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Are stealth scalar fields stable?
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Nongravitating (stealth) scalar fields associated with Minkowski space in scalar-tensor gravity are
examined. Analytical solutions for both nonminimally coupled scalar field theory and for Brans-Dicke
gravity are studied and their stability with respect to tensor perturbations is assessed using a covariant and
gauge-invariant formalism developed for alternative gravity. For Brans-Dicke solutions, the stability with
respect to homogeneous perturbations is also studied. There are regions of parameter space corresponding
to stability and other regions corresponding to instability.
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I. INTRODUCTION

It is a standard tenet of general relativity (GR) that
matter, energy, and stresses curve spacetime causing the
Riemann tensor to be nonvanishing. The flat Minkowski
space of special relativity corresponds to the absence of
gravity, but when matter configurations described by the
energy-momentum tensor T, are introduced in the con-
text of GR, spacetime becomes curved, as described by the
Einstein equations

R;U/ - %g,uVR = KT,U.V (1)

(where k = 87G, G is Newton’s constants, R, is the
Ricci tensor of the spacetime metric g,,, and
R = gt”R,,—we follow the notations of [1]).

The situation is somewhat different in theories of gravity
alternative to GR. Here we focus on various scalar-tensor
theories described by the general action in the Jordan frame
(2,3]

Sor = [/ wr - 2P v99,6 - Vi)

+ Stm), 2)

where S = f d4x\/—_g£(”’) is the matter action and ¢
and w are coupling functions of the Brans-Dicke-like
gravitational scalar field ¢ (a cosmological constant, if
present, is incorporated in the scalar field potential
V(¢)). In special cases one can find Minkowski solutions
resulting from the balance between matter and the Brans-
Dicke-like scalar field ¢ or, in vacuo, between different
parts of the effective energy-momentum tensor of ¢». When
the scalar field ¢ is constant, the theory effectively turns
into GR (with a cosmological constant if V(¢) # 0) and
solutions with constant ¢ are, therefore, trivial [4]. More
interesting are Minkowski solutions with time-dependent
scalar fields obtained as degenerate cases of Friedmann-
Lemaitre-Robertson-Walker (FLRW) classical solutions of
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Brans-Dicke gravity which we analyze in Sec. III. Analogs
of these Minkowski spaces are known in string cosmology
[6,7].

In all these examples, the scalar field is nontrivial but
recently, even more interesting solutions were found in
which an inhomogeneous, wavelike field does not gravitate
[8-14].

II. NON-MINIMALLY COUPLED STEALTH
FIELDS

Ayon-Beato et al. [8] found solutions for nonminimally
coupled (i.e., ¢ # 0) scalar fields in D spacetime dimen-
sions in the scalar-tensor theory

Snme = [de\/—_g[% <£ - §¢2)R
- %V“Wm - V(¢>)] 3)
where
V(g) = %[ A, 260/

+8(D = 1)(§ = £p)hagp VD] (4
if £ # 1/4 and

A A
V(¢)=—2¢2[21n¢+—1+D—1] (5)

2 Ay
if £ = 1/4 [8]. Here &, = #‘}1) is the coupling constant
corresponding to conformal invariance, and A, are

parameters.

The fields equations obtained from the variation of the
action (2) can be rewritten in the form of effective Einstein
equations G, = 870, and, by imposing that the effec-
tive stress-energy tensor of ¢ [15]

G);A,V = vu¢vv¢ - %g,u,vvad)vad) - Vg,uv
+ £(g,, 0 =V, V,)(4?) (6)

vanishes, the Minkowski metric 7 v is a solution with
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nontrivial scalar ¢. Contrary to the stress-energy tensor of
a minimally coupled scalar field in GR, the component
O, which is the energy density according to an observer
at rest in Minkoswki space, is not positive-definite because
of the second derivative terms on the right-hand side of
Eq. (6). These noncanonical terms linear in the second
derivatives of ¢ make the Minkowski solution possible:
the canonical terms of ®,, quadratic in the first order
derivatives of ¢ can be canceled by the noncanonical terms
containing second derivatives, which are responsible for
the well-known fact that nonminimally coupled scalar
fields can violate all of the energy conditions [16].

The various solutions proposed by Ayon-Beato et al. as
the parameters (&, Aj, A,) vary are summarized in the
following (we assume & # 0 in the following because
nongravitating solutions are impossible for & = 0).

