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Supersymmetric renormalization group flow equations for the effective superpotential of the three-

dimensional Wess-Zumino model are derived at zero and non-zero temperature. This model with fermions

and bosons interacting via a Yukawa term possesses a supersymmetric analogue of the Wilson-Fisher

fixed-point. At zero temperature we determine the phase-transition line in coupling-constant space

separating the supersymmetric from the nonsupersymmetric phase. At finite temperature we encounter

dimensional reduction from 3 to 2 dimensions in the infrared regime. We determine the finite-temperature

phase diagram for the restoration of the global Z2-symmetry and show that for temperatures above the Z2

phase transition the pressure obeys the Stefan-Boltzmann law of a gas of massless bosons in 2þ 1

dimensions.
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I. INTRODUCTION

In this paper we investigate the three-dimensionalN ¼
1 Wess-Zumino model with general superpotential and
explore the model beyond the realm of perturbative ex-
pansions. This quantum field theory describes Majorana
fermions and uncharged bosons in interaction, with their
spatial motion restricted to a two-dimensional layer. The
self-coupling of the bosons and the Yukawa coupling
between fermions and bosons are such that the theory
possesses one supersymmetry. There exists a class of
superpotentials for which the three-dimensional models
are perturbatively renormalizable, in contrast to the four-
dimensional models. For superpotentials of the form
Wð�Þ � ��2nþ1 there exists both a supersymmetric and
a nonsupersymmetric phase. In this paper we shall calcu-
late the phase-transition curve separating the supersym-
metric from the nonsupersymmetric phase. Besides
supersymmetry the action is invariant under �! ��,
and at zero temperature the breaking of this global Z2

symmetry is intimately linked to the breaking of super-
symmetry. We shall see that there exists a finite phase-
transition temperature at which Z2 symmetry is restored,
independent of our choice for the couplings at the cutoff
scale. Similarly as for other two-dimensional systems, e.g.
surface science, heterostructures or electron gases, the
physics in two space-dimensions is rather different from
that in three space-dimensions.

We employ the functional renormalization group (RG)
to calculate the phase structure at zero and finite tempera-
ture, the scaling behavior of the mass with the RG scale,
the wave-function renormalization, critical exponents, the
effective potential, and the temperature dependence of the
pressure. The method has previously been applied to a
wide range of nonperturbative problems such as critical
phenomena, fermionic systems, gauge theories and quan-
tum gravity, see [1–8] for reviews. A number of conceptual
studies of supersymmetric theories has already been per-

formed with the functional RG. The delicate point here is,
of course, the construction and use of a manifestly
supersymmetry-preserving regulator. For the four-
dimensional Wess-Zumino model such a regulator has
been presented in [9,10]. Recently, general theories of a
scalar superfield including the Wess-Zumino model have
been investigated with a Polchinski-type RG equation in
[11], yielding a new approach to supersymmetric nonre-
normalization theorems. A Wilsonian effective action for
the Wess-Zumino model by perturbatively iterating the
functional RG has been constructed in [12].
The present study builds on our earlier results on two-

dimensional supersymmetric field theories at zero tem-
perature [13,14] as well as on supersymmetric quantum
mechanics, where we have constructed a manifestly super-
symmetric functional RG flow, see [15]. The two-
dimensional models possess an infinite series of fixed
points described by two-dimensional superconformal theo-
ries. On the contrary, supersymmetric models in three
dimensions possess just one fixed point, similarly as
three-dimensional OðNÞ models, see e.g. [2,16–18].
In the present work we first sketch the derivation of the

manifestly supersymmetric flow equations in Sec. III.
Since there exist no Majorana fermions in three-
dimensional Euclidean spacetime we derive the flow equa-
tions in Minkowski spacetime and continue the result to
imaginary time. We investigate the flow of the superpoten-
tial in Sec. III A, study the fixed-point structure in detail,
and identify the supersymmetric analogue of the Wilson-
Fisher fixed point of three-dimensional bosonicOðNÞmod-
els with one unstable direction. Taking into account a
nonzero anomalous dimension in Sec. III B yields a scaling
relation between the critical exponent of the unstable di-
rection and the anomalous dimension. In addition we
determine the zero-temperature phase diagram for sponta-
neous breaking of supersymmetry.
The second part of this paper is devoted to the behavior

of the model at finite temperature. The fate of supersym-
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metry at finite temperature has been discussed extensively
in the literature. For example, in previous works the KMS
condition has been implemented directly in thermal super-
space [19]. In [20,21] the supersymmetry breaking has
been studied on the level of thermal Green functions.
The breaking of supersymmetry by finite-temperature cor-
rections, for example, the one-loop corrections to fermi-
onic and bosonic masses, has been determined in the real-
time formulation in [22]. The inevitable breaking of super-
symmetry at finite temperature has sometimes been called
spontaneous collapse of supersymmetry [23].

In Sec. IV we derive the RG flow equations at finite
temperature. In addition to the momentum integrals we are
confronted with sums over Matsubara frequencies. For the
three-dimensional Wess-Zumino model and for a particu-
lar regulator the thermal sums can be calculated analyti-
cally. Related sums have been discussed in earlier works on
finite-temperature renormalization group flow equations,
for example, in [24–31]. We observe that the Wess-Zumino
model in three dimensions at finite temperature in the Z2

symmetric phase behaves similarly to a gas of massless
bosons. In particular we show in Sec. IVA that it obeys the
Stefan-Boltzmann law in three dimensions. For high tem-
peratures the fermions do not contribute to the flow equa-
tions since they do not have a thermal zero mode. On the
other hand, we observe dimensional reduction in the bo-
sonic part of the model due to the presence of a thermal
zero mode. We show in Sec. IVB how this is manifested in
our RG framework. In a similar way dimensional reduction
has been observed in OðNÞ-models at finite temperature in
[32,33]. Finally we compute the phase diagram for the
restoration of the global Z2 symmetry at finite temperature
in Sec. IVC.

II. THEN ¼ 1WESS-ZUMINOMODEL IN THREE
DIMENSIONS AT T ¼ 0

There are many works on the supersymmetric Wess-
Zumino models in both four and two space-time dimen-
sions. Actually the two-dimensional model with N ¼ 2
supersymmetries is just the toroidal compactification of the
four-dimensional N ¼ 1 model. The three-dimensional
model with N ¼ 1 supersymmetry, on the other hand,
cannot be obtained by dimensional reduction of a local
field theory in four dimensions. Thus it may be useful to
recall the construction of the three-dimensional model
starting from the real superfield

�ðx; �Þ ¼ �ðxÞ þ ��c ðxÞ þ 1
2 ���FðxÞ (1)

with real (pseudo)scalar fields �, F and Majorana spinor-
field c . The supersymmetry variations are generated by
the supercharge

��� ¼ i ��Q�; Q ¼ �i @

@ ��
� ð���Þ@�: (2)

We use the metric tensor ð��	Þ ¼ diagð1;�1� 1Þ to

lower Lorentz indices. With the aid of the symmetry rela-
tions for Majorana spinors �c
 ¼ �
c , �c��
 ¼ � �
��c
and the particular Fierz identity � �� ¼ � ���1=2 the trans-
formation laws for the component fields follow from
Eq. (2):

�� ¼ ��c ; �c ¼ ðFþ i@�Þ�; �F ¼ i ��@c :

(3)

The anticommutator of two supercharges yields

fQ�;
�Q�g ¼ 2ð��Þ��@�. The supercovariant derivatives

are

D ¼ @

@ ��
þ ið���Þ@�; and �D ¼ � @

@�
� ið ����Þ@�:

(4)

Up to a sign they obey the same anticommutation relation
as the supercharges

fD�;
�D�g ¼ �2ð�Þ��@�: (5)

As kinetic term we choose the D term of �D�D� ¼
2 ���Lkin þ . . . which reads

L kin ¼ 1

2
@��@��� i

2
�c @6 c þ 1

2
F2: (6)

The interaction term is the D term of 2Wð�Þ ¼ ���Lint þ
. . . and contains a Yukawa term,

L int ¼ FW 0ð�Þ � 1
2W
00ð�Þ �c c : (7)

The complete off-shell Lagrange density Loff ¼ Lkin þ
Lint takes then the simple form

