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Galilean symmetry in a noncommutative gravitational quantum well
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A thorough analysis of Galilean symmetries for the gravitational well problem on a noncommutative
plane is presented. A complete closure of the one-parameter centrally extended Galilean algebra is
realized for the model. This implies that the field theoretic model constructed to describe noncommutative
gravitational quantum well in [A. Saha, Eur. Phys. J. C 51, 199 (2007).] is indeed independent of the
coordinate choice. Hence the energy spectrum predicted by the model can be associated with the
experimental results to establish the upper bound on a time-space noncommutative parameter.
Interestingly, noncommutativity is shown to increase the gravitational pull on the neutron trapped in

the gravitational well.
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I. INTRODUCTION

The idea of noncommutative (NC) space-time [1] where
the coordinates x* satisfy the noncommutative algebra

[x~, x"] = i@~ (1)

has gained prominence in the recent past [2], and field
theories defined over this NC space are currently a subject
of very intense research [3]. A wide range of theories are
being formally studied in a NC perspective encompassing
various gauge theories [4] including gravity [5]. Apart
from studying the formal aspects of the NC geometry
certain possible phenomenological consequences have
also been investigated [6—19]. Often such NC theories
produce results which are deformed from their commuta-
tive counterpart by the presence of NC correction terms.
These correction terms are usually proportional to various
orders of the NC parameters [20-23]. Naturally a part of
the endeavor is spent in finding the order of the NC
parameter and in exploring its connection with observa-
tions [24-26].

A particular piece of the scenario is the quantum well
problem which has emerged in recent GRANIT experi-
ments by Nesvizhevsky et al. [27-29] who detected the
quantum states of the neutrons trapped in earth’s gravita-
tional field. Their experimentally determined energy spec-
trum has been compared with the theoretically predicted
energy spectrum of a quantum mechanical model consid-
ered by Bertolami ef al. [30,31] and Banerjee ef al. [32] to
set an upper bound on the momentum space NC parame-
ters. Naturally, noncommutativity is introduced among the
phase space variables and noncommutativity in the time-
space sector was ignored since in quantum mechanics as
such space and time could not be treated on an equal
footing.

To introduce time-space noncommutativity a second
quantized theory was proposed in [33] where the NC
quantum well problem is pictured as a nonrelativistic field
theory coupled with an external gravitational field. This
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work resulted in an upper-bound estimation for the time-
space NC parameter, consistent with the existing results of
[30-32]. More recently, another work [34] has claimed to
impose an upper bound on the space-space NC parameter
by using the GRANIT experimental data.

This recent trend of associating the predictions of NC
theoretical models of the gravitational well with experi-
mental results is very encouraging. However, it is perhaps
appropriate to pause before any further development in this
topic to assess to what extent such associations make
physical sense. For them to be physically meaningful, these
NC theories have to be independent of the coordinate
choice. Hence, a crucial underlying assumption in all the
above-mentioned works has been the coordinate indepen-
dence of the quantum well system constructed on the NC
plane. In other words, the system has to be invariant under
the Galilean transformation. This is also a crucial require-
ment in connection with the treatment done in [33] since
single particle quantum mechanics can be viewed as the
one-particle sector of quantum field theory for Galilean-
invariant systems only [35-37].

That the NC algebra (1) violates the active Lorentz
symmetry is manifest owing to the constancy of the NC
tensor ®#” in (1). However, the same cannot be assured for
the Galilean symmetries in general. For example, the boost
symmetry is violated in NC planer system [37], where
time-space noncommutativity is ignored, although the al-
gebra (1) is preserved with ®% = 0 under Galileo boost.
The situation is further complicated by the presence of a
nonzero ®% in [33]. It is well known that space rotations
are not automorphisms of the algebra (1), and therefore it is
not invariant under O(2) rotations for ®% # 0. However,
when there are spectral degeneracies of a time-independent
Hamiltonian on a commutative space-time which are due
to symmetries, they persist for % # 0 [38,39]. Therefore,
it is all the more important to examine the algebra of the
generators of the theory for any possible violation or
otherwise of Galilean symmetries. Hence, in this paper
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we would like to address this issue from the same field
theoretic approach presented in [33].

