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(Received 4 June 2010; published 28 June 2010)

Nongravitating (stealth) scalar fields associated with Minkowski space in scalar-tensor gravity are

examined. Analytical solutions for both nonminimally coupled scalar field theory and for Brans-Dicke

gravity are studied and their stability with respect to tensor perturbations is assessed using a covariant and

gauge-invariant formalism developed for alternative gravity. For Brans-Dicke solutions, the stability with

respect to homogeneous perturbations is also studied. There are regions of parameter space corresponding

to stability and other regions corresponding to instability.
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I. INTRODUCTION

It is a standard tenet of general relativity (GR) that
matter, energy, and stresses curve spacetime causing the
Riemann tensor to be nonvanishing. The flat Minkowski
space of special relativity corresponds to the absence of
gravity, but when matter configurations described by the
energy-momentum tensor T�� are introduced in the con-

text of GR, spacetime becomes curved, as described by the
Einstein equations

R�� � 1
2g��R ¼ �T�� (1)

(where � � 8�G, G is Newton’s constants, R�� is the

Ricci tensor of the spacetime metric g��, and

R � g��R��—we follow the notations of [1]).

The situation is somewhat different in theories of gravity
alternative to GR. Here we focus on various scalar-tensor
theories described by the general action in the Jordan frame
[2,3]

SST ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
c ð�ÞR�!ð�Þ

2
r��r��� Vð�Þ

�
þ SðmÞ; (2)

where SðmÞ ¼ R
d4x

ffiffiffiffiffiffiffi�g
p

LðmÞ is the matter action and c
and ! are coupling functions of the Brans-Dicke-like
gravitational scalar field � (a cosmological constant, if
present, is incorporated in the scalar field potential
Vð�Þ). In special cases one can find Minkowski solutions
resulting from the balance between matter and the Brans-
Dicke-like scalar field � or, in vacuo, between different
parts of the effective energy-momentum tensor of�. When
the scalar field � is constant, the theory effectively turns
into GR (with a cosmological constant if Vð�Þ � 0) and
solutions with constant � are, therefore, trivial [4]. More
interesting are Minkowski solutions with time-dependent
scalar fields obtained as degenerate cases of Friedmann-
Lemaitre-Robertson-Walker (FLRW) classical solutions of

Brans-Dicke gravity which we analyze in Sec. III. Analogs
of these Minkowski spaces are known in string cosmology
[6,7].
In all these examples, the scalar field is nontrivial but

recently, even more interesting solutions were found in
which an inhomogeneous, wavelike field does not gravitate
[8–14].

II. NON-MINIMALLY COUPLED STEALTH
FIELDS

Ayón-Beato et al. [8] found solutions for nonminimally
coupled (i.e., � � 0) scalar fields in D spacetime dimen-
sions in the scalar-tensor theory

SNMC ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p �
1

2

�
1

�
� ��2

�
R

� 1

2
r��r��� Vð�Þ

�
(3)

where

Vð�Þ ¼ 2�2

ð1� 4�Þ2 ½�1�
ððð1�2�ÞÞ=ð�ÞÞ

þ 8ðD� 1Þð�� �DÞ�2�
ðð1Þ=ð2�ÞÞ� (4)

if � � 1=4 and

Vð�Þ ¼ �2

2
�2

�
2 ln�þ �1

�2

þD� 1

�
(5)

if � ¼ 1=4 [8]. Here �D � D�2
4ðD�1Þ is the coupling constant

corresponding to conformal invariance, and �1;2 are

parameters.
The fields equations obtained from the variation of the

action (2) can be rewritten in the form of effective Einstein
equations G�� ¼ 8���� and, by imposing that the effec-

tive stress-energy tensor of � [15]

��� � r��r��� 1
2g��r��r��� Vg��

þ �ðg��h�r�r�Þð�2Þ (6)

vanishes, the Minkowski metric 	�� is a solution with
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nontrivial scalar �. Contrary to the stress-energy tensor of
a minimally coupled scalar field in GR, the component
�00, which is the energy density according to an observer
at rest in Minkoswki space, is not positive-definite because
of the second derivative terms on the right-hand side of
Eq. (6). These noncanonical terms linear in the second
derivatives of � make the Minkowski solution possible:
the canonical terms of ��� quadratic in the first order

derivatives of� can be canceled by the noncanonical terms
containing second derivatives, which are responsible for
the well-known fact that nonminimally coupled scalar
fields can violate all of the energy conditions [16].