() E# &p i M #0,4, <0

Ay A\ (@9)/(1-48)
=(Z2xpy — L 7
o= (Fx ) ™
assumlng /\1 < 0 for regularity [8].
(11) f:ﬁ fDa 4a :0
¢ = (kﬂx“)_((zf)/(l_“f)), ktk, = =Ml ()
(iii) € =¢p, A <0, =2, # O
a A\~ ((D=2))/(2))
&= (G5 5) ©)
assuming D > 2 and A; < 0 for regularity.
(IV) é‘: =z, /\2 * 0:
Ay Ay
¢ = exp(fx“x# — 2—)‘2) (10)
with

V(gp) = %¢2(21n¢ +%+ D — 1) (11)

(V) §:Z AZZO, )\l >0:
¢ = exp(k,x*), ktk, = Ay (12)

with V(¢) = % ¢? (this solution is tachyonic [8]).

These nongravitating or stealth solutions cannot be
detected gravitationally [17]. Similarly, a stealth scalar
field hovering above a BTZ black hole in 2 + 1 dimensions
and nongravitating, was found in [10]. Nongravitating
forms of matter defy intuition from GR and may be per-
ceived as curiosities. However, their behavior is exactly
what would be needed to cure the cosmological constant
problem, widely regarded as the most urgent problem of
theoretical physics [18]: the energy density of quantum
vacuum predicted with a straightforward, back-of-the-
envelope calculation using extremely well-established
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quantum mechanics is approximately 120 orders of mag-
nitude larger than the measured cosmological energy den-
sity. It is as if the cosmological constant, while being
present, does not gravitate. Therefore, it is interesting to
study forms of nongravitating matter with the hope of
learning something useful for the cosmological constant
problem. Moreover, nongravitating scalar fields are impos-
sible in GR and are found instead when scalar fields couple
nonminimally to gravity, which is an unavoidable feature
of string theories and higher order gravity theories inspired
by attempts to renormalize gravity (it suffices to think of
the dilaton of string theory [19,20], or of the scalar-tensor
representation of f(R) gravity [21,22].

It seems intuitive that the nongravitating scalars in
scalar-tensor theories are not “natural” solutions: one has
to pick a special potential V(¢) and tune the model pa-
rameters in specific ranges in order to produce these solu-
tions. As a consequence, one would suspect that these
solutions may be unstable with respect to small perturba-
tions and, therefore, unphysical for any practical purpose.
Finding stable stealth solutions would increase their
interest.

Unfortunately, the analysis of perturbations of these
solutions is not easy due to the fact that they suffer from
the well-known gauge-dependence problems associated
with inhomogeneous perturbations. In this paper we study
the stability of stealth solutions using the Bardeen-Ellis-
Bruni-Hwang covariant and gauge-invariant formalism de-
veloped for the analysis of cosmological perturbations in
alternative theories of gravity [23-25]. We make use of the
fact that the Minkowski space hosting stealth scalars is a
degenerate case of the spatially flat FLRW metric (but the
inhomogeneous scalar ¢ is nontrivial).

A general vacuum action for a mixed scalar-tensor/f (R)
gravity in the metric formalism is (in the following we set

D=4
X Gr v, ¢ — v<¢)]

5= fas
(13)

For this theory, the field equations for the spatially flat
FLRW universe with line element

w((b)

[f(fb R)

ds* = —di* + a*()(dx* + dy* +dz?) (1)

are
H? = ( ¢2+E—§+V—3HF) (15)
H= —%(w(iﬂ + F — HF), (16)
¢ +3HP + ( ¢¢2 jé 2d¢)=0, (17)

where H = a/a, F = 0f/dR, and an overdot denotes
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differentiation with respect to the comoving time ¢. In the
Bardeen-Ellis-Bruni-Hwang-Vishniac formalism [23-25]
the metric perturbations A, B, H;, and Hy are defined by

goo = —a*(1 + 2AY), (18)
goi = —a’BY,, (19)
gi; = a*[h;j(1 + 2H,) + 2H7Y,], (20)

where the scalar harmonics Y are the eigenfunctions of the
eigenvalue problem V,V'Y = —k?Y, h;; is the three-
dimensional metric of the FLRW background space, V;
is the covariant derivative operator of 4;;, and k is an
eigenvalue. The vector and tensor harmonics Y; and Y;;
are given by