Our NC field theoretic modeling of the gravitational
quantum well with noncommutativity among time and
space coordinates, i.e., a nonzero ®% gains further per-
spective in connection with yet another nontriviality of NC
field theories, namely, the contentious unitarity issue.
There are claims that introduction of space-time noncom-
mutativity spoils unitarity [40-42]. Specifically, in [40,42]
it was argued that because of the presence of infinite time
derivatives, space-time noncommutative theories cannot be
quantized properly. In contrast, in a series of fundamental
papers, Doplicher et al. [43,44] have studied (1) in com-
plete generality, without assuming ®% = 0 and developed
unitary quantum field theory’s which are ultraviolet finite
to all orders. Based on the results in [43,44], a systematic
development of unitary quantum mechanics followed in
[38,39]. Ho et al. in [45] discussed a perturbative approach
to higher-derivative theories (where the Lagrangian con-
tains higher/infinite order time derivatives) following [46]
where they have constructed a consistent Poission structure
and Hamiltonian. They also gave a formal proof that the
process can be carried out to all orders. Further, in [47] it
was shown that perturbative unitarity can be successfully
maintained if one takes care of the explicit Hermiticity of
the Lagrangian. Even a canonical formalism can be devel-
oped by introducing an additional space-time dimension
[48]. Following [49], where it was shown that the unitarity
problem is not inherent, but is due to an ill-defined time-
ordered product, Rim et al. in [50,51] have demonstrated
how perturbative analysis in the space-time NC field theo-
ries respect the unitarity if the S-matrix is defined with
proper time-ordering and free spectral function is used
instead of Feynmann propagetor. In [20,21], it was dem-
onstrated in the context of (1 + 1)-dimensional NC
Schwinger model, where noncommutativity among the
time and space coordinate is essential, that a straightfor-
ward perturbative approach retaining terms up to first order
in the NC parameter leads to a unitary S-matrix and also
ensures causality. In the present paper we analyze the
space-time symmetry of a similar model, where noncom-
mutativity among the time and space coordinates takes a
crucial role since it modifies the energy spectrum. In fact,
the model is such that the space-space NC parameter can
be scaled out of the system and nontrivial NC correction
comes only from the time-space sector [33].

In the following section we shall briefly summaries the
NC field theory describing the NC gravitational quantum
well system. Apart from setting the platform for the present
problem, this will also help us fix the notations. We shall
construct the Galilean symmetry generators from the
energy-momentum tensor and compute their algebra in
Sec. III. Because of the absence of a metric in Galilean
space-time the boost generators cannot be associated with
the appropriate components of the total angular momentum
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tensor [52,53]. Hence the construction of Galileo boost
shall need separate attention here. The time evolution of
the momentum generator exhibits that the presence of
time-space noncommutativity increases the gravitational
pull on the trapped neutron; an upper-bound estimation
of this excess pull is calculated in Sec. I'V using the present
upper bound on the time-space NC parameter 7. In this
connection we also discuss the different bounds on various
NC parameters available in the literature and their consis-
tency with the upper bound on time-space NC parameter
obtained by considering the gravitational well problem
[33]. We conclude in Sec. V.

II. THE NC SCHRODINGER THEORY

In this section we shall briefly summarize the NC field
theory of a neutron trapped in Earth’s gravitational field.
We choose to work in the deformed phase space with the
ordinary product replaced by the star product [26,37,54—
56]. In this formalism, the fields are defined as functions of
the phase space variables and the redefined product of two
fields ¢ (x) and ¢ (x) is given by

Bx) * h(x) = (b * §)(x) = VP00V G () ()]
)

In the star-product formalism, the action for a NC

Schrédinger field fﬁ coupled with background gravitational
field reads

A~ o h? o
S = [ dxdydi it x [ihao o0~ mgfc] * . (3)
m

The above action describes a system in a vertical xy (i = 1,
2) plane where the external gravitational field is taken
parallel to the x-direction. Under * composition the
Moyal bracket between the coordinates is

