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It is shown that loop divergences emerging in the Green functions in quantum field theory originate

from correspondence of the Green functions to unmeasurable (and hence unphysical) quantities. This is

because no physical quantity can be measured in a point, but in a region, the size of which is constrained

by the resolution of measuring equipment. The incorporation of the resolution into the definition of

quantum fields �ðxÞ ! �ðAÞðxÞ and appropriate change of Feynman rules results in finite values of the

Green functions. The Euclidean �4-field theory is taken as an example.

DOI: 10.1103/PhysRevD.81.125003 PACS numbers: 11.10.Gh, 03.70.+k

I. INTRODUCTION

The fundamental problem of quantum field theory is the
problem of divergences of Feynman integrals. The formal
infinities appearing in perturbation expansion of Feynman
integrals are tackled with different regularization methods,
from Pauli-Villars regularization to renormalization meth-
ods for gauge theories, see, e.g., [1] for a review. Let us
consider the quantum field theory in its Euclidean formu-
lation. The widely known example which fairly illustrates
the problem is the �4 interaction model in Rd, see e.g.
[1,2], determined by the generating functional

W½J� ¼ N
Z

e�
R

ddx½ð1=2Þð@�Þ2þððm2Þ=2Þ�2þð�=ð4!ÞÞ�4�J��D�;

(1)

where N is a formal normalization constant. The con-
nected Green functions are given by variational derivatives
of the generating functional:

�ðnÞ � h�ðx1Þ . . .�ðxnÞic ¼ �n lnW½J�
�Jðx1Þ . . .�JðxnÞ

��������J¼0
: (2)

In a statistical sense these functions have the meaning of
the n-point correlation functions [3]. The divergences of
Feynman graphs in the perturbation expansion of the Green
functions (2) with respect to the small coupling constant �
emerge at coinciding arguments xi ¼ xk. For instance, the
bare two-point correlation function

�ð2Þ
0 ðx� yÞ ¼

Z ddp

ð2�Þd
e{pðx�yÞ

p2 þm2
(3)

is divergent at x ¼ y for d � 2.
Since in their correspondence to the c-valued fields the

products c �ðxÞc ðxÞ�x have the probability meaning, it is
quite obvious physically that neither of the joint probabil-
ities of the measured quantities can be infinite. The infin-

ities seem to be caused by an inadequate choice of the
functional space the fields belong to.
This standard approach inherited from quantum me-

chanics disregards two important notes:
(1) To localize a particle in an interval �x, the measur-

ing device requests a momentum transfer of order
�p� @=�x. If the value of this momentum is too
large we may get out of the applicability range of the
initial model, in the sense that�ðxÞ at a fixed point x
has no experimentally verifiable meaning. What is
meaningful is the vacuum expectation of the product
of fields in a certain region centered around x, the
width of which (�x) is constrained by the experi-
mental conditions of the measurement.

(2) Even if the particle, described by the field �ðxÞ, has
been initially prepared on the interval (x� �x

2 , xþ
�x
2 ), the probability of registering this particle on

this interval is generally less than unity: for the
probability of registration depends on the strength
of interaction and the ratio of typical scales of the
measured particle and the measuring equipment.
The maximum probability of registering an object
of typical scale �x by the equipment with typical
resolution a is achieved when these two parameters
are comparable. For this reason, the probability of
registering an electron by visual range photon scat-
tering is much higher than by that of long radio-
frequency waves. As a mathematical generalization,
we should say that if a measuring equipment with a
given spatial resolution a fails to register an object,
prepared on spatial interval of width �x with cer-
tainty, then tuning the equipment to all possible
resolutions a0 would lead to the registration. This
certifies the fact of the existence of the measured
object.

Most of the regularization methods applied to make the
Green functions finite imply a certain type of self-
similarity—the independence of physical observables on
the scale transformation of an arbitrary parameter of the
theory—the cutoff length or the normalization scale.
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Covariance with respect to scale transformations is ex-
pressed by the renormalization group equation [1].
Another regularization idea based on self-similarity and
widely used in lattice gauge theories is the Kadanoff block-
ing procedure, which averages the small-scale fluctuations
up to a certain scale into a kind of effective interaction for a
larger blocks, assuming the larger blocks interact with each
other in the same way as their sub-blocks [4,5]. However,
the theory based on the Fourier transform of fields leaves
no place for such self-similarity: the product of fieldsQ

i

R
jkj<� e�{kix ~�ðkiÞ½ðddkÞ=ð2�Þd� describes the strength

of the interaction of all fluctuations up to the scale 1=�, but
says nothing about the interaction strength at a given scale.
An abstract harmonic analysis based on a group G, which
is wider than the group of translations G: x ! xþ b,
should be used to account for self-similarity.

