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The Chern-Simons modification to general relativity in four dimensions consists of adding to the

Einstein-Hilbert term a scalar field that couples to the first-class Pontryagin density. In this theory, which

has attracted considerable attention recently, the Schwarzschild metric persists as an exact solution, and

this is why this model resists several observational constraints. In contrast, the spinning black hole

solution of the theory is not given by the Kerr metric but by a modification of it, so far only known for slow

rotation and small coupling constant. In the present paper, we show that, in this approximation, the null

geodesic equation can be integrated, and this allows us to investigate the shadow cast by a black hole. We

discuss how, in addition to the angular momentum of the solution, the coupling to the Chern-Simons term

deforms the shape of the shadow.
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I. INTRODUCTION

The Chern-Simons (CS) modification to Einstein gen-
eral relativity (GR) consists of augmenting Einstein-
Hilbert action by adding a parity violating gravitational
term which couples a scalar field ’ to the first-class
Pontryagin density �R����R

����, where �R���� ¼
1
2 "��

��R���� is the dual Riemann tensor [1]. With this

modification, the gravitational action in the absence of
matter takes the form

S ¼ �
Z

dx4
ffiffiffiffiffiffiffi�g

p
R� 1

2

Z
dx4

ffiffiffiffiffiffiffi�g
p ðr’Þ2

þ �

4

Z
dx4

ffiffiffiffiffiffiffi�g
p

’ � R����R
����; (1)

where � is the coupling constant and � ¼ ð16	Þ�1

(throughout the article we adopt units such that G ¼ c ¼
1). The quadratic term in the action (1) can be thought of as
a gravitational parity violating analogue of the axion term.
It is usual to motivate such a term from string theory as a
similar term appears in the string low energy effective
action and is related to the string anomaly cancellation.
However, in the string theory context the natural order of
magnitude of the predicted coupling constant is several
order of magnitudes lower than the one required for the
effects to be observed in astrophysics [2]. This CS modi-
fication to Einstein theory has attracted considerable atten-
tion recently. In particular, this theory has been considered
in a phenomenological context in cosmology and relativ-
istic astrophysics; see [2] and references therein.
Observational constraints on the CS coupling � coming

from spinning compact objects were given in [3], where the
bound �2=� < 5� 1028 m4 was obtained. It was argued in
[4] that gravitational wave detection could eventually im-
prove this bound on � in a couple of orders of magnitude.
More recently, in [5] it was discussed how the observation
of slowly rotating neutron stars would yield bounds on �
that are three order of magnitudes stronger than the one
mentioned above, which comes from pulsar observations.
In [6], the gravitational perturbations of a Schwarzschild
black hole in dynamical CS gravity were studied, and it
was shown that the gravitational oscillation modes carry
the imprints of the coupling to the scalar field, then the
theory could be tested with gravitational wave detectors.
It is known [3,7–9] that the introduction of a CS modi-

fication in the gravitational action yields a modification of
the spinning black hole geometry. This is due to the fact
that, unlike Schwarzschild solution, Kerr solution has a
nonvanishing Pontryagin density. The spinning black hole
solution to the theory (1) is known only in the slowly
rotating approximation and for small coupling constant �
[3,7], and here we investigate its strong field regime by
analyzing the trajectories of photons in its vicinity.
As black holes are essentially nonemitting objects, it is