0 - -7
[ ], =i0*"=iln 0 6 | &
n -6 0

where w, v take the values 0, 1, 2. Spatial noncommuta-
tivity is denoted by ®'> = 6 and noncommutativity among
time and the two spatial directions are denoted by the
parameters ®'0 = 7y and O%° = 5’

Expanding the *-product and rescaling the field varia-
bles and mass [57] by
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S = [ dxdydt L
- h?
= fdxdydtw[ihat + 2—~(a§ + 92) — fmgx
7 3

Y

where a first derivative term is absorbed in the 8)2, by
rewriting

0
y = (8), - ﬁng) (7)

Note that the structure of the Lagrangian is such that
expanding the star product only gives corrections to first
order in the NC parameters and all the higher order terms
vanish.

Using a Hamiltonian description, it was shown in [33]
that these rescaled variables are the proper canonical pair
of fields in the sense that they satisfy the standard form of
the PB relation. The only primary constraint of the theory
comes from the definition of the canonical momenta cor-
responding to the field variable [58]

7 () = i () (8)

The canonical Hamiltonian density F . can be computed
by a Legendre transformation to obtain

5{C=7~T¢$—Z

o ~ ng\ -+ =~
= —gited v g(1+ 0 E )it O

Note that the Hamiltonian is real and therefore, from a first
quantized point of view, we can fairly say that the theory
respects unitarity. From Eq. (8) clearly, the system is
inflicted with the second class constraints. We exploit the
fact that the Lagrangian is first order in the time derivative
and apply the Faddeev-Jackiw (F-J) scheme to read off the
basic brackets:

B0 P = =2 8= (0

Since in the F-J approach the second class constraints have
automatically been taken in to account, in the remainder of
the paper we impose the relation (8) strongly. Obviously,
with (10) the canonical Hamiltonian generates the correct
time evolution of the field variables ¢ (x)

2 ~2 .2
[iha, L 02) — rgx — n(m & )x]{p — 0.
2im h

Having described the basic structure of the theory we are
now in a position to analyze the space-time symmetries it
admits. In the next section we shall take up this task.
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III. THE GALILEAN GENERATORS AND THEIR
ALGEBRA

In this section we shall use the Noether’s theorem to
identify the Galilean generators for the gravitational well
system. We shall subsequently compute their algebra at the
classical level to check for any possible violation or other-
wise of the Galilean symmetry. We shall first consider the
spatial translation generator and rotation generator and
their time evolution. The generator of the Galileo boost
will be taken up next. Unlike the Lorentz boost, Galileo
boost cannot be thought of as some kind of rotation in
space-time since Galilean space-time is not endowed with
a metric. So, contrary to the relativistic case, the boost
cannot be interpreted as a component of the total angular
momentum tensor. Hence we shall compute the boost
generator from the first principle. Once we have the ex-
pression for the generators of all type of Galilean trans-
formations we shall compute their algebra using the
fundamental F-J brackets (F-JB) (10) of the theory and
check if they give rise to a closure of the Galilean algebra.

A. Spatial translation and the momentum generator

We begin with the generator of spatial translation,
Pi = jdszOi(x), (12)
where T is the momentum density given by

oL dip — 80, L = ﬁ'wail]f =ingla, . (13)

Ty =

Note that we have replaced the conjugate momenta using
(8) since they hold strongly now. It can be easily checked
using the fundamental F-JB relations (10) that P; generate
the proper spatial translation.

{{b(x) Pi} = ai&(x) {'Z/T(x), Pi} = ai{ﬁf(xl (14)

The generator of time evolution is given by
aZ < ~
H= [dz)CToo(X) = [d2X[—~¢ - 500£]
Y

— [de[—%fp’fa%fp + ﬁ1g<l + nng)Wth],
(15)

which of course corresponds to the canonical Hamiltonian
density FH . already derived in (9). The time evolution of
the momentum generator gives

{P, H} = mg(l + ”Tﬁw)fd2x¢Taix&. (16)

For i = 2, P, = P, the usual conservation of momentum
in y-direction follows. However, for i = 1, P, = P,, we
get the time evolution of the momentum generator in the
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direction of the gravitational interaction, this naturally
gives the gravitational force acting on the trapped neutron

{P,H}= ﬁig(l + nTrhg)[dxderfaxth

= Mg<1 + "ng) (17)
where
M = m/dxdy&*{a (18)

is the total mass. Interestingly, (17) tells us that the pres-
ence of time-space noncommutativity increases the gravi-
tational pull on the neutron by a factor of "T’hg. This is a
significant physical effect of time-space noncommutativity
and we shall shortly estimate the maximum possible in-
crease of the gravitational pull using the upper-bound
estimate established in [33].

