��3�4k4�

�
ððk1 þ k2Þ2��� � ðk1 þ k2Þ�ðk1 þ k2Þ�Þ

þ sinð12 k1 ^ k2Þ
1
2 k1 ^ k2

sin

�
1

2
k3 ^ k4

��
�
�2
�
~k
�1

2 �
1

2
��1�2k2�

�
� ð��3�4k�4 � ���4k

�3

4 Þ

þ sin

�
1

2
k1 ^ k2

�
sinð12 k3 ^ k4Þ

1
2 k3 ^ k4

�
��4
�
~k�3

4 �
1

2
��3�4k4�

�
� ð��2

� ðk3 þ k4Þ�1 � ��1
� ðk3 þ k4Þ�2Þ

þ sin

�
1

2
k1 ^ k2

�
sin

�
1

2
k3 ^ k4

�
��1�2��3�4

�
þ fsymmg; (A4)

where again fsymmg denotes terms symmetrizing the previous contributions with respect to the photons ðki; �iÞ.
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