of interest the study of the null geodesics around them, in
which photons coming form other sources move, to obtain
information about these objects. In particular, gravitational
lensing by black holes has received considerable attention
in the last few years, mainly because of the fact of the
strong evidence about the presence of supermassive black
holes at the center of galaxies. A useful tool to study black
hole gravitational lenses is the strong deflection limit,
which is an approximate analytical method for obtaining
the positions, magnifications, and time delays of the im-
ages. It was introduced by Darwin [10] for the
Schwarzschild geometry, rediscovered several times [11],
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extended to Reissner-Nordström geometry [12], and to any
spherically symmetric black holes [13]. Numerical studies
[14] were performed as well. Kerr black holes were also
analyzed in the strong deflection limit [15–17]. Another
related aspect that was considered, with the intention of
measuring the properties of astrophysical black holes, are
the shadows cast by rotating ones [18,19], which present an
optical deformation caused by the spin, instead of being
circles as in the nonrotating case. This subject have been
recently reexamined by several authors [17,20–24] due to
the expectation that the direct observation of black holes
will be possible in the near future. More details about these
topics, additional references, and a discussion of the ob-
servational perspectives can be found in the review article
[25].

In this paper, we study how the introduction of a CS term
in the gravitational action modifies the null geodesics
structure and the shadow produced by a spinning black
hole. The article is organized as follows: In Sec. II we
review the slowly spinning limit of a rotating black hole
solution in CS modified gravity, for a small coupling
constant; in Sec. III, we study the null geodesics around
the black hole and integrate the generic photon orbits. In
Sec. IV, we find the shape of the shadow and, finally, in
Sec. V, we discuss the results obtained.

II. BLACK HOLES IN CHERN-SIMONS MODIFIED
GRAVITY

As pointed out above, we will study how the null geo-
desics and the shadow produced by a rotating black hole
get modified by the introduction of a CS term in the
gravitational action. First, let us analyze the spinning so-
lution of the theory (1).

The equations of motion coming from the action (1) take
the form

r�r�’þ �

4
� R����R

���� ¼ 0 (2)

and

R�� � 1

2
Rg�� þ �

�
C�� ¼ 1

2�
r�’r�’

� 1

4�
g��r�’r�’; (3)

where the traceless tensor C�� is given by

C�� ¼ r
’"

���r�R

�
� þr
r�’ � R���
 þ ð� $ �Þ:

The Pontryagin density can be written as the exterior
derivative of a CS form, namely,

� R����R
���� ¼ 2r�"

����

�
�

��@��

�
�


þ 2

3
�

���

�
���

�
�


�
;

and this yields the conservation of a topological current.
This relation to the three-dimensional gravitational CS
term is precisely the reason why the theory (1) receives
the name of Chern-Simons theory, even if it sounds curious
in the context of four dimensions. This makes the theory
defined by (1) specially related to the three-dimensional
topologically massive gravity [26].
Now, let us move to discuss the spinning solution to the

field equations (2) and (3). This solution is only known for
slow rotation and small coupling constant approximation,
and it was recently found in Refs. [3,7]. This corresponds
to a perturbation of the Kerr solution of GR. So, let us
recall the Kerr solution. Written in Boyer-Lindsquit coor-
dinates, Kerr metric reads

ds2K ¼ �
�
1� 2M

�2
r

�
dt2 þ �2

�
dr2 þ �2d�2

� 4Mrasin2�

�2
dtdþ Asin2�

�2
d2;

with

� ¼ r2 � 2Mrþ a2; �2 ¼ r2 þ a2cos2�;

A ¼ ðr2 þ a2Þ2 � �a2sin2�:

The parameter M is the mass of the object, while the spin
parameter a ¼ J=M is given in terms of its angular mo-
mentum J. In the slowly spinning approximation a � M,
the Kerr metric takes the form

ds2SK ¼ �
�
Bþ 2a2M

r3
cos2�

�
dt2

þ 1

B2

�
B� a2

r2
ð1� Bcos2�Þ

�
dr2

þ ðr2 þ a2cos2�Þd�2 � 4M

r
asin2�dtd�

þ
�
r2 þ a2

�
1þ 2M

r
sin2�

��
sin2�d2;

where B ¼ 1� 2M=r. On the other hand, if a CS term is
added to the Einstein-Hilbert action [that is, considering
� � 0 in Eqs. (2) and (3)], then the spinning solution of GR
gets modified. The metric corresponding to the solution of
the modified theory, in the slowly spinning and small �
approximation, has the form [3]

ds2 ¼ ds2SK þ 5�2

4�r4

�
1þ 12M

7r
þ 27M2

10r2

�
asin2�dtd�; (4)

while the configuration corresponding to the scalar field ’
is given by

’ ¼
�
5

2
þ 5M

r
þ 9M2

r2

�
�a cos�

4Mr2
: (5)