It can be shown that under the phase transformation
 — €™y the Lagrangian remains invariant for infini-
tesimal ¢ and M in (18) is the generator of this trans-
formation [59]. This is the first central extension of the
Galilei group by a one-dimensional Abelian group where
M commutes with all the operators of the group.

B. SO(2) rotation and angular momentum generator

Proceeding similarly, the angular momentum J is given
as

J= /dzxel-jx,-Toj. (19)
Using (8) and (13) this expression is simplified to
J= ihdexeijx,.&fajJ/, (20)
which generates appropriate SO(2) rotation of the fields.

{ih(x), J} = €;x,0;. 1)

Note that J consists of only the orbital part of the angular
momentum as we have ignored the spin degrees of freedom
for the field ¢, so that it transforms as an SO(2) scalar.

Using (10) it can be easily checked that the F-JB among
the rotation generator J and time-evolution generator H
gives

{J,H} = —rﬁg(l + nng)[dxdth*yJ/. (22)

A nonzero right-hand side in (22) apparently implies that
the angular momentum generator is not conserved and the
system does not support rotational symmetry. This, how-
ever, is not the case since the system is symmetric in
y-direction and the fields ¢ and T must have a certain
parity under the transformation y — —y. So the integration
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appearing in (22) vanishes and the conservation of angular
momentum prevails.

C. The boost generator

So far we have derived all the generators necessary to
construct the two-dimensional (Euclidean) E(2) algebra.
However, the construction of the full Galilean algebra
requires another set of generators corresponding to the
two boost transformations in the two spatial directions.
As has been mentioned earlier, unlike the relativistic
case, the boost here is not a part of the total angular
momentum. So we shall derive them by analyzing the
system from the first principle following [52].

Let us consider an infinitesimal Galileo boost in the
x-direction:

t—t =t x—x'=x—wvt, y—y =y (23)

where the velocity v is infinitesimal. The canonical basis
corresponding to the unprimed and primed variables are
given by (9/d1, d/9x;) and (9/9¢, 9/dx!), respectively.
They are related by

d

d 0

0
— =—+tv .
ar at 9x axt  ax;

(24)

Since, in the first quantized version of the theory i is
interpreted as probability amplitude [33], it is expected that
the probability density ¢ ¢ will remain invariant under
the Galileo boost (23), ie. JT(xnDg(x 1) =
Jt(x, ) (x', '). Thus we expect i to change at most
by a phase under (23). Hence we make the following ansatz
[37]:

Pl 1) = g, 1) = eVECD g (x, 1)
~[1+ ivéle )]d(x 0. (25)
Now we demand the covariance of the equation of motion,
i.e. (11) retains its form in both unprimed and primed
coordinates. Using (23) and (24) in (11) we see that this

requirement leads to the following coupled differential
equation of the boost parameter &.

.h2 ~
T 92¢ —noe + mg(l + M)z -0
2m h
n
-9, &+ 1=0. (26)
m
Solving (26) we get
m 1 . nmg\ ,
=—x+ + 22
& Y X o mg(l " )t 27)

Since the boost parameter admits real solution, the wave
function preserves its norm under (25) and we conclude
that boost transformation in the direction of the gravita-
tional field is a symmetry in the NC gravitational well
system. This is similar to the situation encountered in
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[37] where a boost in the direction of the electric field was
found to be a symmetry of the system. The functional
change of the field under this transformation is obtained as