L off ¼ 1

2
@��@��� i

2
�c @6 c þ 1

2
F2 þ FW 0ð�Þ

� 1

2
W 00ð�Þ �c c : (8)

Eliminating the auxiliary field via its equation of motion
F ¼ �W 0ð�Þ, we end up with the on-shell density

L on ¼ 1

2
@��@��� i

2
�c @6 c � 1

2
W 02ð�Þ

� 1

2
W 00ð�Þ �c c : (9)

From this expression we read off thatW 02ð�Þ acts as a self-
interaction potential for the scalar fields. For a polynomial
superpotential Wð�Þ in which the power of the leading
term is even, Wð�Þ ¼ c�2n þOð�2nÞ, we do not observe
supersymmetry breaking in our present nonperturbative
renormalization group study.1 On the other hand, sponta-

1In a two-loop calculation a ground state with broken super-
symmetry has been found in Ref. [34]. Since we neglect higher
F-terms in our nonperturbative study, it is not possible to check
whether the findings of this perturbative analysis of the Wess-
Zumino model hold when higher-order corrections are taken into
account.
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neous supersymmetry breaking is definitely possible for a
superpotential in which the power of the leading term is
odd. In the explicit calculations we shall use a Majorana
representation for the �-matrices, �0 ¼ �2, �

1 ¼ i�3 and
�2 ¼ i�1.

III. FLOW EQUATION AT ZERO TEMPERATURE

To find a manifestly supersymmetric flow equation in the
off-shell formulation we extend our earlier results on the
one- and two-dimensional Wess-Zumino models [13,15] to
three dimensions. Since there are no Majorana fermions in
three-dimensional Euclidean space we begin with a
Minkowski spacetime formulation of the Wetterich equa-
tion [35,36]:

@t�k ¼ i

2
Str½ð�ð2Þk þ RkÞ�1@tRk�; t ¼ lnk2; (10)

where the scale-dependent effective action �k interpolates
between the microscopic (classical) action �k¼� ¼ S and
the full quantum effective action �k¼0 ¼ �. The second
functional derivative in Eq. (10) is defined as

ð�ð2Þk Þab ¼
~�

��a

�k

�
 

��b

;

where the indices a, b denote the field components, inter-
nal and Lorentz indices, as well as space-time or momen-
tum coordinates, i.e., �T ¼ ð�;F; c ; �c Þ is a vector of
fields, not to be confused with a superfield. The cutoff
function Rk provides an infrared (IR) cutoff for all fields
and specifies the Wilsonian momentum-shell integrations
such that the flow of �k is dominated by modes p2 ’ k2.
For a derivation2 of the RG flow equation in Minkowski
spacetime (10) we refer to Appendix A.

To construct a supersymmetric flow we use as regulator
an invariant D term in superspace. Since such a term
should be quadratic in the fields3, see Appendix A for
details, it is the D term of a superfield �K� with K being

a function of �DD. Using the anticommutation relation (5),

powers of �DD can always be decomposed into

ð12 �DDÞ2n ¼ ð�hÞn; (11)

such that an invariant and quadratic regulator action is the
superspace integral of

�Kð �DDÞ� ¼ �

�
r1ð�hÞ � r2ð�hÞ

�DD
2

�
�: (12)

Expressed in component fields, we find

�Sk ¼ 1

2

Z
ð�;FÞRB

k

�
F

� �
þ 1

2

Z
�cRF

k c : (13)

In momentum space, i@� is replaced by p� and the opera-

tors take the explicit forms

Rk ¼ RB
k 0
0 RF

k

� �
(14)

with

RB
k ¼ p2r2 r1

r1 r2

� �
; and RF

k ¼ �r1 � r2p6 ; (15)

where r1 ¼ r1ðp2=k2Þ and r2 ¼ r2ðp2=k2Þ. Note that the
requirement that the RG flow preserves supersymmetry
relates the regulators RB

k and RF
k in the bosonic and fermi-

onic subsectors.

A. Local potential approximation

We employ the following ansatz for the supersymmetric
effective action for our study of the three-dimensional
Wess-Zumino model:

�k ¼
Z

d3x

�
1

2
@��@��� i

2
�c @6 c þ 1

2
F2 þ FW 0kð�Þ

� 1

2
W 00k ð�Þ �c c

�
: (16)

In the following, we work in the so-called local potential
approximation (LPA) where the expectation values of the
fields are taken to be constant over the entire volume. As it
has been found in studies of scalar OðNÞ models and low-
energy QCD models, the LPA captures already most quali-
tative and quantitative features associated with critical
dynamics at zero and finite temperature provided the
anomalous dimensions are small, see e.g. Refs. [2,16–
18,31,33]. For the time being we restrict our study to
LPA. In Sec. III B we shall then discuss the running of
the wave-function renormalization.
In order to obtain a flow equation for the superpotential,

we project Eq. (10) onto the terms linear in the auxiliary
field F and integrate the resulting W 0k with respect to �.

Performing a Wick rotation of the zeroth component of the
momentum, i.e. pM

0 ! ipE
0 , we find the flow equation

@kWkð�Þ ¼ 1

2

Z d3p

ð2�Þ3

� @kr1ð1þ r2Þ � @kr2ðW 00k ð�Þ � r1Þ
p2ðr2 þ 1Þ2 þ ðW 00k ð�Þ þ r1Þ2

: (17)

In the following, we choose the simple regulator functions

2In the following we neglect an additional term to the flow
equation arising from the normalization of the Gaußian measure
in the partition function. Including such an additional term yields
a field-independent constant to W 0ð�Þ. We stress that only
nonuniversal quantities such as the critical temperature for the
Z2 phase transition are affected by such a constant. However, our
analysis of the critical dynamics at the phase boundary at zero
and finite temperature is not affected.

3A regulator term quadratic in the fluctuation fields ensures
that we eventually obtain a nonperturbative RG equation with
one-loop structure.
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r1 ¼ 0; r2 ¼
�
k

jpj � 1

�
ðk2 � p2Þ; (18)

for which the momentum integration in (17) can be per-
formed analytically. In the present work we do not aim at a
study the regulator dependence. However, the regulator
dependence of functional RG flows, in particular, with
respect to critical phenomena, has been investigated in
great detail and it has been shown that optimized regulator
functions minimizing the trucational error can be con-
structed, see e.g. Refs. [4,17,24,25,27,37].

Contrary to the model in two dimensions [13], the
regulator function (18) regularizes the flow even if we
allow for running wave function renormalizations. For
the superpotential Wk we then obtain the simple flow
equation

@kWk ¼ � k2

8�2

W00k ð�Þ
k2 þW 00k ð�Þ2

: (19)

As we are interested in the bosonic potential Vð�Þ ¼
W 02ð�Þ=2 we will consider mostly the flow equation for
W 0kð�Þ which reads

@kW
0
k ¼ �

k2Wð3Þk ð�Þðk2 �W 00k ð�Þ2Þ
8�2ðk2 þW 00k ð�Þ2Þ2

: (20)

Figure 1 shows the flow of W 02k ð�Þ for a quadratic super-

potential at the cutoff scale,W 0� ¼ ��ð�2 � a2�Þ, and with
initial conditions ��=� ¼ 1, a2�=�

0:5 ¼ 0:02. With these

initial conditions the RG flow starts in the regime with
broken Z2 symmetry and for k! 0 ends up in the regime
with restored Z2 symmetry. We observe that the potential
Vk becomes flat at the origin as k is lowered to the infrared.
In addition the functionW 00k!0 is regular for all values of the

field, in contrast to the situation in two dimensions.