The present paper aims to show how the quantum field
theory of the scale-dependent fields can be constructed
using the continuous wavelet transform, i.e. using the
decomposition of fields with respect to the representations
of the affine group G: x ! axþ b.

In Sec. II we present a theory of the fields��xðxÞ, which
explicitly depend on the resolution �x rather than on the
point x alone. The finiteness of the Green functions is
shown on the simplest example of the scalar field theory
with the �4 interaction. In Sec. III we present the commu-
tation relations for the operator-valued scale-dependent
fields and apply the region causality relations [6] to estab-
lish a causal ordering for scale-dependent fields. Further
possible applications of the proposed method, including
that to gauge theories, and its existing discrete counterparts
are mentioned in Sec. IV.

II. QUANTUM FIELD THEORY BASED ON THE
CONTINUOUS WAVELET TRANSFORM

To observe the two notes above, we need to modify the
definition of the field function. If the ordinary quantum
field theory defines the field function �ðxÞ as a scalar
product of the state vector of the system and the state
vector corresponding to the localization at the point x,

�ðxÞ � hxj�i; (4)

the modified theory should respect the resolution of the
measuring equipment. Namely, we define the resolution-
dependent fields,

�aðxÞ � hx; a; gj�i; (5)

also referred to as scale components of�, where hx; a; gj is
the bra-vector corresponding to localization of the measur-
ing device around the point x with the spatial resolution a;
g labels the apparatus function of the equipment, an aper-
ture [7]. In terms of the resolution-dependent field (5), the
unit probability of registering the object � anywhere in
space at any resolution is expressed by normalization

Z
j�aðxÞj2d�gða; xÞ ¼ 1; (6)

where d�gða; xÞ is a translational-invariant measure,

which depends on the position x, the resolution a, and
the aperture g.
Similarly to representation of a vector j�i in a Hilbert

space of states H as a linear combination of an eigenvec-
tor of momentum operator j�i ¼ R jpidphpj�i, any
j�i 2 H can be represented as a linear combination of
different scale components:

j�i ¼
Z
G
jg; a; bid�ða; bÞhg; a; bj�i: (7)

Here, according to [8,9], jg; a; bi ¼ Uða; bÞjgi; d�ða; bÞ is
the left-invariant measure on the affine group G; Uða; bÞ is
a representation of the affine group G: x0 ¼ axþ b; jgi 2
H is a admissible vector, satisfying the condition

Cg ¼ 1

kgk2
Z
G
jhgjUða; bÞjgij2d�ða; bÞ<1:

If the measuring equipment has the resolution A, i.e. all
states hg; a � A; xj�i are registered with significant proba-
bility, but those with a < A are not, the regularization of
the model (1) in momentum space, with the cutoff mo-
mentum � ¼ 2�=A corresponds to the UV-regularized
functions

�ðAÞðxÞ ¼ 1

Cg

Z
a�A

hxjg;a; bid�ða; bÞhg; a; bj�i: (8)

The regularized n-point Green functions are

GðAÞðx1; . . . ; xnÞ � h�ðAÞðx1Þ; . . . ; �ðAÞðxnÞic.
However, the momentum cutoff is merely a technical

trick: the physical analysis, performed by renormalization
group method [1,10], demands the independence of physi-
cal results from the cutoff at � ! 1.
In the present paper we give an alternative, geometrical,

interpretation to the cutoff. We assert that if for a given
physical system � and given measuring equipment there
exist the finest resolution scale A, so that it is impossible to
measure any physical quantity related to � with a resolu-
tion a < A, then any description of� should comprise only
such functions, the typical variation scales of which are not
less than A. This looks like we observe the system � from
outside the scale A. The Feynman functional integrations
in this approach are performed only over the functions with
typical scales a � A. Our method does not apply any direct
cutoff to the momenta—the arguments of the Fourier trans-
form. The momentum conservation in each vertex remains
intact. The calculations can be performed either for the
scale-component Green functions h�a1ðx1Þ . . .�anðxnÞi, or
for the integrals of those over the scales

h�ðA1Þðx1Þ . . .�ðAnÞðxnÞi.
The technical realization of our scheme is based on the

substitution of the fields hxj�i with j�i given by (7) into
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the generating functional (1). In coordinate representation
this is known as the continuous wavelet transform (see e.g.
[11]). To keep the scale-dependent fields �aðxÞ the same
physical dimension as the ordinary fields �ðxÞ, we write
the coordinate representation of wavelet transform in
L1-norm [7,12,13]:

�ðxÞ ¼ 1

Cg

Z 1

ad
g

�
x� b

a

�
�aðbÞdad

db

a
; (9)

�aðbÞ ¼
Z 1

ad
g

�
x� b

a

�
�ðxÞddx: (10)

In the latter equations the field �aðbÞ has a physical mean-
ing of the amplitude of the field � measured at point b
using a device with an aperture g and a tunable spatial
resolution a. For isotropic wavelets g the normalization
constant Cc is readily evaluated using Fourier transform,

Cg ¼
Z 1

0
j~gðakÞj2 da

a
¼

Z
j~gðkÞj2 ddk

Sdjkj<1; (11)

where Sd ¼ 2�d=2

�ðd=2Þ is the area of unit sphere in Rd.

Substitution of the continuous wavelet transform (9) into
field theory (1) gives the generating functional for the
scale-dependent fields �aðxÞ [14]:

WW½Ja� ¼ N
Z

D�aðxÞ exp
�
� 1

2

Z
�a1ðx1Þ

�Dða1; a2; x1 � x2Þ�a2ðx2Þ
da1d

dx1
a1

da2d
dx2

a2

� �

4!

Z
Va1;...;a4
x1;...;x4 �a1ðx1Þ � � ��a4ðx4Þ

da1d
dx1

a1

� da2d
dx2

a2

da3d
dx3

a3

da4d
dx4

a4

þ
Z

JaðxÞ�aðxÞdad
dx

a

�
; (12)

with Dða1; a2; x1 � x2Þ and Va1;...;a4
x1;...;x4 denoting the wavelet

images of the inverse propagator and that of the interaction
potential. The Green functions for scale-component fields
are given by functional derivatives

h�a1ðx1Þ � � ��anðxnÞic ¼
�n lnWW½Ja�

�Ja1ðx1Þ . . .�JanðxnÞ
��������J¼0

:

Surely the integration in (12) over all scale variablesR1
0 ½ðdaiÞ=ai� turns us back to the divergent theory (1).

This is the point to restrict the functional integration in
(12) only to the field configurations f�aðxÞga�A. The re-
striction is imposed at the level of the Feynman diagram
technique. Indeed, applying the Fourier transform to the
right-hand side of (9) and (10), one yields

�ðxÞ ¼ 1

Cg

Z 1

0

da

a

Z ddk

ð2�Þd e
�{kx~gðakÞ ~�aðkÞ;

~�aðkÞ ¼ ~gðakÞ ~�ðkÞ:
Doing so, we have the following modification of the
Feynman diagram technique [15]:

(i) each field ~�ðkÞ will be substituted by the scale

component ~�ðkÞ ! ~�aðkÞ ¼ ~gðakÞ ~�ðkÞ.
(ii) each integration in momentum variable is accompa-

nied by a corresponding scale integration:

ddk

ð2�Þd ! ddk

ð2�Þd
da

a
:

(iii) each interaction vertex is substituted by its wavelet
transform; for the Nth power interaction vertex this

gives multiplication by factor
Q

N
i¼1 ~gðaikiÞ .

The finiteness of the loop integrals is provided by the
following rule: there should be no scales ai in internal
lines smaller than the minimal scale of all external lines.
Therefore the integration in ai variables is performed from
the minimal scale of all external lines up to the infinity.
To illustrate the method we present the calculation of the

one-loop contribution to the two- and the four-point Green
functions in the �4 model in R4. The best choice of the
wavelet function gðxÞ would be the apparatus function of
the measuring device; however, a simple choice,

gðxÞ ¼ �xe�x2=2; ~gðkÞ ¼ ð�{kÞe�k2=2; (13)

demonstrates the method qualitatively. The function (13) is
well localized in both the coordinate and the momentum
spaces, it satisfies the admissibility condition with Cg ¼ 1.

Because of the property
R1
�1 gðxÞdx ¼ 0 the detector with

such aperture is insensitive to constant fields, but detects
the gradients of the fields.
Let us consider the contribution of the tadpole diagram

to the two-point Green function Gð2Þða1; a2; pÞ shown in
Fig. 1(a). The bare Green function is

Gð2Þ
0 ða1; a2; pÞ ¼ ~gða1pÞ~gð�a2pÞ

p2 þm2
: (14)

The tadpole integral, to keep with the notation of [14], is

a1 a1 a1a2 a2 a2

p p
q

p a3 a4
= + + ...

p

= + +

a5 a6

a)

b)
2

1 3

4 2

1

4 2

a

a5 a7

6 a8

q

+ permutations + ...