80 (x, 1) = v[taxlzf(x, f— %x{b(x, 9

i nmg\ , -
+ = 1+—=)¢ 1| (28
ss(1+ )] es)
Expression for the boost generator K, can be read off by
comparing the functional change of the field ¢ (28) with
the result of the F-JB among the field ¢ and the boost
generator multiplied by the velocity v :

v (x), K.} = 8oh(x) (29)

which gives
K, =tP, + rh/dx’dy’l]ﬁ(x’)x'l:b(x/)

1 nm g) _
——gl1+—=)M. 30
2 g( Y (30)

Following the same scheme we can construct the Galileo
boost generator in the direction perpendicular to the gravi-
tational field (i.e. K,) which gives

K,=1tP, + rh'/-dx’dy’y’;p*(x’)@(x’). (31)
This result differs from the result of [37] where, in the
context of a NC Schrddinger field theory coupled to exter-
nal gauge fields, the boost transformation perpendicular to
the external (electric) field led to a nonunitarity of the wave
function signifying a violation of the boost symmetry. Our
present analysis of the gravitational well system shows that
boost transformations, both in the direction parallel and
perpendicular to the external (gravitational) field, lead to
unitary transformations of the field variable. Thus boost
along, as well as perpendicular to, the external field are
consistent symmetries here.

D. The NC Galilean algebra

What remains is to compute the algebra among various
Galilean generators. The F-JBs among the spatial trans-
lation and rotation generators along with the time-
evolution generator form the closed E(2) algebra:

Pupy=0 (o= s1g(1+ )

{Pi’ J} = GUP/

(32)

(P HY=0 {,H} =0

The presence of a nonzero right-hand side in the second
equation merely signifies the force acting on the trapped
neutron. However, this can easily be related with the one-
parameter central extension associated with the total mass
of the system. Also note that the NC parameter 7 entering
the algebra is not just a consequence of coordinate choice
but a result of writing the theory in terms of proper ca-
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nonical variables. To complete the Galilean algebra we
include the boost sector at this point. The boost generators
give vanishing F-JBs among themselves

K, K} =0. 33)

Their F-JB with the remaining Galilean generators are now
worked out which give

{P.K}=06,M {K,J}=¢€;K;

{KoHy = —(P,—tMg)  {K,H}=—P
Once again, we note that since M is also a generator, its
appearance in the third relation does not violate the closure

of the Galilean algebra. The first central extension also
gives vanishing F-JBs with all the generators.

{P.M}=0 {J.M}=0

{HMy=0 {K,M}=0.
This concludes our computation of the Galilean algebra.
As is manifest from the above Egs. (32)—(35) the gener-

ators form a closure and hence Galilean symmetry is
preserved for the gravitational well system.

(34)

y*

(35)

IV. UPPER BOUND ON THE TIME-SPACE NC
PARAMETER AND ITS EFFECT

In Sec. IIT A, the time-evolution of the momentum gen-
erator in the direction of the external gravitational field was
computed in Eq. (17) and naturally, this produces the
gravitational force acting on the trapped neutron.
Interestingly, along with the expected force term Mg a
extra piece appears which is proportional to the time-space
NC parameter 7. This clearly revels that time-space non-
commutativity increases the gravitational pull on the
trapped neutron. Therefore, using the upper bound of 7
estimated in our earlier work [33], we can estimate to what
extent the time-space NC parameter enhances the gravita-
tional pull. This may indeed present a simplistic scenario
where we can detect the noncommutativity of space-time.
Before going in to that, we shall briefly summarize the
existing upper bounds on various NC parameters. In par-
ticular, we shall demonstrate the consistency of the bound
on the time-space NC parameter obtained by considering
the gravitational well system in [33] with the other bounds
existing in the literature.