1 -
Y, =—-V.Y, 21
i Vi (2D
and
1 - - 1

respectively. The Bardeen gauge-invariant potentials [23]
are

a .
(I) =H, + —+ B——H;) 23
Lt k( . T) (23)

a a . al. 1, .
b, =A+—-(B—-H;|+-|B—-(aHy) 24
A X ( X T) X [ X (a T)], (24)
and the Ellis-Bruni [24] variable is

so=se+id(B-TH) )
with similar relations defining the gauge-invariant varia-

bles Af, AF, and AR. To first order, the gauge-invariant
perturbations satisfy the (redundant) system [25]

si (e S5+ (S 5 (5 50)
v l 16) |0
— (D, — 3Dy) + 24 (gf; 23—;)
+ ﬁ aing AR, (26)
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2 R F 2 ..
AF+3HAF+(k —)AF+—AR+§w¢A¢

2 2 Of _ 44V
(95 a¢ )
= F(b, —3d,) + g(FR —2f +4V)D,, X))
F K2
<3H + F)HT +—Hy =0, (28)

: F 1 (AF AF .
— b, + <H+—)<I>A =§<——H—+%¢A¢),

2F F F
(29)
k\2 la).2 3 [?
(5) ‘I’H+§(f¢’ ze)q’A
113 FAF . k2 3HFI\AF
=§{§?+(3H7‘ 2 P Ress
2do 3f |
[d’ ¢ ad d¢
+6w¢(H+—)]A¢} (30)
AF
CDA + CDH = —7, 31D
b+ Hb, + (H+ )b, — b
H H ( ﬁ)( H A)
+i(f—2V—RF)<I>A
AF AF AF
2da) ﬂ_ d_) ]
#2400+ (9295 - 18 -2 a0 ] 62
and
2
AR=6[®H+4H¢H+%%¢H

2
-Hb, - <2H + 4H? — %)@A ] (33)
These equations simplify considerably in a Minkowski
background. However, due to the fact that the background
stealth scalar field is inhomogeneous and time-dependent,
solving the simplified equations for the coupled gauge-
invariant variables still constitutes a highly nontrivial
task. Fortunately, Eq. (28) for the tensor mode H; decou-
ples, to first order, from the remaining equations. In the
zero momentum limit kK — O one obtains the first integral
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L
Hr =3

where C is an integration constant and we have set
f(é, R) = ()R for scalar-tensor gravity. The nonmini-
mally coupled theory studied by [8] is, for all purposes, a
scalar-tensor gravity with ¢(¢) =1 — £¢? and w = 1.
The first integral of motion (34) allows one to draw con-
clusions about the time evolution of the tensor perturbation
Hy in this theory.

For £ # &p, %, A, # 0, and A; <0, the perturbation of
the solutions given by 7, and Eq. (7) obeys

. kC
1— énBx#x, + I2A_A12|]—<(4§>/(<1—4§>)>

(34)

H, (35)
where —4£/(1 — 4¢) is positive for £ <0 and for £ > 1/4
and negative otherwise, and Ayxtx, = —A > + Ayr?

where r = /x> + y? + z>. Therefore, if £€<0 or &>
1/4, Hy — 0 as t — +oo for any value of the constant C.

If 0<é&<1/4, Hr — kC and if C >0, the gauge-
invariant variable Hy grows linearly with time showing
an instability of the Ayon-Beato e al. solution, while it dies
offif C = 0. Since C is determined by the initial conditions
on Hy, which must be arbitrary, we conclude that this case
is unstable.

For & # &p, % and A, = 0, the relevant solution is 7,
with Eq. (8) and

o= kC
- K& (k )~ (8/1=48) "

(36)

If €<0or ¢>1/4, Hr— 0 as t — 400 corresponds
again to stability. If 0 < & < 1/4, then H; — «C, and we
obtain the same conclusions as in the previous cases.
For §=¢,=1/6in D=4, A, <0 and a # 0, the
solution is given by Eq. (9) and
Hoy= < (37)
L~ s, —anear

and H; — «C with instability if the initial conditions on
the perturbations are such that C > (. Again, we conclude
that this case is unstable.
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For ¢ = 4—1‘ and A, # 0, the relevant solution is given by
Eq. (10) and

kC
N

= (38)
1 — k&exp(Ayxtx, — /\—2)

Hy
If the parameter A, is positive, then H; — kxC as t — +00
and there is an instability if C > 0 while, if A, <O then
H; — 0 for any value of C and the solution is stable
irrespective of the initial conditions which determine the
value of C.
For £ = 1/4, A, = 0 and A, > 0, the solution given by
Eq. (12) yields

B kC
1 — £exp(2k, x*)

Hr (39)
and, again, H; — «C with an instability if C > 0; since the
initial conditions must be arbitrary, this case is also un-

stable. The conditions for the stability of nonminimally
coupled stealth fields are summarized in Table I.