The various solutions proposed by Ayón-Beato et al. as
the parameters ð�; �1; �2Þ vary are summarized in the
following (we assume � � 0 in the following because
nongravitating solutions are impossible for � ¼ 0).

(i) � � �D,
1
4 ; �2 � 0, �1 < 0:

� ¼
�
�2

2
x�x� � �1

2�2

��ðð2�Þ=ð1�4�ÞÞ
(7)

assuming �1 < 0 for regularity [8].
(ii) � � �D,

1
4 ; �2 ¼ 0:

� ¼ ðk�x�Þ�ðð2�Þ=ð1�4�ÞÞ; k�k� ¼ �j�1j: (8)

(iii) � ¼ �D, �1 < 0, � � �2 � 0:

� ¼
�
�

2
x�x� � �1

2�

��ðððD�2ÞÞ=ð2ÞÞ
(9)

assuming D> 2 and �1 < 0 for regularity.
(iv) � ¼ 1

4 , �2 � 0:

� ¼ exp

�
�2

2
x�x� � �1

2�2

�
; (10)

with

Vð�Þ ¼ �2

2
�2

�
2 ln�þ �1

�2

þD� 1

�
(11)

(v) � ¼ 1
4 , �2 ¼ 0, �1 > 0:

� ¼ expðk�x�Þ; k�k� ¼ �1 (12)

with Vð�Þ ¼ �1

2 �
2 (this solution is tachyonic [8]).

These nongravitating or stealth solutions cannot be
detected gravitationally [17]. Similarly, a stealth scalar
field hovering above a BTZ black hole in 2þ 1 dimensions
and nongravitating, was found in [10]. Nongravitating
forms of matter defy intuition from GR and may be per-
ceived as curiosities. However, their behavior is exactly
what would be needed to cure the cosmological constant
problem, widely regarded as the most urgent problem of
theoretical physics [18]: the energy density of quantum
vacuum predicted with a straightforward, back-of-the-
envelope calculation using extremely well-established

quantum mechanics is approximately 120 orders of mag-
nitude larger than the measured cosmological energy den-
sity. It is as if the cosmological constant, while being
present, does not gravitate. Therefore, it is interesting to
study forms of nongravitating matter with the hope of
learning something useful for the cosmological constant
problem. Moreover, nongravitating scalar fields are impos-
sible in GR and are found instead when scalar fields couple
nonminimally to gravity, which is an unavoidable feature
of string theories and higher order gravity theories inspired
by attempts to renormalize gravity (it suffices to think of
the dilaton of string theory [19,20], or of the scalar-tensor
representation of fðRÞ gravity [21,22].
It seems intuitive that the nongravitating scalars in

scalar-tensor theories are not ‘‘natural’’ solutions: one has
to pick a special potential Vð�Þ and tune the model pa-
rameters in specific ranges in order to produce these solu-
tions. As a consequence, one would suspect that these
solutions may be unstable with respect to small perturba-
tions and, therefore, unphysical for any practical purpose.
Finding stable stealth solutions would increase their
interest.
Unfortunately, the analysis of perturbations of these

solutions is not easy due to the fact that they suffer from
the well-known gauge-dependence problems associated
with inhomogeneous perturbations. In this paper we study
the stability of stealth solutions using the Bardeen-Ellis-
Bruni-Hwang covariant and gauge-invariant formalism de-
veloped for the analysis of cosmological perturbations in
alternative theories of gravity [23–25]. We make use of the
fact that the Minkowski space hosting stealth scalars is a
degenerate case of the spatially flat FLRW metric (but the
inhomogeneous scalar � is nontrivial).
A general vacuum action for a mixed scalar-tensor/fðRÞ

gravity in the metric formalism is (in the following we set
D ¼ 4)

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
fð�;RÞ

2
�!ð�Þ

2
r��r��� Vð�Þ

�
:

(13)

For this theory, the field equations for the spatially flat
FLRW universe with line element

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ (14)

are

H2 ¼ 1

3F

�
!