3

4

31

FIG. 1. Feynman diagrams for the Green functions Gð2Þ and
Gð4Þ for the resolution-dependent fields.
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written as

Td
1 ðAmÞ ¼ 1

C2
g

Z
a3;a4�A

ddq

ð2�Þd
j~gða3qÞj2j~gð�a4qÞj2

q2 þm2

da3
a3

da4
a4

¼ Sdm
d�2

ð2�Þd
Z 1

0
f2ðAmxÞx

d�1dx

x2 þ 1

fðxÞ � 1

Cg

Z 1

x
j~gðaÞj2 da

a
:

For our simple model aperture (13) the filtering factor is

fðxÞ ¼ e�x2 .
In d ¼ 4 dimension we get

T4
1ð�Þ ¼

�4�4e2�
2
Eið1; 2�2Þ þ 2�2

64�2�4
m2; (15)

where � � Am is dimensionless scale factor, A ¼
minða1; a2Þ, and

Ei ð1; zÞ ¼
Z 1

1

e�xz

x
dx

denotes the exponential integral. Finally, the Oð�Þ contri-
bution to the two-point Green function in Rd, shown in
Fig. 1(a), is

Gð2Þða1; a2; pÞ ¼ ~gða1pÞ~gð�a2pÞ
p2 þm2

� �

2

� ~gða1pÞ~gð�a2pÞf2ðApÞTd
1 ðAmÞ

ðp2 þm2Þ2
þ � � � : (16)

In the one-loop contribution to the vertex, shown in
Fig. 1(b), the value of the loop integral is

Xd ¼ �2

2

1

ð2�Þd
Z ddq

ð2�Þd
f2ðqAÞf2ððq� sÞAÞ

½q2 þm2�½ðq� sÞ2 þm2� ;
(17)

where s ¼ p1 þ p2, A ¼ minða1; a2; a3; a4Þ. The integral
(17) can be calculated by symmetrization of loop momenta
q ! qþ s

2 in Fig. 1(b); doing so after a simple algebra we

yield

Xd ¼ �2

2

Sd�1

ð2�Þ2d s
d�4e�A2s2

Z 1

0
e�4A2s2y2IdðyÞyd�3dy;

IdðyÞ ¼
Z �

0

sind�2�d�

�2ðyÞ � cos2�
; �ðyÞ ¼ y2 þ 1

4þ m2

s2

y
; (18)

where � is the angle between the loop momentum q and the
total momentum s.

In critical dimension d ¼ 4,

X4 ¼ �2

256�6
e�A2s2

Z 1

0
e�4A2s2y2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2ðyÞ

q
Þdy2:
(19)

In Fig. 2 below we present the graph of large momentum
asymptotics of (19)

lim
s2	4m2

X4ð�2Þ ¼ �2

256�6

e�2�2

2�2
½e�2 � 1

� �2e2�
2
Eið1; �2Þ

þ 2�2e2�
2
Eið1; 2�2Þ�; (20)

where � � As, compared to the (15) factor of the two-
point Green function. Other diagrams contributing to the
vertex shown in Fig. 1(b) give similar factors with appro-
priate substitution of s to s ¼ pi þ pj.

Turning back to the coordinate representation of the
Green functions for the fields �aðxÞ, we can see there no
divergences at coinciding spatial arguments. Say, the bare
two-point Green function

Gð2Þ
0 ða1; a2; b1 � b2Þ ¼

Z ddp

ð2�Þd e
{pðb1�b2Þ ~gða1pÞ~gð�a2pÞ

p2 þm2

gives at our model choice (13) in d ¼ 4 dimension

Gð2Þ
0 ða1; a2; b1 � b2 ¼ 0Þ ¼ �2m2�1�2

�
4

ð�2
1 þ �2

2Þ2

� 2

�2
1 þ �2

2

þ eðð�2
1þ�2

2Þ=ð2ÞÞ

� Ei

�
1;
�2
1 þ �2

2

2

��
;

where �i ¼ aim are dimensionless scale parameters.