In order to study the fixed-point structure we introduce
dimensionless quantities

’ ¼ k�ð1=2Þ�; wkð’Þ ¼ k�2Wkð�Þ;
w0kð’Þ ¼ k�ð3=2ÞW 0kð�Þ; . . . :

(21)

The dimensionless flow equation then reads

@twk þ 2wk ¼ � w00k
8�2ð1þ w002k Þ

þ ’w0k
2

; (22)

and its fixed points are characterized by @tw� ¼ 0. The
flow equations in two and three dimensions have almost
identical forms. In three dimensions, however, there ap-
pears the additional term / ’w0kð’Þ, since the field� itself

is a dimensionful quantity.
We observe a further peculiarity of supersymmetric

Wess-Zumino models: Only the second derivative of the
superpotential enters the fixed-point equation following
from @tw� ¼ 0, see [13]. It follows that the couplings of
the terms �0 and �1 do not enter the fixed-point equation
but evolve independently. As we shall see below, this has
some interesting consequences which distinguish the
supersymmetric Wess-Zumino model from purely bosonic
theories, for example OðNÞ models in three dimensions,
see e.g. [2,16–18].
For our fixed-point analysis, we study the first derivative

of Eq. (22),

@tw
0
k ¼

’w00k � 3w0k
2

þ w002k w000k
4�2ð1þ w002k Þ2

� w000k
8�2ð1þ w002k Þ

;

(23)

where the prime denotes the derivative with respect to the
dimensionless field ’.

1. Polynomial approximation

First we solve the Eq. (23) in the polynomial approxi-
mation with a Z2 symmetricw0� at the cutoff scale. The RG

flow is such that a Z2 symmetric w0� will remain Z2

symmetric during the flow. Thus a polynomial approxima-
tion for w0� is of the form

w0kð’Þ ¼ �ðtÞð’2 � a2ðtÞÞ þXn
i¼2

b2iðtÞ’2i; (24)

where �, a2, and b2i denote the scale-dependent couplings.
Recall that for an even function w0ð’Þ supersymmetry may
be broken. We find the following infinite tower of differ-
ential equations:
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FIG. 1 (color online). RG flow of W02k ð�Þ with the initial
conditions ��=� ¼ 1, a2�=�

0:5 ¼ 0:02. Note that t is related

to k via t ¼ lnk2, see also Eq. (10).

FRANZISKA SYNATSCHKE, JENS BRAUN, AND ANDREAS WIPF PHYSICAL REVIEW D 81, 125001 (2010)

125001-4



@ta
2ðtÞ ¼ a2ðtÞ

�
� 3�ðtÞ2

�2
þ 3b4ðtÞ

2�2�ðtÞ � 1

�
þ 1

4�2
;

@t�ðtÞ ¼ � 3b4ðtÞ � 6�ðtÞ3 þ �2�ðtÞ
2�2

;

@tb4ðtÞ ¼ 120b4ðtÞ�ðtÞ2 þ 2�2b4ðtÞ � 15b6ðtÞ � 80�ðtÞ5
4�2

� � � (25)

Note that due to supersymmetry the lowest order coupling
a2 does not enter the flow equations of the couplings
�; b4; b6; . . . .

In our fixed-point analysis we find a Gaußian fixed point
with all coupling constants equal to zero and, due to the Z2

symmetry, a pair of fixed-points whose couplings converge
rapidly for larger truncations as shown in Table I. From the
stability matrix,

Bi
j ¼ @ð@tbiÞ

@bj
; (26)

we read off that the non-Gaußian fixed points are IR stable.
Here, we have set b0 ¼ a2 and b2 ¼ �. These IR stable
fixed points are to be considered as supersymmetric
equivalent of the Wilson-Fisher fixed point.

Let us now discuss the critical exponents which are the
negative eigenvalues of the stability matrix at the fixed
point. The coupling a2, which does not feed back into the
equations for the higher-orders couplings, defines an IR
unstable direction with a critical exponent 1=	W ¼ 3

2 . The

critical exponents of the IR stable directions of the Wilson-
Fisher fixed point are given in Table II. Actually, we
observe a better convergence of the lowest critical expo-
nents than in two dimensions [13].

From Table I we estimate that the radius of convergence
of the Taylor series (24), given by

r ¼ lim
i!1

b2i
b2iþ2

; (27)

is finite. This can be seen more clearly from Fig. 2, where
we plotted the ratios b2i=b2iþ2 as functions of i. Note, that
for the corresponding series with dimensionful field and

couplings �b2i ¼ b2i � k3=2�i the radius of convergence
shrinks with decreasing scale k,

�r ¼ lim
i!1

�b2i
�b2iþ2

¼ klim
i!1

b2i
b2iþ2

¼ k � r: (28)

Thus, the radius of convergence of the power series expan-
sion of W 0kð�Þ tends to zero for k! 0.

2. Partial differential equation

Let us now turn to the solution of the partial differential
equation (22). We have seen in Eq. (25) that the coupling
associated with the IR unstable direction does not feed
back into the fixed-point equation. It is therefore sufficient
to consider the second derivative of Eq. (22). To simplify
the notation we introduce uð’Þ ¼ w00k ð’Þ. The fixed-point

equation for u reads

TABLE I. Wilson-Fisher fixed point as obtained from the
polynomial approximation to w0ð’Þ. Note that the discrepancy
between the fixed-point values of b10 for the truncation with
2n ¼ 10 and 2n ¼ 12 is a truncation effect. Because of our
polynomial expansion of w0kð’Þ, see Eq. (24), we obtain a

hierarchy of flow equations for the couplings b2i in which the
RG flow of the coupling b2n (for given truncation order n) suffers
the most by the finite truncation order n. Therefore, we expect
that the fixed-point values for the higher-order couplings con-
verge when n is increased, as it is indeed the case for �, b2, b4,
b6.

2n �� �b4 �b6 �b8 �b10 �b12
4 1.546 2.305

6 1.590 2.808 6.286

8 1.595 2.873 7.150 13.41

10 1.595 2.873 7.155 13.48 1.212

12 1.595 2.870 7.118 12.90 �8:895 �183:3

TABLE II. Critical exponents for the Wilson-Fisher fixed
point for different truncations.

2n critical exponents

6 �0:799�5:92�20:9
8 �0:767�4:83�14:4�38:2
10�0:757�4:35�11:5�26:9�60:8
12�0:756�4:16�9:94�21:4�43:8�89:0
14�0:756�4:10�9:13�18:3�35:1�65:4 �123
16�0:756�4:08�8:72�16:4�29:9�52:9�91:9�163
18�0:756�4:08�8:54�15:2�26:4�45:0�75:0�124�209
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FIG. 2 (color online). Ratio b2i=b2iþ2 of the Taylor expansion
coefficients of the potential as a function of i.
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u00 ¼ 2u
u2 � 3

u4 � 1
u02 þ 4�2 ðu2 þ 1Þ2

u2 � 1
ð2u� ’u0Þ: (29)

It is straightforward to see that the above equation has an
asymptotic solution uasð’Þ � ’2. Employing a standard
Runge-Kutta solver for ordinary differential equations we
find one regular odd solution for the starting condition
uð0Þ ¼ 0 and u0ð0Þ � 2� 	 �2 � 1:59508 ¼ �3:19016.
For field amplitudes ’< 0:245 the regular solution is
bounded by u < 1 and this inner part of the solution
corresponds to the IR stable fixed-point solution found in
the polynomial approximation discussed above.

Since u ¼ w00 we find for large fields

w00ð’! �1Þ ’ �’2 ) W 00� ð�! �1Þ ’ ��2:

In other words the outer part of the regular fixed-point
solution connects smoothly to the inner part. Thus we have

found a solution corresponding to a bosonic potential V ’
ðk3=2w0�ð’ÞÞ2 which behaves as ��6 for large �. This is
the supersymmetric analogue of the Wilson-Fisher fixed
point of three-dimensional OðNÞ theories, see e.g. [2,16].