From Eq. (4) we observe that the off-diagonal component
of the metric receives contributions of order Oða�2Þ. This
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produces a weakened dragging effect and, as we will show
below, this also alters the null geodesics structure stamping
its imprint on the shadows of spinning compact objects.

III. NULL GEODESICS AND PHOTON ORBITS

Lets us analyze the null geodesics around the black hole.
For simplicity, from now on we adimensionalize all quan-
tities with the mass of the black hole, i.e. we replace r=M
by r, a=M by a, �=M2 by �, etc. (which is equivalent to put
M ¼ 1 in all equations).

A. Equatorial photon orbits

The equation for the trajectories of photons in the equa-
torial plane (� ¼ 	=2) can be obtained from the condition
u�u

� ¼ 0, where the contraction of the four-velocity u� is

calculated using the metric (4). In this case, we have

1

L2

�
dr

d�

�
2 ¼ 1

b2
�WeffðrÞ; (6)

where � is the affine parameter, �u0 ¼ E is the energy,
u ¼ L is the angular momentum in the direction of the

axis of symmetry of the black hole, and b ¼ L=E is the
impact parameter. For slow rotation, the parameter a is
small. In this case, we approximate the effective potential
Weff by its Taylor expansion to order a�2:

Weffðu; b; lÞ ¼ u2 � 2u3 þ 4
a

b
u3 � a2

b2
u2ð1þ 2uÞ

� 2	u6ð70þ 120uþ 189u2Þ
7b

a�2; (7)

where u ¼ 1=r. The limit � ! 0 gives

lim
�!0

Weff ¼ u2 � 2u3 þ 4
a

b
u3 � a2

b2
u2ð1þ 2uÞ; (8)

which is the effective potential associated with Kerr solu-
tion, to second order in a, as expected (see, for example,
[27]).

It is possible to obtain the equatorial orbits of photons
around black holes in GR or in CS modified gravity from
the effective potential Weff . This potential has an unique
extreme in the range r > rþ (with rþ the event horizon
radius), which corresponds to a maximum. The behavior of
the potential is similar to that in GR. The potential depends
on the impact parameter b, so prograde and retrograde
photons interact with different potentials. In fact, we
have four types of possible equatorial orbits for photons:

(i) Scattering orbits: photons that come from the infin-
ity, reach the perihelion, and then scatter back to
infinity. This kind of orbits happens when 1=b2 <
Wmax, being Wmax the largest value of the potential.

(ii) Falling orbits: photons that come from the infinity,
and then eventually fall into the black hole crossing
the horizon. In this case, 1=b2 >Wmax.

(iii) Circular orbits: unstable circular orbits with radius
rmax, where WðrmaxÞ ¼ Wmax.

(iv) Falling orbits, initial position close to the horizon:
photons that come from some initial radius r0 such
that rþ < r0 < rmax, and end up falling into the
black hole.

In this work, we concentrate on the first two types of orbits.
The shape of the orbits can be obtained by numerical
integration of d=dr, which is the quotient between
d=d� and dr=d�. The former derivative (to order a�2)
is given by

d

d�
¼ bu2 þ u3að2� buaÞ

1� 2u

� 	u6ð70þ 120uþ 189u2Þ
7ð1� 2uÞ a�2; (9)

while dr=d� is easily deduced from Eq. (6). In Figs. 1 two
examples are shown, which correspond to different trajec-
tories of prograde and retrograde photons with jbj ¼ 4:5
around a black hole of a ¼ 0:2, for different values of �.
As we have previously mentioned, the main effect of the
modified spinning solution of [3,7] is producing a weaker
dragging of the inertial frames in the region close to the
black hole, that manifests itself more clearly in the retro-
grade orbits of photons, which for growing values of the
parameter � start to turn back later dragged by the black
hole.
In order to study the shadow cast by a spinning black

hole, it is also necessary to investigate the nonequatorial
null geodesics. Let us move to analyze this in the next
subsection.