A. The existing upper bounds on various NC
parameters

As noncommutativity is motivated from string theory
and quantum gravity, its effect is expected to show up at the
Plank scale. Nevertheless, experimentally accessible scales
should be explored, especially since the current research on
large extra dimensions can potentially bring down the four-
dimensional Plank scale. Therefore, a considerable amount
of work has been done to work out bounds on the NC
parameters. Various authors have worked out different
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bounds on the space-space NC parameter which ranges
from 6 < (10 TeV) 2 [26] to 6 < (30 MeV) 2 [60]. In
[61] it was argued that NC parameters for different parti-
cles should be different, specifically particles with opposite
charge should bear opposite noncommutativity, which
makes their relative coordinate commutating. In the
Hydrogen atom problem corrections then resulted in the
Lamb shifts due to noncommutativity of just the electrons
in [62]. It was further argued there that since QED effects
may dominate over noncommutativity the nucleus should
be treated as a commutative object. However, in the ab-
sence of a fully understood theory of NC QED, in [60] the
authors have considered the nucleus of the Hydrogen atom
to be a NC point charge and worked out the most recent
bound on the space-space NC parameter. There the 6 <
(6 GeV)~2 bound was found for the test charge i.e. electron
noncommutativity, whereas a much lower bound was
found for the proton noncommutativity § < (30 MeV) 2.

Similarly, also for momentum NC parameters, several
works have been put forward [30,32] where the upper
bound on space-space NC parameter found by Carroll et.
al [26] has to be used. Surprisingly, not much attention has
been paid to the time-space NC parameter, owing to the
ambiguity concerning the unitarity issue. However, in the
introduction we have provided arguments in favor of a
perturbative treatment of theories which incorporates
time-space noncommutativity. In our earlier work, we
have estimated the bounds on time-space NC parameter
by formulating a NC field theory of gravitational quantum
well and comparing our theoretical energy spectrum with
experimental data [27-29]. In fact, that such an association
of the experimental data with our model can be made is
established in the present paper by showing that our NC
model of gravitational quantum well respects the Galilean
symmetry at a field theoretic level. Presently we give a
rough comparison of the bound we found in [33] with the
existing results in the literature [30,32].

In [30] the upper bound on the fundamental momentum
scale was calculated to be

Ap = 482X 107 kgms~!. (36)
Since E = % SO
AE~D2Ap = v Ap, = 3133 X 1073 kgm?s2.
m
(37)

Here we have used the value of v, = 6.5 m s~ ! used by the
GRANIT experiment group. Using this value of AE in the
time energy uncertainty relation AEA¢ = h, we find

h
At = AR 3.38 X 107*s. (38)

Hence uncertainty in time-space sector can be calculated
using the results of [30] as

AxAt~3.38 X 10718 ms, (39)
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where we have taken Ax = 10~!° m. Note that this is the
value used in [30]. On the other hand, in [33] we have
worked out the upper bound on the parameter 7 as

7= —ilx!, x°] = 2.843 X 107% ms. (40)
Restoring the c-factor back in (40) we get
—ilxd="=<951%x 10" ms. 1)
c

Using the variance theorem [63] for the commutation
relation in (41) we can write

]
AxAt2§2~4.75 X 10718 ms, 42)
C

Clearly, the value of the upper bound on 7 turned out to be
consistent with the results of [30-32].

Note that although in [33] we have constructed our
model on a field theoretic platform, this was done only to
bring out the role of time-space noncommutativity in our
model, something which could not be done from a quan-
tum mechanical starting point since time and space does
not share equal status in quantum mechanics. Once we
obtained the perturbative correction term in the corre-
sponding commutative equivalent field theory we switched
back to the first quantized picture and did the quantum
mechanical analysis. Since first and second quantized for-
malisms are equivalent as far as Galilean systems are
concerned, the upper bound on the time-space NC parame-
ter found in [33] can be viewed as a quantum mechanical
result.

Interestingly, in a very recent paper [64] another upper
bound has been found on the time-space NC parameter by
considering the Hydrogen atom spectrum which resembles
quite closely our result in [33]. Considering the simplistic
treatment done in both the cases [33,64], it is quite remark-
able that two independent and unrelated phenomenological
considerations, namely, the trapping of cold neutron in a
gravitational well and the study of Hydrogen atom spec-
trum, should give similar bounds on the parameter.

B. Upper-bound estimation of the excess pull on the
trapped neutron

We shall now estimate the excess pull on the trapped
neutron. Using (17) it can be written as

AF = (””;gz)mfdxdyw b 43)

Note that the integration along with the factor 7 is inter-
preted as the mass generator in (18). But it can also be
interpreted, without 772, as the conserved total probability of
the particle, and set to unity.