2
_�2 þ RF

2
� f

2
þ V � 3H _F

�
; (15)

_H ¼ � 1

2F
ð! _�2 þ €F�H _FÞ; (16)

€�þ 3H _�þ 1

2!

�
d!

d�
_�2 � @f

@�
þ 2

dV

d�

�
¼ 0; (17)

where H � _a=a, F � @f=@R, and an overdot denotes
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differentiation with respect to the comoving time t. In the
Bardeen-Ellis-Bruni-Hwang-Vishniac formalism [23–25]
the metric perturbations A, B, HL, and HT are defined by

g00 ¼ �a2ð1þ 2AYÞ; (18)

g0i ¼ �a2BYi; (19)

gij ¼ a2½hijð1þ 2HLÞ þ 2HTYij�; (20)

where the scalar harmonics Y are the eigenfunctions of the

eigenvalue problem �ri
�riY ¼ �k2Y, hij is the three-

dimensional metric of the FLRW background space, �ri

is the covariant derivative operator of hij, and k is an

eigenvalue. The vector and tensor harmonics Yi and Yij

are given by

Yi ¼ � 1

k
�riY; (21)

and

Yij ¼ 1

k2
�ri

�rjY þ 1

3
Yhij; (22)

respectively. The Bardeen gauge-invariant potentials [23]
are

�H ¼ HL þHT

3
þ _a

k

�
B� a

k
_HT

�
; (23)

�A ¼ Aþ _a

k

�
B� a

k
_HT

�
þ a

k

�
_B� 1

k
ða _HTÞ_

�
; (24)

and the Ellis-Bruni [24] variable is

4� ¼ 
�þ a

k
_�

�
B� a

k
_HT

�
; (25)

with similar relations defining the gauge-invariant varia-
bles 4f, 4F, and 4R. To first order, the gauge-invariant
perturbations satisfy the (redundant) system [25]

� €�þ
�
3H þ

_�

!

d!

d�

�
� _�þ

�
k2

a2
þ

_�2

2

d

d�

�
1

!

d!

d�

�

� d

d�

�
1

2!

@f

@�
� 1

!

dV

d�

��
��

¼ _�ð _�A � 3 _�HÞ þ�A

!

�
@f

@�
� 2

dV

d�

�

þ 1

2!

@2f

@�@R
�R; (26)

� €Fþ 3H� _Fþ
�
k2

a2
� R

3

�
�Fþ F

3
�Rþ 2

3
! _�� _�

þ 1

3

�
_�2 d!

d�
þ 2

@f

@�
� 4

dV

d�

�
��

¼ _Fð _�A � 3 _�HÞ þ 2

3
ðFR� 2fþ 4VÞ�A; (27)

€H T þ
�
3H þ _F

F

�
_HT þ k2

a2
HT ¼ 0; (28)

� _�H þ
�
H þ _F

2F

�
�A ¼ 1

2

�
� _F

F
�H

�F

F
þ!

F
_���

�
;

(29)

�
k

a

�
2
�H þ 1

2

�
!

F
_�2 þ 3

2

_F2

F2

�
�A

¼ 1

2

�
3

2

_F� _F

F2
þ

�
3 _H� k2

a2
� 3H

2

_F

F

�
�F

F
þ!

F
_�� _�

þ 1

2F

�
_�2 d!

d�
� @f

@�
þ 2

dV

d�

þ 6! _�

�
Hþ _F

2F

��
��

�
; (30)

�A þ�H ¼ ��F

F
; (31)

€�H þH _�H þ
�
H þ _F

2F

�
ð2 _�H � _�AÞ

þ 1

2F
ðf� 2V � RFÞ�A

¼ � 1

2

�
� €F

F
þ 2H

� _F

F
þ ðP� �Þ�F

2F

þ!