B. Next-to-leading order

For the next-to-leading order approximation we employ
the following ansatz

�k ¼
Z

d3x

�
1

2
Z2
kð@��@��� i �c @cF2Þ

þ FW 0kð�Þ �
1

2
W 00k ð�Þ �c c

�
; (30)

with Z2
k being a scale-dependent wave-function renormal-

ization. We neglect a possible momentum and � depen-
dence of Zk. This approximation corresponds to an
inclusion of the next-to-leading order correction4 in a
systematic expansion of the effective action in powers of
fields and derivatives. As we discuss below, we find that the
anomalous dimension � remains small compared to one
within this approximation, see also Table III. Thus, we
expect that higher-order corrections such as �ð�@��Þ2
does not significantly affect our results for the zero- and
finite-temperature phase diagram.5

Projecting on the part linear in the auxiliary field and
integrating with respect to � yields the superpotential. On
the other hand projecting on the terms quadratic in the
auxiliary fields yields the flow equation for the wave-
function renormalization. Employing the regulator func-
tions (19) we find the following coupled set of differential
equations:

@kWkð�Þ ¼ � k2W00k ð�Þ
24�2

k@kZ
2
k þ 3Z2

k

k2Z4
k þW 00k ð�Þ2

; (31)

@kZ
2
k ¼ �

k2

4�2
ðk@kZ2

k þ 2Z2
kÞ

� Z2
kW
ð3Þ
k ð�Þ2ðk2Z4

k �W 00k ð�Þ2Þ
ðk2Z4

k þW 00k ð�Þ2Þ3
���������¼0

: (32)

Introducing the anomalous dimension � ¼ �@t lnZ2
k and

the dimensionless quantities


 ¼ Zkk
�ð1=2Þ�; wð
Þ ¼ k�2Wkð�Þ;

the dimensionless flow equations read

@twþ 2w ¼ 1

2
ð1þ �Þ
w� ð3� �Þw00

24�2ð1þw002Þ ; (33)

� ¼ ð2� �Þð1�w002Þw0002
4�2ð1þw002Þ3

��������
¼0
: (34)

In order to study the fixed-point structure it is convenient to
consider the anomalous dimension � as a free parameter,6

see e.g. Ref. [39]. In complete analogy to the two-
dimensional Wess-Zumino model we find lines of fixed
points corresponding to potentials with no nodes (outer-
most line), one node and so on, see Fig. 3 (left panel). In
fact, we encounter exactly the same picture as in two
dimensions, apart from a shift of the graph to lower �
values. Concerning the number of fixed points the situation
is completely different as in two dimensions: Because of
the shift of � we find only one pair of fixed points for � ¼
0, and not an infinite number of pairs. Such a dependence
on the dimensionality has also been observed for OðNÞ
models [39].
Note that if we had actually used the same regulator as in

[13], namely

r1 ¼ 0 and r2 ¼
�
k2

p2
� 1

�
ðk2 � p2Þ;

then the flow equation for the superpotential in two dimen-
sions would turn into the flow equation in three dimensions
under the transformation�! �� 1. This correspondence
explains the similarities of Fig. 3 (left panel) in two and
three dimensions.

TABLE III. Dependence of the fixed-point value of the anoma-
lous dimension � on the truncation order n of the expansion of
w0 in powers of the field ’, see also Eq. (24).

2n 4 6 8 10 12 14

�� 0.187 711 0.188 258 0.188 02 0.187 996 0.188 001 0.188 003

4LPA corresponds to the leading-order approximation.
5Note that the same reasoning has been found to hold in

studies of the critical dynamics in OðNÞ models and low-energy
QCD models, see e.g. Refs. [2,16,31,33,38]

6Note that � ¼ 0 is a consistent solution of the fixed-point
equations. In this respect the model in three dimensions is
substantially different from the model in two dimensions.
There, � ¼ 0 is not a consistent solution of the fixed-point
equations.
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As in two dimensions, we can deduce a superscaling
relation from the RG flow equation of a2 which relates the
critical exponent 1=	W and the anomalous dimension [14]:

1

	W

¼ 3� �

2
: (35)

The truncation dependence of the fixed-point value of the
anomalous dimension is shown in Table III.

C. Zero-temperature phase diagram and scaling of the
mass

The breaking of supersymmetry is driven by the unstable
direction a2, similarly as in two dimensions [13]. In the
plane spanned by the values of the dimensionless couplings
� and �a2 given at the cutoff scale � we find a transition
line for supersymmetry breaking, see Fig. 3 (right panel).

From the effective potential V ¼ limk!0W
02
k =2, we read

off the mass of the boson,

m2
bos ¼ W 0k!0ð�0ÞW 000k!0ð�0Þ þW 002k!0ð�0Þ; (36)

where the field �0 minimizes V. In the case of broken
supersymmetry (and unbroken Z2 we have �0 ¼ 0 and the
mass is given by

m2
broken ¼ W 0k!0ð0ÞW 000k!0ð0Þ; W 00k!0ð0Þ ¼ 0; (37)

whereas for unbroken supersymmetry it is given by

m2
unbroken ¼ W 002k!0ð�0Þ; W 0k!0ð�0Þ ¼ 0: (38)

In the broken phase a polynomial expansion of the super-
potential is justified7 and we find

m2
brokenðkÞ ¼ W 0kð0ÞW 000k ð0Þ ¼ 2k2�2a2: (39)

From the scaling of the couplings for k! 0,

�� � const and a2 � k�ð3=2Þ; (40)

we read off that the mass scales as

mðkÞ � k1=4 for k
 �: (41)

This scaling behavior is demonstrated in Fig. 4 for a
truncation with n ¼ 4, i.e. an expansion of w0 up to order
’8 ��8, see also Eq. (24). Because of our analysis of the
convergence of the fixed-point values of the couplings �
and b2i as well as the anomalous dimension��, see Table I,
II, and III, we expect that the truncation order n ¼ 4 is
already sufficient to capture qualitatively and quantita-
tively most of the features of the zero- and finite-

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4

ln
(m

(k
))

ln(k)

results from the flow equation
f(x)=0.23*x-0.82

FIG. 4 (color online). Logarithm of the boson mass as a
function of the RG scale k. A linear fit to the data points yields
mðkÞ � k0:23 for k
 �.

-1
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 0.4

-3 -2 -1  0  1  2  3

η

γ/2

...

WF-FP in LPAWF-FP in LPA

WF-FP at NLOWF-FP at NLO

lines of fixed points
η(γ/2)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  2  4  6  8  10  12

(λ
a2 ) Λ

λΛ

broken SuSy

unbroken SuSy

φ2

φ4

φ6

FIG. 3 (color online). Left panel: Lines of fixed points in the �-� plane (solid curves) and the anomalous dimension as a function of
� ¼ 2� as obtained from Eq. (34) (dotted curve). Right panel: Phase diagram in the plane spanned by the dimensionless couplings
specified at the cutoff scale � as obtained from truncations with n ¼ 1 (�2), n ¼ 2 (�4), and n ¼ 3 (�6) in Eq. (24).

7Note that for unbroken supersymmetry a polynomial expan-
sion is bound to fail and one needs to solve the partial differential
equation in order to determine the boson mass.
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temperature phase diagram, see also Sect. IVB. From a
linear fit to the double-logarithmic plot of mðkÞ we find
mðkÞ � k0:23 which is indeed reasonably close to the ex-
pected scaling given in Eq. (41). The reason for this
behavior, which is very different from the one found in
OðNÞ models, is that the unstable direction does not feed
back into the fixed-point equation.8 Independent of the
value of the coupling at the UV (ultraviolet) cutoff scale
�, the second derivative of the superpotential flows always
into its IR fixed point corresponding to a conformally
invariant theory. In OðNÞ models, on the other hand, the
unstable direction in the broken regime feeds back into the
fixed-point equations for the couplings. Approaching the
IR fixed point of OðNÞ models requires therefore fine
tuning of the UV parameters [16].

IV. FLOW EQUATIONS AT FINITE
TEMPERATURE

In this section we study finite temperature effects in the
three-dimensional Wess-Zumino model. To this end we
restrict ourselves to the LPA which we expect to provide
already a quantitative insight into the finite-temperature
phase structure as shown in Ref. [31].

The finite-temperature flow equation in LPA can be
obtained straightforwardly from the zero-temperature
equations (20) by replacing the momentum integration in
timelike direction by a summation over Matsubara fre-
quencies:

p0 ! f 	n

!n
g;

Z dp0

2�
. . .! T

X1
n¼�1

. . . (42)

with frequencies !n ¼ 2�nT for bosonic fields and 	n ¼
ð2nþ 1Þ�T for fermionic fields. We refer to Appendix B
for a detailed derivation of the finite-temperature flow
equations. Here we simply note that we can perform the
Matsubara sums explicitly for the regulator functions (18).
The flow equations read

@kW
0bos
k ¼� k2

8�2
W 000k

k2�W 002k
ðk2þW 002k Þ2

�
�
�T

k
� ð2sBþ 1Þ2�T

k

þ 2ð2sBþ 1Þ
�
�T

k
; (43)

@kW
0ferm
k ¼ � k2

8�2

ðk2 �W 002k ÞW 000k
ðk2 þW 002k Þ2

�
1�

�
1� 2sF�T

k

�
2
�
;

(44)

where the temperature-dependent floor functions sB and sF
are given by

sB ¼
�

k

2�T

�
and sF ¼

�
k

2�T
þ 1

2

�
: (45)

The differences in the flow equations for the ‘‘superpoten-
tial’’ describing the self-interaction of bosons and the
‘‘superpotential’’ describing the Yukawa-type interaction
between fermions and bosons originates in the supersym-
metry breaking induced by the different thermal boundary
conditions for the bosonic and fermionic fields.