B. General photon orbits

To analyze the general orbits of photons around the
black hole, we begin by studying the separability of the
Hamilton-Jacobi equation. Carter showed in [28] that this
separability is possible in the case of Kerr geometry, using
a third conserved quantity, often called Carter constant. In
this section, we adopt the notation of [19].
The Hamilton-Jacobi equation, which determines the

null geodesics for the geometry given by the metric g��, is

@S

@�
¼ 1

2
g�� @S

@x�
@S

@x�
; (10)

where S is the Jacobi action. The components of g�� are
calculated here up to order a�2. When the problem is
separable, the Jacobi action S can be written in the form

S ¼ 1

2

�� Etþ Lþ SrðrÞ þ S�ð�Þ: (11)

The second term on the right-hand side is related to the
conservation of energy E, while the third term is related to
the conservation of the angular momentum in the direction
of the axis of symmetry L. In our case 
 ¼ 0 because we
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are dealing with null geodesics. Then, considering this
ansatz for S in (10), we get

2
@S

@�
¼ 0

¼ g00E2 � 2g0ELþ gL2 þ grr
�
dSr
dr

�
2

þ g��
�
dS�
d�

�
2
; (12)

where the right-hand side of Eq. (12) is calculated to order
a�2. It might be instructive for the reader to compare this
expression with the one corresponding to the Kerr geome-
try, calculated to second order in a (the exact expression
for Kerr geometry can be found in [19]). Taking all this into
account, the right-hand side of Eq. (12) can be expressed in
the form

0 ¼ FSK � �FCS; (13)

where FSK is the derivative of S with respect to � for the
case of the Kerr geometry, and to second order in a. �FCS

is a corrective term that appears from considering the
rotating black hole solution with metric (4). The expression
for �FCS to order a�2 is

�FCS ¼ 2LE	u4ð70þ 120uþ 189u2Þ
7ð1� 2uÞ a�2: (14)

It is easy to show that FSK is separable in two functions of r
and �, and the corrective term �FCS is separable to order

a�2, which is the order of the modified solution studied in
the present work. Finally, it is not difficult to see that
Eq. (13) is separable and gives two equations: one for r
and the other for �, whose expressions are, respectively,

1

E2

�
dSr
dr

�
2 ¼ 1

�

�
�4a�

u

1� 2u
þ 1

u2ð1� 2uÞ
� u2ð4� �2ð1� 2uÞÞ

ð1� 2uÞ2 a2

þ 2�	u4ð70þ 120uþ 189u2Þ
7ð1� 2uÞ a�2

� �� �2

�
(15)

and

1

E2

�
dS�
d�

�
2 ¼ a2cos2ð�Þ � �2cot2ð�Þ þ �; (16)

where u ¼ 1=r, � ¼ L=E, � ¼ Q=E2, with Q being the
Carter constant, and � ¼ u�2 � 2u�1 þ a2. In what fol-
lows it will be useful having defined the functions

RðrÞ ¼ �2 1

E2

�
dSr
dr

�
2

(17)

and

�ð�Þ ¼ 1

E2

�
dS�
d�

�
2
: (18)
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-2
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FIG. 1. Plot of equatorial photon orbits with impact parameters b ¼ 4:5 (left panel) and b ¼ �4:5 (right panel), for a rotating black
hole situated at the origin of coordinates with spin parameter a ¼ 0:2. The different curves correspond to CS parameters � ¼ 0:3
(dashed-dotted line), � ¼ 0:15 (dashed line), and � ¼ 0 (solid line). All quantities were adimensionalized with the mass of the black
hole.
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Then, by using Eq. (15) the expression for RðuÞ, calculated
to order a�2, is