F
_�� _�þ 1

2F

�
_�2 d!

d�
þ @f

@�
� 2

dV

d�

�
��

�
; (32)

and

�R ¼ 6

�
€�H þ 4H _�H þ 2

3

k2

a2
�H

�H _�A �
�
2 _H þ 4H2 � k2

3a2

�
�A

�
: (33)

These equations simplify considerably in a Minkowski
background. However, due to the fact that the background
stealth scalar field is inhomogeneous and time-dependent,
solving the simplified equations for the coupled gauge-
invariant variables still constitutes a highly nontrivial
task. Fortunately, Eq. (28) for the tensor mode HT decou-
ples, to first order, from the remaining equations. In the
zero momentum limit k ! 0 one obtains the first integral
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_H T ¼ C

c ð�Þ (34)

where C is an integration constant and we have set
fð�;RÞ � c ð�ÞR for scalar-tensor gravity. The nonmini-
mally coupled theory studied by [8] is, for all purposes, a
scalar-tensor gravity with c ð�Þ ¼ 1

� � ��2 and ! ¼ 1.

The first integral of motion (34) allows one to draw con-
clusions about the time evolution of the tensor perturbation
HT in this theory.

For � � �D,
1
4 , �2 � 0, and �1 < 0, the perturbation of

the solutions given by 	�� and Eq. (7) obeys

_H T ¼ �C

1� ��½�2

2 x
�x� þ j�1j

2�2
��ðð4�Þ=ðð1�4�ÞÞÞ (35)

where�4�=ð1� 4�Þ is positive for � < 0 and for � > 1=4
and negative otherwise, and �2x

�x� ¼ ��2t
2 þ �2r

2

where r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Therefore, if � < 0 or � >

1=4, _HT ! 0 as t ! þ1 for any value of the constant C.
If 0< �< 1=4, _HT ! �C and if C> 0, the gauge-

invariant variable HT grows linearly with time showing
an instability of the Ayón-Beato et al. solution, while it dies
off ifC � 0. SinceC is determined by the initial conditions
on _HT , which must be arbitrary, we conclude that this case
is unstable.

For � � �D,
1
4 and �2 ¼ 0, the relevant solution is 	��

with Eq. (8) and

_H T ¼ �C

1� ��ðk�x�Þ�ðð4�Þ=ð1�4�ÞÞ : (36)

If � < 0 or � > 1=4, _HT ! 0 as t ! þ1 corresponds
again to stability. If 0< �< 1=4, then _HT ! �C, and we
obtain the same conclusions as in the previous cases.

For � ¼ �D ¼ 1=6 in D ¼ 4, �1 < 0 and � � 0, the
solution is given by Eq. (9) and

_H T ¼ �C

1� ��
ðð�=2Þx�x��ðð�1Þ=ð2�ÞÞÞ2

(37)

and _HT ! �C with instability if the initial conditions on
the perturbations are such that C> 0. Again, we conclude
that this case is unstable.

For � ¼ 1
4 and �2 � 0, the relevant solution is given by

Eq. (10) and

_H T ¼ �C

1� �� expð�2x
�x� � �1

�2
Þ : (38)

If the parameter �2 is positive, then _HT ! �C as t ! þ1
and there is an instability if C> 0 while, if �2 < 0 then
_HT ! 0 for any value of C and the solution is stable
irrespective of the initial conditions which determine the
value of C.
For � ¼ 1=4, �2 ¼ 0 and �1 > 0, the solution given by

Eq. (12) yields

_H T ¼ �C

1� � expð2k�x�Þ (39)

and, again, _HT ! �Cwith an instability ifC> 0; since the
initial conditions must be arbitrary, this case is also un-
stable. The conditions for the stability of nonminimally
coupled stealth fields are summarized in Table I.

III. NONGRAVITATING BRANS-DICKE
SOLUTIONS WITH NONCONSTANT SCALAR

FIELD

Another class of solutions of scalar-tensor theories ex-
hibiting the gravitational Cheshire effect is known in
Brans-Dicke gravity. These solutions include degenerate
cases of classical solutions of Brans-Dicke cosmology and
also recent solutions found by Robinson [9]. The action is
given by Eq. (13) with fð�;RÞ ¼ �R and ! ¼ const.

A. A nongravitating Nariai solution

The Nariai solution of Brans-Dicke theory [26–28] cor-
responds to a perfect fluid with constant equation of state
P ¼ ð�� 1Þ� (with � ¼ const) and is given by the spa-
tially flat FLRW metric (14) with Vð�Þ � V0 ¼ const,

aðtÞ ¼ a0ð1þ �tÞq; (40)

�0ðtÞ ¼ ��ð1þ �tÞs; (41)

TABLE I. A summary of the stability analysis of the Minkowski spacetime solutions with nonminimally coupled stealth scalar fields.