FIG. 2 (color online). Scale-decay factors for the two-point
and four-point Green functions. The bottom curve is the graph of
(15) as a function of A2; the top curve is the graph of (20) divided
by �2=ð256�6Þ as a function of A2. m ¼ s2 ¼ 1 is set for both
curves.
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We would like to emphasize that, in spite of the fact that
application of wavelets to quantum field theory is not new,
the interpretation of the fields �aðxÞ (or their integrals

�ðAÞ) as physical fields yields a finite theory with no
need for renormalization. Indeed, the t’Hooft and
Veltman dimensional regularization scheme [16] works
perfectly well in the presence of the scale factor A. The
difference is that the integrated function f in

IA ¼
Z

d4p
Z 1

0
d!!n�5 2�

ðn=2Þ�1

�ðn2 � 2Þ fðA; p;!
2Þ; (21)

where n is the formal integration dimension, in our case
contains the exponential factor fðA; p;!2Þ �
expð�A2ðp2 þ!2ÞÞ, which suppresses all ultraviolet di-

vergences. In the limit A ! 0 the integration by parts in
(21) over the !2 argument recovers the well-known poles
at the physical dimension n ¼ 4.

III. CAUSALITYAND COMMUTATION
RELATIONS

We have considered a multiscale scalar field theory
determined by the generating functional (12). Such a the-
ory is used if the field �aðxÞ is a c-valued function. In
quantum field theory adjusted to high energy physics ap-
plications, the fields �aðxÞ are operator-valued functions.
So, as it was already emphasized in the context of the
wavelet application to quantum chromodynamics [17],
the operator ordering and the commutation relations are
to be defined.

The commutation relations ½�aðxÞ; �a0 ðx0Þ� can be im-
posed in such a way that they recover ordinary commuta-
tion relations after integration over the scale arguments.
This was already done in [18]. The decomposition of the

operator-valued field �̂ðxÞ into the positive and negative
frequency scale components is

�̂ðxÞ ¼
Z da

a

ddk

ð2�Þd
~gðakÞ
Cg

½e{kxuþa ðkÞ

þ ð�1Þde�{kxu�a ðkÞ�; (22)

where u
a ðkÞ ¼ uað
kÞ�ðk0Þjk0>0. Since

u
ðkÞ ¼ 1

Cg

Z da

a
~gðakÞu
a ðkÞ;

the standard commutation relations can be satisfied if we
set

½uþa1ðk1Þ; u�a2ðk2Þ� ¼ Cga1�ða1 � a2Þ½uþðk1Þ; u�ðk2Þ�:
(23)

As was shown in [19], the nonlocal field theory with the
propagator cutoff Vðl2k2Þ satisfies the microcausality con-
dition for the S matrix [20],

�

��ðxÞ
�

�S

��ðyÞS
þ
�
¼ 0 for x & y; (24)

in each order of the perturbation theory. For the theory of
scale-dependent fields, a stronger microcausality condi-
tion,

�

��aðxÞ
�

�S

��bðyÞS
þ
�
¼ 0 for x <T y or x� y;

(25)

may be suggested if the derivation is performed with the
generalized causal T ordering (’’the coarse acts first’’)
defined in [18] according to the region causality rules
[6]. The definition of the generalized causal ordering given
in [18], is the following:

TðA�xðxÞB�yðyÞÞ ¼

8>>><
>>>:

A�xðxÞB�yðyÞ; y0 < x0;

B�yðyÞA�xðxÞ; x0 < y0;
A�xðxÞB�yðyÞ; �x � �y;

B�yðyÞA�xðxÞ; �y � �x;

(26)

i.e., if the region �x is inside the region �y, the operator
related to the larger region �y acts on vacuum first. If the
regions�x and�y (the vicinities of two distinct points x �
y) have zero intersection �x \�y ¼ ;, the causal order-
ing (26) coincides with usual T ordering.

IV. CONCLUSION

In this paper we presented a regularization method for
quantum field theory based on the continuous wavelet
transform. The idea of substituting wavelet decomposition
of the fields into the action functional is not new. It was
used by many authors, but using the discretewavelet trans-
form. This efficiently works for the Monte Carlo simula-
tions [21,22], and provides a frame for renormalization
[23,24], including the regularization of gauge theories
[17]. In many aspects, the discrete wavelet transformworks
as a lattice regularization [25]. The novelty of the approach
presented in this paper consists in using the continuous
wavelet transform of the fields (along with the region
causality assumptions [6]) with the operator ordering rules
given in [18].
An attempt to apply the continuous wavelet transform to

the �4 field theory was undertaken in [26] based on the
general ideas of the wavelet transform on the Poincare
group [27]. However, a physical interpretation of the wave-
let transform scale argument as a physical parameter of
observation was given much later in [14,18] in the context
of quantum electrodynamics. The key issue of the quantum
field theory is gauge invariance. In our wavelet framework,
this problem was addressed in [28], where the Ward-
Takahashi identities for Uð1Þ gauge theory were derived.
Later, we are going to consider this problem in more detail.
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