ITII. NONGRAVITATING BRANS-DICKE
SOLUTIONS WITH NONCONSTANT SCALAR
FIELD

Another class of solutions of scalar-tensor theories ex-
hibiting the gravitational Cheshire effect is known in
Brans-Dicke gravity. These solutions include degenerate
cases of classical solutions of Brans-Dicke cosmology and
also recent solutions found by Robinson [9]. The action is
given by Eq. (13) with f(¢, R) = ¢R and @ = const.

A. A nongravitating Nariai solution

The Nariai solution of Brans-Dicke theory [26-28] cor-
responds to a perfect fluid with constant equation of state
P = (y — 1)p (with y = const) and is given by the spa-
tially flat FLRW metric (14) with V(¢) = V,, = const,

a(t) = ag(1 + Ap)9, (40)

do(t) = (1 + A1), 41)

TABLE I. A summary of the stability analysis of the Minkowski spacetime solutions with nonminimally coupled stealth scalar fields.
£ M A Stability
EF+&p. E<Oor &>4 any A #F0 stable
E#F&p, 0< ¢ <% any Ay #0 unstable
EF¢ép E<Oor é>4 any A=0 stable

£+ Ep, 0< €< any A =0 unstable
E=¢p A <0 any unstable (a # 0)
&= % any Ay >0 unstable
&= }1 any A <0 stable
£=1 A, > 0 unphysical A =0 unstable
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w2 -y) +1]

3wy —y) +4’ “42)
_ 2(4 — 3y)
B B3wy2 —y) +4’ “3)
p = po(l + A)~374 (44)

where a, A, ¢., and p, are constants and s + 3yqg = 2.
The special case y = 0 corresponds to the cosmological
constant (treated as a perfect fluid) and shows that the
natural cosmological solution of Brans-Dicke gravity
with only a cosmological constant is not de Sitter space,
but a power-law expanding universe. Historically, this
feature was the foundation of the extended and hyperex-
tended inflationary scenarios ([29], see also [30]). For y =
0 and @ = —1/2 one obtains Minkowski space with

bo(0) = ¢.(1 + A1), (45)

and A = 8;2;/0 > (. A stealth Brans-Dicke field cancels

the cosmological constant and provides flat spacetime.

Applying Eq. (34) to this case, we have
o — C

T .1+ A

a = const,

(46)

which vanishes asymptotically as t — + oo for any value of
the integration constant C, leading to stability of this
Minkowski space with respect to tensor perturbations.

In this case, since the unperturbed scalar field ¢ (7) is
homogeneous, it is meaningful to consider also homoge-
neous perturbations of this Minkowski space. By assuming
that

H(t) = 8H(1), d(1) = ¢o(1) + 6¢(1) 47)

and using the Brans-Dicke field equations for a spatially
flat FLRW metric

=50 0 0)
(48)

é +3HP = qs— + 2v> (49)

1
2w+3< dé

one obtains the first order evolution equations for the
homogeneous perturbations

ot =[5 (52 + o los + 5 rad +25tan

(50

8¢ + 3dy6H = 0. (51)
The use of Egs. (50) and (45) in Eq. (51) yields
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56 - (1 ?At)'s‘ﬁ i (%)Bd’

3A(Vo — 4X%¢.)
¢.(1 + Ar)?

8¢ = 0. (52)

The power-law ansatz
Sp(t) = 5o(1 + Ap)* (53)

(with &, and s constants) yields the algebraic cubic equa-
tion

o(s) = 5° — 857 + 135 + 3(;(‘; - 4) —=0. (54

«

Remembering that the roots of the cubic equation ax® +
bx*> + cx + d = 0 are given by

ro= a1/3 _ ,81/3, (55)
ry = a1/3@m)/Q) — B(1/3) p(4m)/G)), (56)
ry = a(1/3) p((47i)/(3)) B(1/3)e((2”i)/(3)), (57)
where
—qg + VA —g — VA
a= qi\/_’ 8= qi\/_y (58)
2 2
A =4p’ + 4* (59)
is the discriminant, and
3ac — b?
=——| 60
P o (60)

b3 — 9abc + 27a%d
2743 ’

q

it is easily seen that

(61)
A= %72{62500 + [ 88 + 81(45‘:)\2 4)]2} (62)

is positive. This fact implies that Eq. (54) admits only one
real root and two complex conjugate ones. The real root