� �1 �2 Stability

� � �D, � < 0 or � > 1
4 any �2 � 0 stable

� � �D, 0< �< 1
4 any �2 � 0 unstable

� � �D, � < 0 or � > 1
4 any �2 ¼ 0 stable

� � �D, 0< �< 1
4 any �2 ¼ 0 unstable

� ¼ �D �1 < 0 any unstable (� � 0)
� ¼ 1

4 any �2 > 0 unstable

� ¼ 1
4 any �2 < 0 stable

� ¼ 1
4 �1 > 0 unphysical �2 ¼ 0 unstable
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q ¼ 2½!ð2� �Þ þ 1�
3!�ð2� �Þ þ 4

; (42)

s ¼ 2ð4� 3�Þ
3!�ð2� �Þ þ 4

; (43)

� ¼ �0ð1þ �tÞ�3�q (44)

where a0, �, ��, and �0 are constants and sþ 3�q ¼ 2.
The special case � ¼ 0 corresponds to the cosmological
constant (treated as a perfect fluid) and shows that the
natural cosmological solution of Brans-Dicke gravity
with only a cosmological constant is not de Sitter space,
but a power-law expanding universe. Historically, this
feature was the foundation of the extended and hyperex-
tended inflationary scenarios ([29], see also [30]). For � ¼
0 and ! ¼ �1=2 one obtains Minkowski space with

a ¼ const; �0ðtÞ ¼ ��ð1þ �tÞ2; (45)

and � ¼
ffiffiffiffiffiffiffiffiffi
8�V0

�2�

q
> 0. A stealth Brans-Dicke field cancels

the cosmological constant and provides flat spacetime.
Applying Eq. (34) to this case, we have

_H T ¼ C

��ð1þ �tÞ2 ; (46)

which vanishes asymptotically as t ! þ1 for any value of
the integration constant C, leading to stability of this
Minkowski space with respect to tensor perturbations.

In this case, since the unperturbed scalar field �0ðtÞ is
homogeneous, it is meaningful to consider also homoge-
neous perturbations of this Minkowski space. By assuming
that

HðtÞ ¼ 
HðtÞ; �ðtÞ ¼ �0ðtÞ þ 
�ðtÞ (47)

and using the Brans-Dicke field equations for a spatially
flat FLRW metric

_H ¼ �!

2

� _�

�

�
2 þ 2H

_�

�
þ 1

2ð2!þ 3Þ�
�
�
dV

d�
� 2V

�
;

(48)

€�þ 3H _� ¼ 1

2!þ 3

�
��

dV

d�
þ 2V

�
; (49)

one obtains the first order evolution equations for the
homogeneous perturbations


 _H ¼
�
� 1

2

� _�0

�0

�
2 þ V0

2�2
0

�

�þ 1

2

_�0

�0


 _�þ 2
_�0

�0


H;

(50)


 €�þ 3 _�0
H ¼ 0: (51)

The use of Eqs. (50) and (45) in Eq. (51) yields


�
::: �

�
5�

1þ �t

�

 €�þ

�
6�2

ð1þ �tÞ2
�

 _�

þ 3�ðV0 � 4�2��Þ
��ð1þ �tÞ3 
� ¼ 0: (52)

The power-law ansatz


�ðtÞ ¼ 
0ð1þ �tÞs (53)

(with 
0 and s constants) yields the algebraic cubic equa-
tion

’ðsÞ � s3 � 8s2 þ 13sþ 3

�
V0

�2��
� 4

�
¼ 0: (54)

Remembering that the roots of the cubic equation ax3 þ
bx2 þ cxþ d ¼ 0 are given by

r1 ¼ �1=3 � 1=3; (55)

r2 ¼ �ð1=3Þeðð2�iÞ=ð3ÞÞ � ð1=3Þeðð4�iÞ=ð3ÞÞ; (56)

r3 ¼ �ð1=3Þeðð4�iÞ=ð3ÞÞ � ð1=3Þeðð2�iÞ=ð3ÞÞ; (57)

where

� � �qþ ffiffiffiffiffi4p
2

;  � �q� ffiffiffiffiffi4p
2

; (58)