A. Pressure

In the previous section we have shown that the boson
mass tends to zero for k! 0 in the phase with broken
supersymmetry (restored Z2 symmetry). Thus we expect
that the thermodynamic properties of the three-
dimensional model in the phase with restored Z2 symmetry
are similar to that of a gas of massless bosons. The pressure
of such a gas in 2þ 1 dimensions is given by

�p ¼ �ð3Þ
2�

T3: (46)

The (normalized) pressure �p for a given temperature is
determined by the negated difference of the interaction
potential for a given temperature evaluated at the minimum
and its corresponding zero-temperature value. In our model
this corresponds to the height of the barrier in the double-
well potential ðW 0Þ2 for a theory with broken Z2 symmetry
or the minimum of ðW 0Þ2 with unbroken Z2 symmetry. For
small temperatures we therefore expect

�ð�a2Þ � ð�a2ÞT¼0 � ð�a2ÞT�0 ¼
ffiffiffiffiffiffiffiffiffi
�ð3Þ
2�

s
� T3=2

’ expð�0:83ÞT3=2 (47)

for the temperature dependence of the minimum ofW 0ð�Þ.
In Fig. 5 we show the double-logarithmic plot of the

-22

-20

-18

-16

-14

-12

-10

-14 -13 -12 -11 -10 -9 -8 -7 -6

ln
((

λa
2 ) T

=
0-

(λ
a2 ) T

)

ln(T)

f(x)=1.49*x-0.68
results from the flow equation

FIG. 5 (color online). Double logarithmic plot of the tempera-
ture dependent minimum of the superpotential versus the tem-
perature.

8Note that this is only true for finite N. In the large N limit, the
running of the higher-order couplings is also independent of the
running of the vacuum expectation value of the field [16] which
corresponds to a2 in our study of the N ¼ 1 Wess-Zumino
model.
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minimum of the superpotential versus temperature as ob-
tained from a truncation of the potential with n ¼ 4, i.e. an
expansion ofw0 up to order’8 ��8, see also Eq. (24). The
linear fit to the double-logarithmic plot yields a power law
�ð�a2Þ ¼ expð�0:68Þ � T1:49 which is compatible with the
values for a gas of massless bosons in 2þ 1 dimensions, as
given in Eq. (47). We expect that deviations from the ideal
gas limit are present for two reasons: (i) The boson mass
tends to zero for k! 0 only but remains finite for any k >
0, see Eq. (41) and (ii) boson self-interactions lead to
deviations from the ideal bose-gas limit.

B. RG flows at finite temperature and dimensional
reduction

For high temperatures T � k both floor functions in
(45) vanish and the flow equations simplify considerably:

@kW
0bos
k ¼ � k2

8�2
W 000k

k2 �W 002k
ðk2 þW 002k Þ2

2�T

k
; (48)

@kW
0ferm
k ¼ 0: (49)

Following Ref. [32] we rescale the quantities in the bosonic
flow equation according to

� ¼ ffiffiffiffi
T
p

~�; Wkð�Þ ¼ T ~Wkð ~�Þ: (50)

For Eq. (48) this leads exactly to the zero-temperature flow
equation of the two-dimensional model. At this point,
however, we should stress that the theory which we obtain
in the limit T=k� 1 is not the supersymmetric N ¼ 1
Wess-Zumino model in two dimensions since the fermions
have dropped out of the theory due to the absence of
thermal zero modes. Therefore supersymmetry is neces-
sarily broken at finite temperature. The fact that we still
obtain the same functional form for the bosonic flow
equation can be understood in terms of the role of the
auxiliary field: In order to obtain the bosonic flow equation,
we have to project on the terms coupling to the auxiliary
field. Since there is no coupling between the auxiliary field
and the fermionic part of the theory, the fermions do not
contribute to the bosonic flow equation.

Because of the rescalings of the fields and the potential
according to Eq. (50) we expect that the couplings exhibit
the following behavior for T=k� 1:

3Dða2ÞT ¼ 2Dða2ÞT¼0
�
T

k

�
1=2

;

3D�T ¼ 2D�T¼0
�
T

k

��ð1=2Þ
;

3Dðb2iÞT ¼ 2Dðb2iÞT¼0
�
T

k

�
1=2�i

;

(51)

where 2Dða2ÞT¼0, 2D�T¼0 and 2Dðb2iÞT¼0 denote the
fixed-point values of the couplings of the two-dimensional
theory. Indeed we observe such a running of the couplings
for T=k� 1 in our numerical studies.

From Eq. (52) we deduce the radius of convergence of
our expansion of the potential in powers of the fields.
Recalling the relation between the dimensionful and di-

mensionless couplings, �b2i ¼ b2i � k3=2�i, we find

3Dr ¼ lim
i!1

3Dð �b2iÞT
3Dð �b2iþ2ÞT

¼ lim
i!1

2Dðb2iÞT¼0 � ðT=kÞ1=2�i � k3=2�i
2Dðb2iþ2ÞT¼0 � ðT=kÞ�1=2�i � k1=2�i

¼ 2Dr � T:
(52)

Thus we find a finite radius of convergence for the poly-
nomial expansion of the superpotential at finite tempera-
ture which is a consequence of the finite radius of
convergence found for the underlying two-dimensional
model at zero temperature [13]. However, the radius of
convergence 3Dr tends to zero for T ! 0, in full agreement
with our results in Sec. III A.

C. Phase diagram at finite temperature

In this subsection we discuss the phase diagram of the
N ¼ 1 Wess-Zumino model at finite temperature.
Whether supersymmetry is broken or not at vanishing

temperature depends on our choice for the couplings at the
cutoff scale as we have discussed above. At finite tempera-
ture we have necessarily soft supersymmetry breaking due
to the different boundary conditions for bosons and fermi-
ons in Euclidean time direction. Besides supersymmetry,
however, our theory is invariant under �! ��. At van-
ishing temperature the breakdown of this Z2 symmetry is
intimately linked to the question whether supersymmetry is
broken or not. Recall that at T ¼ 0 broken Z2-symmetry of
the ground state implies a supersymmetric ground state and
that restored Z2 symmetry of the ground state implies
broken supersymmetry. Even though supersymmetry is
necessarily broken at finite temperature, we shall see in
the following that Z2 symmetry of the ground state can be
either broken or restored depending on the actual value of
the temperature. Because of the relation between super-
symmetry and Z2 symmetry at vanishing temperature, we
consider the strength of Z2 breaking as a measure for
supersymmetry breaking at finite temperature. Thus we
distinguish between the case of soft supersymmetry break-
ing due to finite temperature but broken Z2 symmetry of
the ground state and the case with restored Z2 symmetry of
the ground state at finite temperature.
For our numerical study of the finite-temperature phase

diagram we employ a �8-truncation of the potentials,9 i.e.
we use n ¼ 4 in Eq. (24).

9The quality of such an approximation has been studied
extensively for zero and finite temperatures [16–18,40]. It indeed
proves to be quantitatively useful in case one is not interested in
a high-accuracy determination of critical exponents [17,18].