=814
+ \/62500 + [ 88 + 81(¢‘:0 - 4)]2}1/3
- 3_17{[88 = 81((;/)t2 4)]

_ \/62500 + [ 88 + 81(¢V/\2 4)]2}1/3 (63)

is positive, hence the mode 8¢ = 5y(1 + Ar)"1 grows
without bound as t — +o0. Technically speaking, the per-
turbed solution (H, ¢) “runs away”’ from the unperturbed
space (0, ¢¢), but one should ask instead whether the
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perturbations destroy the Minkowski space, or whether the
latter remains Minkowskian. To answer this question, con-
sider

_5(25__}’1(}’1—1))\2 =3

The perturbed Hubble parameter 6 H decays if r; < 3 and
stays constant if 7| > 3. The polynomial

O0H =

o(s) = s> —8s2 + 135 + 3(—);(; - 4) (65)

crosses the s-axis only at s = r; and, since ¢(3) =

3()‘:/(‘/‘)* —6), it is r; <3 when ¢(3) >0, or V, > 6A%¢,;
r, =3 for V=06A%¢,, and r; >3 when V, < 6A%¢,.
Therefore, the mode 6| = 5y(1 + At)" is stable (in the
sense that the solution remains nongravitating) for V; =
6A% ¢, and unstable otherwise.

We still need to assess the stability of the other two
modes corresponding to the roots r, 3 of Eq. (54).

The real part of the roots r,3, which determines the

growing or decaying behavior of (1 + Af)2373, is

r

Re(ry) = Re(rs) = %(ﬁ“ —alf)=—= (66)
and we need to assess whether Re(ry) = Re(rs) is less
than or equal to 3 in the region of parameter space in which
the mode &8¢, is stable. Note that ¢(—6) >0, which
corresponds to r; < —6 and Re(r,) = Re(rs) > 3 corre-
sponds to V> 198A%¢., hence the modes 8¢,z =
So(1 + Ar)"» are unstable for this range of parameters,
and stable otherwise.

Putting together the previous considerations for all the
independent modes 8¢ 3, one obtains that the solution
(H, ¢) = (0, @) is linearly stable (in the sense that the
solution remains nongravitating) for

672, = Vo = 198A2¢,; (67)

outside of this parameter range perturbations grow without
bound destroying Minkowski space.

B. Minkowski spaces with exponential scalar fields

The phase plane (H, ¢) of spatially flat FLRW cosmol-
ogy with [31] V(¢p) = A¢ was studied in [34]. Two de
Sitter fixed points are always present in the phase plane:

2A
Qw +3)Bw + 4)t

a (1) = agy exp[i(a) + l)\/ ] (68)

2A
) = do eXp[ \/(2w +3)(3w + 4) ] .
These solutions were found in [34-36]. For « = —1 one
obtains [37] Minkowski space with an exponentially ex-
panding/contracting scalar field
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b (1) = poexp(=V2A7).  (70)

a(i) = 1,
Equation (34) yields
C
bo

Since ¢y > 0 in order to keep the gravitational coupling
positive, for ¢, (1), Hy tends to zero as t — +oo for any
choice of initial conditions corresponding to stability. For
¢ _(1), instead, H; diverges, corresponding to instability.

One can give a physical interpretation of this result: the
effective gravitational coupling G ~ 1/¢ decreases in
the first case and increases in the second one. If Gy
increases and diverges with time, any gravitational pertur-
bation of Minkowski space will become stronger, making
the deviation from flatness more pronounced, in a positive
feedback mechanism. If instead G tends to zero as time
progresses, the effect of perturbations from flatness be-
come less and less pronounced, contributing to stability.

Again, it is easy to study homogeneous perturbations of
the solution (70): Egs. (47)—(49) now yield the evolution
equations for the perturbations (8H(+), 8 (+))

Hy=— exp[TV2A1]. (71)

) (¢(i))2 (ﬁ(t) )
SH() = = — (55000 T — 15 9
(o) (¢ )
i(*)
+ 205 8H ), (72)
G
8Py + 3 OH ) = Ao+ (73)

By using Eq. (73) in Eq. (72), one obtains

8y — d 95 8de) +|3 L2 SN 5¢
(£) d-)gt) ¢E)t) (%) ¢E)i) (%)