4 ¼ 4p3 þ q2 (59)

is the discriminant, and

p � 3ac� b2

9a2
; (60)

q � 2b3 � 9abcþ 27a2d

27a3
; (61)

it is easily seen that

4 ¼ 1

272

�
62500þ

�
�88þ 81

�
V0

���2
� 4

��
2
�

(62)

is positive. This fact implies that Eq. (54) admits only one
real root and two complex conjugate ones. The real root

r1 ¼ 1

3 � 21=3
��
88� 81

�
V0

���2
� 4

��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 500þ

�
�88þ 81

�
V0

���2
� 4

��
2

s �
1=3

� 1

3 � 21=3
��
88� 81

�
V0

���2
� 4

��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 500þ

�
�88þ 81

�
V0

���2
� 4

��
2

s �
1=3

(63)

is positive, hence the mode 
� ¼ 
0ð1þ �tÞr1 grows
without bound as t ! þ1. Technically speaking, the per-
turbed solution ðH;�Þ ‘‘runs away’’ from the unperturbed
space ð0; �0Þ, but one should ask instead whether the
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perturbations destroy the Minkowski space, or whether the
latter remains Minkowskian. To answer this question, con-
sider


H ¼ �
 €�

3 _�
¼ � r1ðr1 � 1Þ�2

6���

0ð1þ �tÞr1�3: (64)

The perturbed Hubble parameter 
H decays if r1 < 3 and
stays constant if r1 > 3. The polynomial

’ðsÞ � s3 � 8s2 þ 13sþ 3

�
V0

�2��
� 4

�
(65)

crosses the s-axis only at s ¼ r1 and, since ’ð3Þ ¼
3ð V0

�2��
� 6Þ, it is r1 < 3 when ’ð3Þ> 0, or V0 > 6�2��;

r1 ¼ 3 for V ¼ 6�2��, and r1 > 3 when V0 < 6�2��.
Therefore, the mode 
�1 ¼ 
0ð1þ �tÞr1 is stable (in the
sense that the solution remains nongravitating) for V0 �
6�2�� and unstable otherwise.

We still need to assess the stability of the other two
modes corresponding to the roots r2;3 of Eq. (54).

The real part of the roots r2;3, which determines the

growing or decaying behavior of ð1þ �tÞr2;3�3, is

R eðr2Þ ¼ Reðr3Þ ¼ 1

2
ð1=3 � �1=3Þ ¼ � r1

2
(66)

and we need to assess whether Reðr2Þ ¼ Reðr3Þ is less
than or equal to 3 in the region of parameter space in which
the mode 
�1 is stable. Note that ’ð�6Þ> 0, which
corresponds to r1 <�6 and Reðr2Þ ¼ Reðr3Þ> 3 corre-
sponds to V0 > 198�2��, hence the modes 
�2;3 ¼

0ð1þ �tÞr2;3 are unstable for this range of parameters,
and stable otherwise.

Putting together the previous considerations for all the
independent modes 
�1;2;3, one obtains that the solution

ðH;�Þ ¼ ð0; �0Þ is linearly stable (in the sense that the
solution remains nongravitating) for

6�2�� � V0 � 198�2��; (67)

outside of this parameter range perturbations grow without
bound destroying Minkowski space.

B. Minkowski spaces with exponential scalar fields

The phase plane ðH;�Þ of spatially flat FLRW cosmol-
ogy with [31] Vð�Þ ¼ �� was studied in [34]. Two de
Sitter fixed points are always present in the phase plane:

að�ÞðtÞ ¼ a0 exp

�
�ð!þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ð2!þ 3Þð3!þ 4Þ

s
t

�
; (68)

�ð�ÞðtÞ ¼ �0 exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ð2!þ 3Þð3!þ 4Þ

s
t

�
: (69)

These solutions were found in [34–36]. For ! ¼ �1 one
obtains [37] Minkowski space with an exponentially ex-
panding/contracting scalar field

að�Þ � 1; �ð�ÞðtÞ ¼ �0 expð�
ffiffiffiffiffiffiffi
2�

p
tÞ: (70)

Equation (34) yields

_H T ¼ C

�0

exp½	
ffiffiffiffiffiffiffi
2�

p
t�: (71)