N ¼ 1 WESS-ZUMINO MODEL IN d ¼ 3 AT . . . PHYSICAL REVIEW D 81, 125001 (2010)

125001-9



In the left panel of Fig. 6, we show the Z2 phase-
boundary in the space spanned by temperature T=� and
the value of the couplings (��, a

2
�) at the UV cutoff scale at

vanishing temperature10. The lower end of the phase
boundary on the T ¼ 0 plane in Fig. 6 corresponds to the
phase-transition linewhich separates the phase with broken
supersymmetry from the one associated with a supersym-
metric ground state, see also Fig. 3 (right panel). Choosing
couplings (��, a

2
�) at T ¼ 0 associated with a supersym-

metric ground state (and broken Z2 symmetry) we find
always a second-order phase-transition temperature at
which the system enters the phase with restored Z2 sym-
metry. As discussed in Sec. IVA the thermodynamic prop-
erties of this Z2-symmetric phase are similar to the ones of
a gas of massless bosons. We expect that this finite-
temperature phase transition falls into the Ising universal-
ity class with critical exponents determined by the under-
lying 2d Z2 theory, namely, by the exponents of Onsager’s
solution of the corresponding lattice spin model. However,
a quantitative analysis of the critical behavior would re-
quire the inclusion of the anomalous dimension in our
studies. This is deferred to future work.

In the right panel of Fig. 6, we show a slice of the Z2

phase boundary for fixed �� ¼ 0:8. We find that the phase-
transition temperature increases with increasing ða2�ÞT¼0.
Since ða2k!0ÞT¼0 increases with increasing ða2�ÞT¼0, the
phase-transition temperature increases with increasing

ða2k!0ÞT¼0, i.e. in terms of the renormalized quantity.11

Our observation of an increasing phase-transition tempera-
ture with increasing ða2k!0ÞT¼0 is in accordance with our

expectations from a scalar Oð1Þ ’ Z2 model since
ð��a2k!0ÞT¼0 sets the scale at T ¼ 0 and therefore plays a

similar role as a finite expectation value of the fields in
OðNÞ models, see e.g. [33].

V. CONCLUSIONS

In this work we have employed the functional RG for a
study of the three-dimensional N ¼ 1 Wess-Zumino
model at zero and at finite temperature. Since the model
exists only in Minkowski space we have worked with a
formulation of the Wetterich equation in Minkowski-space
and have Wick-rotated the momentum integrals.
At zero temperature we have found results quite similar

to our findings for the two-dimensional model [13]. An
investigation of the fixed-point structure yields the super-
symmetric analogue of the Wilson-Fisher fixed-point for
bosonic theories. It is maximally IR stable with one rele-
vant direction only. As in the two-dimensional model the
relevant direction is given by a2. Again we find a scaling
relation between the critical exponent 1=	W of the instable
direction and the anomalous dimension �. The critical
exponent 	W governs the freeze-out of the minimum of
the superpotential W. We also find that the IR limit of the
three-dimensional Wess-Zumino model is given by a con-
formally invariant theory. The critical exponent 	W gov-
erns the vanishing of the mass with the RG scale. This is
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FIG. 6 (color online). Finite-temperature phase diagram of the N ¼ 1 Wess-Zumino model. Left panel: Z2 phase boundary in the
space spanned by temperature T=� and the value of the couplings (��, a

2
�) at vanishing temperature. Right panel: Slice of the Z2

phase boundary for fixed �� ¼ 0:8.

10As initial conditions for the finite-temperature RG flows we
use the zero-temperature values of the couplings (��, a

2
�) at the

cutoff scale. Therefore, we have to restrict our study to tempera-
tures significantly smaller than the UV cutoff in order to ensure
that it is justified to use these zero-temperature values of the
couplings at the UV starting point of the flow.

11Recall that � flows into its fixed-point value �� for T ¼ 0
independently of the initial condition ��. Nevertheless �� can
be used to classify different theories at finite temperature.
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different from three-dimensional scalar OðNÞ theories
since for the supersymmetric models the relevant coupling
does not feed back in the flow equations of higher n-point
functions. As in two dimensions we find that supersymme-
try breaking is governed by the relevant direction.

The finite-temperature flow equations are obtained by
replacing the integration over the timelike direction by a
sum over Matsubara frequencies. As bosons and fermions
obey different thermal boundary conditions, finite tem-
peratures introduce a soft supersymmetry breaking.

In the phase with broken supersymmetry (restored Z2

symmetry) at zero temperature the three-dimensional
Wess-Zumino model flows to a massless field theory. In
the Z2 symmetric phase at finite temperature the model
therefore behaves like a three-dimensional gas of massless
bosons. We have found that this is indeed the case. The
small deviations from the ideal-gas law found in our nu-
merical studies originate from the self-interaction of the
bosons.

At high temperatures, supersymmetry breaking mani-
fests itself in the fact that the flow equations for the super-
potential, derived from the bosonic and the fermionic part
of the action, are different. We also observe dimensional
reduction in the way that, after a suitable rescaling, the
flow equation for the ‘‘bosonic’’ superpotential in three
dimensions reduces to the flow equation in two dimen-
sions. Because of the absence of a fermionic thermal zero
mode the fermions do not contribute to the RG flow for
small scales k
 T. We have argued that the radius of
convergence for the polynomial expansion of the superfield
interpolates between the values for two and three dimen-
sions as the temperature is raised.

Even though supersymmetry is explicitly broken at finite
temperature, the Z2 symmetry of the model can be either
restored or broken at finite temperature. Whether Z2 sym-
metry is broken or not depends on the temperature (and
parameters of the model, i.e. the initial values of the
couplings at the initial RG scale). Since supersymmetry
and Z2 symmetry are intimately linked we have argued that
a study of Z2 symmetry may be used to measure the
strength of supersymmetry breaking. We have computed
the phase diagram for the restoration of Z2 symmetry at
finite temperatures. We find two different types of phases
which are separated by a second-order phase transition:
one phase with soft supersymmetry breaking due to finite
temperature but broken Z2 symmetry and one with restored
Z2 symmetry.

Throughout this paper we have addressed several sim-
ilarities and differences between scalar OðNÞ models and
the N ¼ 1 Wess-Zumino model at zero and finite tem-
peratures, e.g. the fixed-point structure at zero temperature
and the behavior at finite temperature. A detailed explora-
tion of both models with respect to their similarities and
differences, in particular, with respect to the large-N limit,
is deferred to future work.
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APPENDIX A: DERIVATION OF THE FLOW
EQUATIONS IN MINKOWSKI SPACE

In this Addendum we derive the Wetterich flow equation
in Minkowski space. For the sake of simplicity we consider
a real scalar field in this appendix. The generalization to
other fields, such as fermion or gauge fields, is
straightforward.
The generating functional in Minkowski-space is given

by

Z½J� ¼
Z

D’eiðS½’�þðJ;’ÞÞ;

where J denotes the external source and ðJ; ’Þ �R
ddxJðxÞ’ðxÞ. The generating functional W for the con-

nected two-point functions, the so-called Schwinger func-
tional, reads12

W½J� ¼ i lnZ½j�:
From this we obtain

�

�J
W½J� ¼ i

�

�J
lnZ½J� ¼ �

R
D�eiðSþ

R
J�Þ�R

D�eiðSþðJ;’ÞÞ
¼ ��

¼ �h’i:
The effective action is the Legendre transform of the
Schwinger functional,

�½�� ¼ �W½J� � ðJ;�Þ;
where � is the mean (classical) field. Using �

�J W½J� ¼
��, we obtain the equation of motion for the field �:

��½��
��

¼�
Z
ddy

�W½J�
�JðyÞ

�JðyÞ
��ðxÞ�

Z
ddy

�JðyÞ
��ðxÞ�ðyÞ�JðxÞ

¼�JðxÞ:
The scale-dependent generating functional is defined as

Zk½J� ¼ e�iWk½J� ¼ ei�Sk½�=�J�Z½J�
¼

Z
D’eiðS½’�þ

R
x
’Jþ�Sk½’�Þ

with

12The generating functional W of connected two-point func-
tions should not be confused with the super potential in the main
part.
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�Sk½�� ¼ 1

2

Z d4q

ð2�Þ4 ’ð�qÞRkðqÞ’ðqÞ:

Here, the momentum-dependent regulator function Rk pro-
vides an IR cutoff for all modes and has to satisfy three
conditions: (i) RkðpÞjp2=k2!0 > 0 which implements the IR

regularization, (ii) RkðpÞjk2=p2!0 ¼ 0 which ensures that

the regulator vanishes for k! 0, (iii) RkðpÞjk!�!1 ! 1
which ensures that the path integral is dominated by the
stationary point for k! �! 1. Different choices for Rk

define different RG trajectories manifesting the RG
scheme dependence, but the IR physics �k!0 ! � should
remain invariant provided the truncation captures all rele-
vant operators for the physical observables under inves-
tigation. In turn, a variation of the regulator function may
lead to more insight on the truncation dependence of our
results.