7 (+) EIN i (£)
+[A 0 —3( °+) +2A 7% ]5¢(i)=o, (74)
dy” \el b5

0
and the further use of Eq. (70) yields
8H(e) T 3V2A8P(s) + 5=y T 3AV2A8H() = 0.
(75)
The associated algebraic equation
@()(s) = 53 F3V2A82 + 5As + ¢ T 3AV2A =0 (76)
has discriminant
Ay =4p> + > =32A3 >0 (77)

and therefore Eq. (76) admits one real root r; and two
complex conjugate roots ry, r,. Since

—g + VA 53
Q(x) = AR L 5 VA = A3/2<i\/5 + 2—7) (78)
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—qg — VA 53

the real root (for each of the upper/lower sign solutions) is

(+) _ 1/3 _ ,81/3

1 ®+) T P
1/3 1/3
- JK[(JE + \/%) + (\/% - \/5) ] (80)
- 3
= el - Bl

_ \/K[(\/% - \/5)1/3 + (J% + \/5)1/3]. 81)

Since r(li)>0, the corresponding mode 8¢(1i) =

do exp(r(lt)t) grows away from ¢(()t) without bound.
However, we want to know if the spacetime remains
Minkowskian or not, which is obtained by considering

AS(+) — 8¢+
3

(A — r(zi))
3¢.2A

We want to know whether r(.) = +2A [rather than r(+)] is

positive. It is easy to see that the inequality r(1+) —2A >
0 is never satisfied, hence this mode is always stable (in the
sense that the solution remains nongravitating), while the
inequality r(l_) + +/2A > 0 can never be satisfied, and this
mode is unstable, therefore the solution (H, ¢) = (0, ¢§;))
is unstable. It remains to check the other two perturbation
modes for the (0, <Z>(()+)) solution when 5H(1+) is stable.

The complex conjugate roots r,, r; of the algebraic
equation ¢4)(s) = 0 have real part

SH®) =

Soexpl(r) \/EK)I] (82)

(+)

Re(h") = Rerl") = 3 (817 — at/) = "1 (83)
and the inequality

Re(rys)) — V2A >0 (84)

is never satisfied, hence also the perturbations

(SHS;), 8(1)(2;)) do not gravitate and the space (0, ¢8+))
remains a nongravitating solution of the Brans-Dicke field
equations.

C. Robinson’s solutions of Brans-Dicke gravity

Robinson [9] has considered Minkowski space solutions
of the coupled Brans-Dicke-Maxwell equations with non-
trivial scalar field. Even simpler are the solutions without
electromagnetic field, given by the metric 7, and

(clu + 02)1/(‘00‘*1)’ w #* —1

85
explciu + ¢y), w=—1, (85)

olu) = {
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where u = (f — x)/~/2 is the usual retarded coordinate in
Minkowski space and c¢;, ¢, are integration constants
(which assume the role of parameters in the unperturbed
solution). Applying again Eq. (34) one obtains, for w #

bl

Cc

Hr= (cyu + cy) /@)’

(86)

It is easy to see that, if @ > —1, H; — 0 as t — +o0
irrespective of the initial conditions (i.e., of the value of
() and of the sign of ¢y, corresponding to stability.

If instead @ < —1, then H; — +00 (unless C = 0) and
there is instability.

For w = —1, tensor mode perturbations obey

Cc

- . 7
exp(ciu + ¢;)’ (87)

T

as t— +oo, also u — +o0 and Hy grows if the initial
conditions are such that C > 0, therefore this solution is
unstable.

IV. CONCLUSIONS

Nongravitating matter is interesting in principle because
it could potentially teach us lessons of some relevance for
the cosmological constant problem [18]. The linear stabil-
ity of stealth solutions with respect to small tensor pertur-
bations, analyzed in a covariant and gauge-invariant way
is, therefore, physically interesting. The solution of the full
system of differential equations for the gauge-invariant
perturbations is, in general, a daunting task. However, the
equation for the tensor mode Hy is very simple and de-
couples from the other equations (to first order). While one
would expect stealth solutions to be contrived and ex-
tremely unstable, instability with respect to tensor modes
shows up only in certain regions of the parameter space,
while there are regions corresponding to stability. Table I
summarizes the situation for nonminimally coupled stealth
scalar fields. Similarly, nongravitating scalar fields in
Brans-Dicke theory show regions of stability in their pa-
rameter spaces. For these solutions it was possible to
analyze also the stability with respect to homogeneous
perturbations.

Our results should be regarded as preliminary; one
should still assess stability with respect to scalar perturba-
tions, and stability to order higher than linear in order to
draw more definitive conclusions. At the moment, there is
hope to find stable stealth fields.
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