Since �0 > 0 in order to keep the gravitational coupling
positive, for �þðtÞ, _HT tends to zero as t ! þ1 for any
choice of initial conditions corresponding to stability. For
��ðtÞ, instead, _HT diverges, corresponding to instability.
One can give a physical interpretation of this result: the

effective gravitational coupling Geff 
 1=� decreases in
the first case and increases in the second one. If Geff

increases and diverges with time, any gravitational pertur-
bation of Minkowski space will become stronger, making
the deviation from flatness more pronounced, in a positive
feedback mechanism. If instead Geff tends to zero as time
progresses, the effect of perturbations from flatness be-
come less and less pronounced, contributing to stability.
Again, it is easy to study homogeneous perturbations of

the solution (70): Eqs. (47)–(49) now yield the evolution
equations for the perturbations ð
Hð�Þ; 
�ð�ÞÞ


 _Hð�Þ ¼ � ð _�ð�Þ
0 Þ2

ð�ð�Þ
0 Þ3 
�ð�Þ þ

_�ð�Þ
0

ð�ð�Þ
0 Þ2 


_�ð�Þ

þ 2
_�ð�Þ
0

�ð�Þ
0


Hð�Þ; (72)


�
:::
ð�Þ þ 3 _�ð�Þ

0 
Hð�Þ ¼ �
�ð�Þ: (73)

By using Eq. (73) in Eq. (72), one obtains


�
:::
ð�Þ �

� €�ð�Þ
0

_�ð�Þ
0

þ 2
_�ð�Þ
0

�ð�Þ
0

�

 €�ð�Þ þ

�
3

� _�ð�Þ
0

�ð�Þ
0

�
2��

�

 _�ð�Þ

þ
�
�

€�ð�Þ
0

_�ð�Þ
0

� 3

� _�ð�Þ
0

�ð�Þ
0

�
3þ 2�

_�ð�Þ
0

�ð�Þ
0

�

�ð�Þ ¼ 0; (74)

and the further use of Eq. (70) yields


�
:::
ð�Þ 	 3

ffiffiffiffiffiffiffi
2�

p

 €�ð�Þ þ 5�
 _�ð�Þ 	 3�

ffiffiffiffiffiffiffi
2�

p

�ð�Þ ¼ 0:

(75)

The associated algebraic equation

’ð�ÞðsÞ � s3 	 3
ffiffiffiffiffiffiffi
2�

p
s2 þ 5�sþ _�	 3�

ffiffiffiffiffiffiffi
2�

p
¼ 0 (76)

has discriminant

4ð�Þ ¼ 4p3 þ q2 ¼ 212
27 �

3 > 0 (77)

and therefore Eq. (76) admits one real root r1 and two
complex conjugate roots r1, r2. Since

�ð�Þ ¼ �qþ ffiffiffiffiffi4p
2

¼ �3=2

�
� ffiffiffi

2
p þ

ffiffiffiffiffiffi
53

27

s �
; (78)
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ð�Þ ¼ �q� ffiffiffiffiffi4p
2

¼ �3=2

�
� ffiffiffi

2
p �

ffiffiffiffiffiffi
53

27

s �
; (79)

the real root (for each of the upper/lower sign solutions) is

rðþÞ
1 ¼ �1=3

ðþÞ � 1=3
ðþÞ

¼
ffiffiffiffi
�

p �� ffiffiffi
2

p þ
ffiffiffiffi
53
27

q �
1=3 þ

� ffiffiffiffi
53
27

q
� ffiffiffi

2
p �

1=3
�
; (80)

rð�Þ
1 ¼ �1=3

ð�Þ � 1=3
ð�Þ

¼
ffiffiffiffi
�

p �� ffiffiffiffi
53
27

q
� ffiffiffi

2
p �

1=3 þ
� ffiffiffiffi

53
27

q
þ ffiffiffi

2
p �

1=3
�
: (81)

Since rð�Þ
1 > 0, the corresponding mode 
�ð�Þ

1 ¼

0 expðrð�Þ

1 tÞ grows away from �ð�Þ
0 without bound.