Next, we define the scale-dependent effective action:

�k½�� ¼ �Wk½J� �
Z

d4xJ���Sk½��:

In order to properly formulate the flow equations in
Minkowski-space we have to take k2 � p�p

� as flow

parameter. Therefore, we define @t ¼ 2k2@k2 to be the
derivative with respect to RG ’time’ t ¼ lnk2. Taking the
derivative of �k½�� with respect to t yields

@t�k½�� ¼ �@tWk½J� � @t
Z

d4xJ�� @t�Sk½��; (A1)

where we have used that the source is independent of k. For
the derivative of Wk we obtain

@tWk½J�¼i@t lnZ½J�

¼ i

Z½J�
Z
D’

i

2

Z ddq

ð2�Þd’@tRk’e
iðS½’�þ

R
x
’Jþ�Sk½’�Þ

¼� 1

2Z½J�
Z ddq

ð2�Þd@tRk

Z
D’’’

�eiðS½’�þ
R

x
’Jþ�Sk½’�Þ

¼ 1

2Z½J�
Z ddq

ð2�Þdð@tRkÞ�
2Z½J�
�J�J

:

Using the definition of the Schwinger functional, Zk½J� ¼
e�iWk , we find

@tWk½J� ¼ eiWk
1

2

Z ddq

ð2�Þd ð@tRkÞ�
2e�iWk

�J�J
: (A2)

Now we rewrite the integrand by making use of

�2e�iWk

�J�J
¼ �

�J
e�iWkð�iÞ�Wk

�J

¼ e�iWkð�iÞ�Wk

�J
ð�iÞ�Wk

�J
þ e�iWkð�iÞ�

2Wk

�J�J
;

then Eq. (A2) can be rewritten as follows:

@tWk½J� ¼ 1

2

Z ddq

ð2�Þd @tRk

�
��Wk

�J|{z}
��

�Wk

�J|{z}
��

�i �
2Wk

�J�J

�

¼ ��Sk � i

2

Z ddq

ð2�Þd @tRk

�2Wk

�J�J
:

With this relation the variation of the effective action
Eq. (A1) takes the form

@t�k½�� ¼ i

2

Z ddq

ð2�Þd ð@tRkÞ�
2Wk

�J�J
:

The second functional derivative of W with respect to the
source J can be written in terms of the effective action:

�2�k

����
¼ � �J

��
� Rk

) �J

��
¼ �

�
�2Wk

�J�J

��1 ¼ �� �2�k

����
þ Rk

�
: (A3)

Making use of

�ðq� q0Þ ¼ ��ðqÞ
��ðq0Þ ¼ �

�

��

�Wk

�J

¼ �
Z ddq

ð2�Þd
�2Wk

�J�J

�J

��
;

we obtain the Wetterich equation in Minkowski-Space:

@t�k½�� ¼ i

2
Tr

�
ð@tRkÞ

�
�2�k

����
þ Rk

��1�
: (A4)

APPENDIX B: DERIVATION OF THE FLOW
EQUATIONS AT FINITE TEMPERATURE

In order to preserve supersymmetry in the RG flow for
vanishing temperature, we must choose a regulator func-
tion which regularizes the theory in the timelike direction
and the spacelike directions in the same way. In order to
make apparent how soft SUSY-breaking due to finite tem-
perature emerges, we use the same regulator for our finite-
temperature and zero-temperature studies. It is given by:

r2 ¼
�
k

jpj � 1

�


�
p2

k2
� 1

�
; r1 ¼ 0:

In the LPA, the finite-temperature flow equations can be
obtained straightforwardly from the zero-temperature flow
equations by replacing p0 by the Matsubara modes 	n and
!n of fermion and boson fields, respectively, and replacing
the integration over p0 by a summation over the Matsubara
modes. The contribution of the bosons to the RG flow of
our Wess-Zumino model then reads:
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@kW
0
k ¼ W 000k T

X1
n¼�1

Z d2ps

8�2

� ðW
002
k � k2Þðk2 � p2

s �!2
nÞ

ðk2 þW 002k Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
s þ!2

n

p ;

where ps denotes the momenta in spacelike directions.
Along the lines of, e.g., [41], we use Poisson’s sum for-
mula,

X1
n¼�1

fðnÞ ¼ X1
‘¼�1

Z 1
�1

dqfðqÞ expð�2�i‘qÞ;

in order to obtain

@kW
0
k ¼ W 000k T

X1
‘¼�1

Z 1
�1

dq
Z d2ps

8�2

� ðW
002
k � k2Þðk2 � p2

s � ð2�qTÞ2Þ
ðk2 þW 002k Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
s þ ð2�qTÞ2

p e�2�iq‘:

For the computation of the three-dimensional integral, we
first substitute q0 ¼ 2�Tq and introduce spherical coordi-
nates

p1
s ¼ rcos# sin’; p2

s ¼ r sin# sin’; q0 ¼ rcos#:

Performing the angular integrations yields

@kW
0
k ¼ W 000k T

X1
‘¼�1

Z k

0

dr

8�2T

ðW 002k � k2Þ
ðk2 þW 002k Þ2

2T sinð‘rT Þ
‘

:

Finally, the integration over r leads to

@kW
0
k ¼

ðW 002k � k2ÞW 000k
8�2ðk2 þW 002k Þ2

2T2
X1

‘¼�1

1� cosð‘kT Þ
‘2

:

Since we made use of Poisson’s resummation formula to
rewrite the sum over the thermal modes, we are able to split
the flow equation into a zero-temperature and a finite-
temperature contribution:

@kW
0
k ¼

ðW 002k � k2ÞW 000k
8�2ðk2 þW 002k Þ2

�
k2 þ 4T2

X1
‘¼1

1� cosðk‘T Þ
‘2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gbosðTÞ

�
:

The contribution of the fermions to the RG flow of our
model can be obtained along the lines of our derivation of
the bosonic contribution and reads:

@kW
0
k ¼

ðW 002k � k2ÞW 000k
8�2ðk2 þW 002k Þ2

�
k2 þ 4T2

X1
‘¼1
ð�Þ‘ 1� cosðk‘T Þ

‘2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gfermðTÞ

�
:

Introducing the dimensionless temperature ~T ¼ T=k, the
functions gbosðTÞ and gfermðTÞ can be written in terms of
Polylogarithms:

gbosð ~TÞ ¼ 2

3
k2 ~T2½�2 � 3Li2ðe�i= ~TÞ � 3Li2ðei= ~TÞ�;

gfermð ~TÞ ¼ � 2

6
k2 ~T2½�2 þ 6Li2ð�e�i= ~TÞ þ 6Li2ð�ei= ~TÞ�:

Using the identity [42]

Li 2ð�zÞ þ Li2

�
� 1

z

�
¼ 2Li2ð�1Þ � 1

2
ln2ðzÞ

¼ ��2

6
� 1

2
ln2ðzÞ;

the function gbosðTÞ simplifies further to

gbosð ~TÞ ¼ ~T2½�2 þ ln2ð� expði= ~TÞÞ�
¼ �Tð�T � ð2sB þ 1Þ2�T þ ð2sB þ 1Þ2kÞ � k2;

(B1)

where we have used that

lnðexpði= ~T þ i�ÞÞ ¼ i
~T
� i�ð2sB þ 1Þ;

sB � 1

2� ~T
� sB þ 1) sB ¼

�
k

2�T

�
:

Similarly, exploiting the relation

lnðexpði= ~TÞÞ ¼ i
~T
� 2i�sF;

sF � 1

2
� 1

2� ~T
� sF þ 1

2
) sF ¼

�
k

2�T
þ 1

2

�
;

we end up with the result

gfermðTÞ ¼ �k2
�
1� sF

2�T

k

�
2

for the fermions. As expected, the functions gbosðTÞ and
gfermðTÞ exhibit the same behavior as the threshold func-
tions discussed in Ref. [25].