]dxdy&*[b =L (44)

We calculate the excess pull using the following values of
the constants appearing in the expression [65] (46)
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h=1059X10"%Js g=9.81ms’
(45)
m=167.32"2 T _951-18 5
C
which gives
SF <242 X 107 N. (46)

Note that, similar to [33] we have restored the c-factor with
7 since we are computing in S.I units. The commutative
part of the force is approximately 1.64 X 10~ 2°N. So time-
space noncommutativity can increase the gravitational
force on the neutron at most by 0.147 X 107%%. Note
that ratio ATF = "T'hg depends on the mass of the trapped
particle, thus heavier the particle trapped in the well, bigger
will be the NC correction to the force acting on it.

V. CONCLUSIONS

We have analyzed the space-time symmetries of a non-
relativistic system on a two-dimensional noncommutative
plane. The system contains a particle trapped in earth’s
gravitational field. Recent works on the gravitational well
problem indicated that it can serve to shed some light on
the upper bounds of various NC parameters by connecting
NC theoretical results [30-33] with the experimental data
found by the GRANIT group [27-29]. However, such
connections are physically meaningful only if the theoreti-
cal model is constructed in such a way that preserves the
space-time symmetries, namely, the Galilean symmetries.

In [33] the model was constructed from a NC field
theoretic platform so that the effect of time-space non-
commutativity on the system can be examined.
Interestingly, the singularly important result of [33] was
to show that the underlying time-space sector of the NC
algebra is instrumental in introducing nontrivial NC effects
in the energy spectrum of the system to first order pertur-
bative level. This lead to an upper-bound estimation of the
time-space NC parameter. Incidentally, apart from bring-
ing out the effect of time-space noncommutativity on the
system, the field theoretic nature of the construction also
gives a perfect platform to analyze the space-time symme-
tries. Therefore, it is only natural to investigate the space-
time symmetries of the model discussed in [33]. In this
paper we have done a thorough symmetry analysis of the
same.
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Following the Noether’s theorem, we have worked out
various transformation generators and their algebra. The
spatial translation and rotation generators along with the
time-evolution generator formed a closed subalgebra of the
larger Galileo group, namely, the Euclidean algebra E(2).
The higher Galilean algebra required the construction of
the boost generators. In the present nonrelativistic case, the
boost generators are not a part of the total angular momen-
tum tensor, one therefore has to start from the scratch and
derived them using some basic principles. Since the field
variables of our theory can be interpreted as one-particle
wave functions of quantum mechanics, we assumed that
they can change at most by a phase factor under infinitesi-
mal Galileo boost transformations. By demanding the co-
variance of the equation of motion under these Galileo
boosts, we derive some differential equations of the boost
parameter and solving them we derived the boost gener-
ators. The presence of the external gravitational field dis-
criminates between two boost generators, one parallel to
the gravitational field and the other perpendicular to it. We
found that both boost generators preserve the Galilean
symmetry. Interestingly, this is in contrast to earlier results
of a NC Schrodinger theory interacting with an external
electric field [37], where boost perpendicular to the direc-
tion of the external field was not a symmetry of the theory.

The algebra among all the generators are explicitly
computed and they are seen to form a closed Galilean
algebra. Thus the system preserves the Galilean symmetry
on the NC plane. This is a reassuring result since it shows
that the comparison of the theoretical predictions of the
model in [33] with the experimental results of [27-29] had
indeed been physically meaningful.

A worthy by-product of the analysis is found in the F-JB
between the spatial translation generator P, and the time-
evolution generator H, this naturally produces the gravita-
tional force acting on the trapped particle. It shows yet
another significant effect of time-space noncommutativity
on the gravitational well problem. The force acting on the
neutron is found to be increased by a factor T’T’;‘g. In this
connection we also discuss the existing upper bounds on
different NC parameters and using them we found that
presence of time-space noncommutativity can increase
the gravitational pull on the trapped particle by at most
0.147 X 107 %%.
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