However, we want to know if the spacetime remains
Minkowskian or not, which is obtained by considering


Hð�Þ ¼ �
�ð�Þ � 
 €�ð�Þ
3 _�ð�Þ

¼ �ð�� r2ð�ÞÞ
3��

ffiffiffiffiffiffiffi
2�

p 
0 exp½ðrð�Þ 	
ffiffiffiffiffiffiffi
2�

p
Þt�: (82)

We want to know whether rð�Þ 	
ffiffiffiffiffiffiffi
2�

p
[rather than rð�Þ] is

positive. It is easy to see that the inequality rðþÞ
1 � ffiffiffiffiffiffiffi

2�
p

>
0 is never satisfied, hence this mode is always stable (in the
sense that the solution remains nongravitating), while the

inequality rð�Þ
1 þ ffiffiffiffiffiffiffi

2�
p

> 0 can never be satisfied, and this

mode is unstable, therefore the solution ðH;�Þ ¼ ð0; �ð�Þ
0 Þ

is unstable. It remains to check the other two perturbation

modes for the ð0; �ðþÞ
0 Þ solution when 
HðþÞ

1 is stable.

The complex conjugate roots r2, r3 of the algebraic
equation ’ðþÞðsÞ ¼ 0 have real part

R eðrðþÞ
2 Þ ¼ ReðrðþÞ

3 Þ ¼ 1

2
ð1=3 � �1=3Þ ¼ � rðþÞ

1

2
(83)

and the inequality

R eðrðþÞ
2;3 Þ �

ffiffiffiffiffiffiffi
2�

p
> 0 (84)

is never satisfied, hence also the perturbations

ð
HðþÞ
2;3 ; 
�

ðþÞ
2;3 Þ do not gravitate and the space ð0; �ðþÞ

0 Þ
remains a nongravitating solution of the Brans-Dicke field
equations.

C. Robinson’s solutions of Brans-Dicke gravity

Robinson [9] has considered Minkowski space solutions
of the coupled Brans-Dicke-Maxwell equations with non-
trivial scalar field. Even simpler are the solutions without
electromagnetic field, given by the metric 	�� and

�0ðuÞ ¼
� ðc1uþ c2Þ1=ð!0þ1Þ; ! � �1
expðc1uþ c2Þ; ! ¼ �1;

(85)

where u ¼ ðt� xÞ= ffiffiffi
2

p
is the usual retarded coordinate in

Minkowski space and c1, c2 are integration constants
(which assume the role of parameters in the unperturbed
solution). Applying again Eq. (34) one obtains, for ! �
�1,

_H T ¼ C

ðc1uþ c2Þð1=ð!þ1ÞÞ : (86)

It is easy to see that, if !>�1, _HT ! 0 as t ! þ1
irrespective of the initial conditions (i.e., of the value of
C) and of the sign of c1, corresponding to stability.
If instead !<�1, then _HT ! þ1 (unless C ¼ 0) and

there is instability.
For ! ¼ �1, tensor mode perturbations obey

_H T ¼ C

expðc1uþ c2Þ ; (87)

as t ! þ1, also u ! þ1 and HT grows if the initial
conditions are such that C> 0, therefore this solution is
unstable.

IV. CONCLUSIONS

Nongravitating matter is interesting in principle because
it could potentially teach us lessons of some relevance for
the cosmological constant problem [18]. The linear stabil-
ity of stealth solutions with respect to small tensor pertur-
bations, analyzed in a covariant and gauge-invariant way
is, therefore, physically interesting. The solution of the full
system of differential equations for the gauge-invariant
perturbations is, in general, a daunting task. However, the
equation for the tensor mode HT is very simple and de-
couples from the other equations (to first order). While one
would expect stealth solutions to be contrived and ex-
tremely unstable, instability with respect to tensor modes
shows up only in certain regions of the parameter space,
while there are regions corresponding to stability. Table I
summarizes the situation for nonminimally coupled stealth
scalar fields. Similarly, nongravitating scalar fields in
Brans-Dicke theory show regions of stability in their pa-
rameter spaces. For these solutions it was possible to
analyze also the stability with respect to homogeneous
perturbations.
Our results should be regarded as preliminary; one

should still assess stability with respect to scalar perturba-
tions, and stability to order higher than linear in order to
draw more definitive conclusions. At the moment, there is
hope to find stable stealth fields.
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