[1] K. Aoki, Int. J. Mod. Phys. B 14, 1249 (2000).
[2] Jurgen Berges, Nikolaos Tetradis, and Christof Wetterich,

Phys. Rep. 363, 223 (2002).
[3] Daniel F. Litim and Jan M. Pawlowski, arXiv:hep-th/

9901063.
[4] Jan M. Pawlowski, Ann. Phys. (N.Y.) 322, 2831 (2007).
[5] Holger Gies, arXiv:hep-ph/0611146.
[6] Hidenori Sonoda, arXiv:0710.1662.

N ¼ 1 WESS-ZUMINO MODEL IN d ¼ 3 AT . . . PHYSICAL REVIEW D 81, 125001 (2010)

125001-13

http://dx.doi.org/10.1142/S0217979200000923
http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://arXiv.org/abs/hep-th/9901063
http://arXiv.org/abs/hep-th/9901063
http://dx.doi.org/10.1016/j.aop.2007.01.007
http://arXiv.org/abs/hep-ph/0611146
http://arXiv.org/abs/0710.1662


[7] Janos Polonyi, Central Eur. J. Phys. 1, 1 (2003).
[8] Bertrand Delamotte, arXiv:cond-mat/0702365.
[9] F. Vian, arXiv:hep-th/9811055.
[10] M. Bonini and F. Vian, Nucl. Phys. B532, 473 (1998).
[11] Oliver J. Rosten, J. High Energy Phys. 03 (2010) 004.
[12] Hidenori Sonoda and Kayhan Ulker, Prog. Theor. Phys.

120, 197 (2008).
[13] Franziska Synatschke, Holger Gies, and Andreas Wipf,

Phys. Rev. D 80, 085007 (2009).
[14] Holger Gies, Franziska Synatschke, and Andreas Wipf,

Phys. Rev. D 80, 101701 (2009).
[15] Franziska Synatschke, Georg Bergner, Holger Gies, and

Andreas Wipf, J. High Energy Phys. 03 (2009) 028.
[16] N. Tetradis and C. Wetterich, Nucl. Phys. B422, 541

(1994).
[17] Daniel F. Litim, Nucl. Phys. B631, 128 (2002).
[18] Claude Bervillier, Andreas Juttner, and Daniel F. Litim,

Nucl. Phys. B783, 213 (2007).
[19] Jean Pierre Derendinger and Claudio Lucchesi, Nucl.

Phys. B536, 483 (1998).
[20] Ashok K. Das and Michio Kaku, Phys. Rev. D 18, 4540

(1978).
[21] L. Girardello, Marcus T. Grisaru, and P. Salomonson,

Nucl. Phys. B178, 331 (1981).
[22] Shoichi Midorikawa, Prog. Theor. Phys. 73, 1245 (1985).
[23] Detlev Buchholz and Izumi Ojima, Nucl. Phys. B498, 228

(1997).
[24] Daniel F. Litim, Phys. Lett. B 486, 92 (2000).
[25] Daniel F. Litim, Phys. Rev. D 64, 105007 (2001).
[26] Jens Braun and Holger Gies, J. High Energy Phys. 06

(2006) 024.
[27] Daniel F. Litim and Jan M. Pawlowski, J. High Energy

Phys. 11 (2006) 026.
[28] Jean-Paul Blaizot, Andreas Ipp, Ramon Mendez-Galain,

and Nicolas Wschebor, Nucl. Phys. A784, 376 (2007).
[29] Stefan Floerchinger, Michael Scherer, Sebastian Diehl,

and Christof Wetterich, Phys. Rev. B 78, 174528 (2008).
[30] Sebastian Diehl, Stefan Floerchinger, Holger Gies, Jan M.

Pawlowski, and Christof Wetterich, arXiv:0907.2193.
[31] Jens Braun, Phys. Rev. D 81, 016008 (2010).
[32] N. Tetradis and C. Wetterich, Nucl. Phys. B398, 659

(1993).
[33] O. Bohr, B. J. Schaefer, and J. Wambach, Int. J. Mod.

Phys. A 16, 3823 (2001).
[34] A. C. Lehum, Phys. Rev. D 77, 067701 (2008).
[35] Christof Wetterich, Phys. Lett. B 301, 90 (1993).
[36] Jurgen Berges and Gabriele Hoffmeister, Nucl. Phys.

B813, 383 (2009).
[37] D. F. Litim and J.M. Pawlowski, Phys. Lett. B 516, 197

(2001).
[38] F. Benitez, J. P. Blaizot, H. Chate, B. Delamotte, R.

Mendez-Galain, and N. Wschebor, Phys. Rev. E 80,
030103 (2009).

[39] Rui Neves, Yuri Kubyshin, and Robertus Potting, arXiv:
hep-th/9811151.

[40] G. Papp, B. J. Schaefer, H. J. Pirner, and J. Wambach,
Phys. Rev. D 61, 096002 (2000).

[41] Holger Gies, Phys. Rev. D 61, 085021 (2000).
[42] Leonard Lewin, Polylogarithms and Associated Functions

(North Holland, Amsterdam, 1981).

FRANZISKA SYNATSCHKE, JENS BRAUN, AND ANDREAS WIPF PHYSICAL REVIEW D 81, 125001 (2010)

125001-14

http://dx.doi.org/10.2478/BF02475552
http://arXiv.org/abs/cond-mat/0702365
http://arXiv.org/abs/hep-th/9811055
http://dx.doi.org/10.1016/S0550-3213(98)00458-1
http://dx.doi.org/10.1007/JHEP03(2010)004
http://dx.doi.org/10.1143/PTP.120.197
http://dx.doi.org/10.1143/PTP.120.197
http://dx.doi.org/10.1103/PhysRevD.80.085007
http://dx.doi.org/10.1103/PhysRevD.80.101701
http://dx.doi.org/10.1088/1126-6708/2009/03/028
http://dx.doi.org/10.1016/0550-3213(94)90446-4
http://dx.doi.org/10.1016/0550-3213(94)90446-4
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.036
http://dx.doi.org/10.1016/S0550-3213(98)00634-8
http://dx.doi.org/10.1016/S0550-3213(98)00634-8
http://dx.doi.org/10.1103/PhysRevD.18.4540
http://dx.doi.org/10.1103/PhysRevD.18.4540
http://dx.doi.org/10.1016/0550-3213(81)90412-0
http://dx.doi.org/10.1143/PTP.73.1245
http://dx.doi.org/10.1016/S0550-3213(97)00274-5
http://dx.doi.org/10.1016/S0550-3213(97)00274-5
http://dx.doi.org/10.1016/S0370-2693(00)00748-6
http://dx.doi.org/10.1103/PhysRevD.64.105007
http://dx.doi.org/10.1088/1126-6708/2006/06/024
http://dx.doi.org/10.1088/1126-6708/2006/06/024
http://dx.doi.org/10.1088/1126-6708/2006/06/024
http://dx.doi.org/10.1088/1126-6708/2006/06/024
http://dx.doi.org/10.1088/1126-6708/2006/06/024
http://dx.doi.org/10.1088/1126-6708/2006/11/026
http://dx.doi.org/10.1088/1126-6708/2006/11/026
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.139
http://dx.doi.org/10.1103/PhysRevB.78.174528
http://arXiv.org/abs/0907.2193
http://dx.doi.org/10.1103/PhysRevD.81.016008
http://dx.doi.org/10.1016/0550-3213(93)90608-R
http://dx.doi.org/10.1016/0550-3213(93)90608-R
http://dx.doi.org/10.1142/S0217751X0100502X
http://dx.doi.org/10.1142/S0217751X0100502X
http://dx.doi.org/10.1103/PhysRevD.77.067701
http://dx.doi.org/10.1016/0370-2693(93)90726-X
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.017
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.017
http://dx.doi.org/10.1016/S0370-2693(01)00922-4
http://dx.doi.org/10.1016/S0370-2693(01)00922-4
http://dx.doi.org/10.1103/PhysRevE.80.030103
http://dx.doi.org/10.1103/PhysRevE.80.030103
http://arXiv.org/abs/hep-th/9811151
http://arXiv.org/abs/hep-th/9811151
http://dx.doi.org/10.1103/PhysRevD.61.096002
http://dx.doi.org/10.1103/PhysRevD.61.085021