RðuÞ ¼ 1� u2ð1� 2uÞð�2 þ �Þ
u4

þ
�
�4

�

u
þ 2�	u2ð70þ 120uþ 189u2Þ

7
�2

�
a

þ
�
1þ 2u

u2
� �

�
a2: (19)

Notice that replacing � ¼ 0 in Eq. (19) one recovers the
expression for Kerr’s metric (to second order in a).
Regarding the function �ð�Þ, it is worth noticing that the
Eq. (16) is the same as in the Kerr geometry; therefore, it
should satisfy the same conditions (see [19] for details).

Finally, the Jacobi action S reads

S ¼ �Etþ �þ
Z r

r0

ffiffiffiffiffiffiffiffiffi
RðrÞp
�

drþ
Z �

�0

ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp

d�; (20)

where it was taken into account that both the energy E and
the angular momentum L are conserved quantities (and
consequently we have the conserved quantity � ¼ L=E as
a parameter). Without losing generality, we can fix E ¼ 1.

The equations of motion corresponding to coordinates r
and � can be simply obtained from dS=dr ¼ pr ¼ grr _r

and dS=d� ¼ p� ¼ g�� _�. Then, combining these with (15)
and (16), we have that

RðrÞ
�2

¼ g2rr _r
2 and �ð�Þ ¼ g2��

_�2: (21)

The orbits with constant r are those for which the con-
ditions

RðrÞ ¼ 0 and
dR

dr
ðrÞ ¼ 0 (22)

are satisfied. The values of the impact parameters � and �
that are compatible with these conditions determine the
contour of the shadow of the black hole. A detailed treat-
ment of the shadow for (extremal) Kerr geometries can be
found in [19], while other interesting related works are
[23,24]. In the case of rotating CS black holes, the parame-
ters � and � compatible with Eqs. (22) belong to two
possible families, as in the case of Kerr geometry (see
[19]). However, one of these families is not consistent
with the conditions that the function �ð�Þ should satisfy.
In our case, the family of allowed parameters is the one that
in the limit � ¼ 0 leads to the valid family for the Kerr
geometry. Then, the expressions of � and � takes the form

�ðuÞ ¼ �KðuÞ þ 	u2

7að1� 2uÞðu� 1Þ
�
ð1� 3uÞð140þ 90uþ 87u2 � 945u3Þ

þ 2u2ð35þ 55u� 101u2 � 408u3 þ 102u4 þ 945u5Þa2
1� 2u

�
�2 (23)

and

�ðuÞ ¼ �KðuÞ � 2	ð1� 3uÞ
7a2ð1� 2uÞðu� 1Þ2

�
ð1� 3uÞð140þ 90uþ 87u2 � 945u3Þ

þ u2ð140þ 20u� 233u2 � 1143u3 þ 582u4 þ 1890u5Þa2
1� 2u

�
�2 (24)

where

�KðuÞ ¼ 1��u� a2u2

uð1� uÞa ; �KðuÞ ¼ 4�u3 � ð1� uÞ2
u4ð1� uÞ2a2

are the expressions corresponding to the Kerr geometry.

IV. BLACK HOLE SHADOW

As we have pointed out in the previous section, the
allowed values for the parameters � and � are those that
determine the shadow of the black hole. If a black hole is
situated between a source of light and an observer, the light
reaches the observer after being deflected by the black hole
gravitational field; but some part of the photons emitted by
the source, those with small impact parameters, end up
falling into the black hole, not reaching the observer. The

apparent shape of a black hole is thus defined by the
boundary of the shadow. To describe the shadow, we adopt
the celestial coordinates:

� ¼ lim
r0!1

�
�r20 sin�0

d

dr

�
(25)

and

� ¼ lim
r0!1r

2
0

d�

dr
; (26)

where r0 goes to infinity because we consider an observer
very far from the black hole, and �0 is the angular coor-
dinate of the observer. The coordinate � is the apparent
perpendicular distance of the image as seen from the axis
of symmetry, and the coordinate � is the apparent perpen-
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dicular distance of the image from its projection on the
equatorial plane. If we calculate d=dr and d�=dr from
the metric given by Eq. (4) and take the limit of a far away
observer, we have that, as a function of the constants of
motion, the celestial coordinates take the form

� ¼ �� csc�0 (27)

and

� ¼ a2 þ 4ð�2 þ �Þ þ a2 cos2�0 � 4�2csc2�0

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �2cot2�0

p ; (28)

where Eq. (21) was used to calculate u�.
For the characterization of the form of the shadow, we

adopt the observables defined in [24]: the radius Rs and the
distortion parameter 
s. The quantity Rs is the radius of a
reference circle passing by three points: the top position
ð�t; �tÞ of the shadow, the bottom position ð�b; �bÞ of the
shadow, and the point corresponding to the unstable retro-
grade circular orbit when seen from an observer on the
equatorial plane ð�r; 0Þ. The distortion parameter is de-
fined by D=Rs, where D is the difference between the
endpoints of the circle and of the shadow, both of them
at the opposite side of the point ð�r; 0Þ, i.e. corresponding
to the prograde circular orbit. The radius Rs basically gives
the approximate size of the shadow, while 
s measures its
deformation with respect to the reference circle (see [24]
for more details). If the inclination angle �0 is indepen-
dently known (see for example [29]), precise enough mea-
surements of Rs and 
s could serve, in principle, to obtain

the rotation parameter a and the CS parameter � (both
adimensionalized with the black hole mass).
In the particular case where the observer is situated in

such a way that the division line is in the equatorial plane of
the black hole (for which the departures from GR are
larger), the inclination angle is �0 ¼ 	=2 and we have
simply

� ¼ �� (29)

and

� ¼ ffiffiffiffi
�

p
: (30)

These equations have implicitly the same form as for the
Kerr’s metric, with the new � and � given by Eqs. (23) and
(24) (a detailed calculation of the values of � and�, and the
expressions of the celestial coordinates � and � as a
function of the constants of motion for Kerr geometry,
are given in [16]). For visualizing the shape of the black
hole shadow one needs to plot � vs �. In Fig. 2 we show
the contour of the shadows of black holes with rotation
parameters a ¼ 0:2 and a ¼ 0:4 for some values of the CS
coupling �.
The observable Rs can be calculated from the equation

Rs ¼ ð�t � �rÞ2 þ �2
t

2j�t � �rj ;

and the observable 
s is given by

-6 -4 -2 0 2 4 6

α

-6

-4

-2

0

2

4

6

β

-6 -4 -2 0 2 4 6

α

-6

-4

-2

0

2

4

6

β

FIG. 2. Boundary of the shadow of a black hole situated at the origin of coordinates with inclination angle �0 ¼ 	=2, and spin
parameters a ¼ 0:2 (left panel) and a ¼ 0:4 (right panel). In both cases, the CS coupling parameters are � ¼ 0 (Kerr case, solid curve),
� ¼ 0:3 (dashed-dotted curve), and � ¼ 0:4 (dashed curve). All quantities were adimensionalized with the mass of the black hole (see
text).
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s ¼
~�p � �p

Rs

;

where ð~�p; 0Þ and ð�p; 0Þ are the points where the refer-

ence circle and the contour of the shadow cut the horizontal
axis at the opposite side of ð�r; 0Þ, respectively. In Fig. 3
the observables Rs and 
s are shown as functions of �.
From Figs. 2 and 3, we see that for a fixed value of a, the
presence of the CS coupling � leads to a bigger shadow
(larger Rs) than in the case of Kerr geometry, while a small
value of � gives a less distorted shadow (smaller positive

s) than for Kerr’s; for large � the silhouette gets distorted
in the opposite direction (negative 
s). For comparison, let
us say that the nonrotating solution of CS gravity for any �,
i.e. the Schwarzshild black hole, has a circular shadowwith

radius Rs ¼ 3
ffiffiffi
3

p � 5:196 15.

V. DISCUSSION

In this work, we have studied the null geodesics corre-
sponding to a slowly rotating black hole in Chern-Simons
gravity, with a small coupling constant. We have shown
that the photon orbits are separable as in the Kerr geometry.
From the null geodesics we have found the shadow pro-
duced by the black hole. For a given inclination angle �0,
the deformation of the shape of the shadow with respect to
a Schwarzschild black hole with the same mass would
enable to extract information about the value of the angular
momentum and the value of the CS coupling. This means
that the aspect of the shadow allows to distinguish between

the Kerr geometry and its CS modification. In this alter-
native theory, for a given rotation parameter a, the shadow
is always larger, and less distorted than in GR when � is
lower than a critical value, or distorted in the opposite
direction if � exceeds that critical value. The key reason
is that the effect of the CS term on the dragging is sub-
stantially stronger in the region close to the equatorial
plane.
The values of � adopted in the plots were only for

illustrative purposes; the real values of � may be much
smaller. The bound of the CS coupling given in [3], already
mentioned in the Introduction, in the case of the adimen-
sionalized parameter � can be rewritten in the form � <
1:4� 107ðM=M�Þ�2, where M� is the solar mass. For
example, for a supermassive black hole with M ¼ 106M�
we obtain � < 1:4� 10�5; on the other hand, for an inter-
mediate mass one with M ¼ 104M� we have � < 0:14,
while for a stellar mass one with M ¼ 10M� the bound is
� < 1:4� 105. Then, in the case that the CS theory is a
valid correction to GR, the known bound allows for a larger
relative deviation from Kerr in the shadows of low mass
black holes. This entails an extra observational difficulty,
because the angles subtended by the shadows of stellar
mass black holes—as seen from the Earth—are much
smaller than those corresponding to intermediate mass
black holes or to the supermassive black hole Sgr A* at
the Galactic center. The angular radius size of the shadow
can be estimated from the Schwarzschild one with the

same mass, which is given by �s ¼ 3
ffiffiffi
3

p
M=Do, with Do

the distance from the observer to the black hole. It is easy
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to see that �s ¼ 3
ffiffiffi
3

p � 10�5ðM=M�Þð1 kpc=DoÞ�arcsec.
For Sgr A* we haveM ¼ 4:3� 106M� and Do ¼ 8:3 kpc
[30] so we obtain �s ¼ 27 �arcsec. For an intermediate
mass black hole in a globular cluster, we can have M�
104M� and Do � 4 kpc [31], then �s � 0:13 �arcsec,
while for a stellar size black hole we can take M� 7M�
and Do � 1:7 kpc [32], giving �s � 2� 10�4 �arcsec.
Angular resolutions of the order of 1 �arcsec are expected
in the near future (see for example [25]). The observation
of the effect of the CS coupling on the shadow correspond-
ing to the black hole in the vicinity of Sgr A* would be
extremely difficult because of the very the small deforma-
tion allowed by the bound on �. In the case of stellar size
black holes, the main problem is not the bound on � but the
small angular size of the shadow. It seems that the better
candidates to observe the possible effects of the CS cou-

pling on the shadows it would be the intermediate mass
black holes in our galaxy if the existence of these objects is
confirmed. In any case, the observation of the lensing
effects due to a CS correction like those discussed in this
paper will be inaccessible to current or near future
technology.
The effects of the CS term on the shadows will be more

prominent for large values of the rotation parameter a but,
unfortunately, a solution of CS gravity for every value of a
is not presently known.
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