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We present the complete set of analytical solutions of the geodesic equation in Taub-NUT space-times

in terms of the Weierstrass elliptic functions. We systematically study the underlying polynomials and

characterize the motion of test particles by its zeros. Since the presence of the ‘‘Misner string’’ in the

Taub-NUT metric has led to different interpretations, we consider these in terms of the geodesics of the

space-time. In particular, we address the geodesic incompleteness at the horizons discussed by Misner and

Taub [C.W. Misner and A.H. Taub, Sov. Phys. JETP 28, 122 (1969) [Zh. Eksp. Teor. Fiz. 55, 233

(1968)]], and the analytic extension of Miller, Kruskal and Godfrey [J. G. Miller, M.D. Kruskal, and B.

Godfrey, Phys. Rev. D 4, 2945 (1971)], and compare with the Reissner-Nordström space-time.
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I. INTRODUCTION

The Taub-NUT solution of the vacuum Einstein equa-
tions exhibits intriguing properties. The double name of the
solution originates from the two parts the solution consists
of, and at the same time highlights its strange features. In
1951 Taub [1] derived a solution valid in the ‘‘inner’’
region [�r < 0; see Eq. (1)], which was interpreted as a
cosmological model (see e.g. Brill [2] and Wheeler [3]). In
1963 independently Newman, Unti, and Tamburino (NUT)
[4] obtained a metric valid in the ‘‘outer’’ region (�r > 0)
which reduces to the Schwarzschild metric in the limit of
vanishing NUT parameter. Misner [5] then suggested to
consider the Taub space-time joined analytically to the
NUT space-time as a single Taub-NUT space-time.

The gravitomagnetic properties of the Taub-NUT space-
time are determined by the nondiagonal part of the metric,
which features the NUT parameter n as a gravitomagnetic
charge. This nondiagonal term implicates a singularity on
the half-axis # ¼ �, termed ‘‘Misner string,’’ which is
distinct from the ordinary coordinate singularity associated
with the use of spherical coordinates. Misner [5] suggested
to evade this singularity by introducing a periodic time
coordinate and two coordinate patches. The first coordinate
patch covers the northern hemisphere and the singularity is
located along the axis # ¼ �, while the second patch
covers the southern hemisphere with the singularity ex-
tending along the axis # ¼ 0. (This construction is analo-
gous to the way in which the ‘‘Dirac string’’ singularity in
the vector potential of the Abelian magnetic monopole is
eliminated.) A periodic time coordinate is thus the price to
be paid for a Taub-NUT space-time free of these axial
singularities.

Indeed, this periodic identification of the time coordi-
nate makes the solution look rather problematic for physi-
cal applications because of the resulting causality
violations. Noting that every observer at rest in the coor-
dinate system would move on a closed timelike worldline,

Bonnor [6] was led to suggest an alternative interpretation
of the metric, in order to evade this unsatisfactory property
of the Misner interpretation of the Taub-NUT space-time.
In his approach Bonnor retained the singularity at # ¼ �,
and endowed it with a physical meaning: he interpreted it
as a semi-infinite massless rotating rod. In his interpreta-
tion the NUT space-time is then considered as being cre-
ated by a spherically symmetric body of mass M at the
origin and by a source of pure angular momentum (asso-
ciated with the NUT parameter) which is uniformly dis-
tributed along the # ¼ �-axis. Thus the Misner string is
representing a physical singularity. Moreover, close to the
singular semiaxis there looms a region of space-time con-
taining closed timelike curves. Consequently, to obtain a
physically more reasonable interpretation of the Taub-
NUT solution, Bonnor was forced to restrict the coordinate
range, as to exclude the singular regions along with the
region with closed timelike curves. Containing holes, the
resulting manifold is then incomplete in the sense that not
all geodesics can be extended to arbitrarily large values of
their affine parameters [6].
Recently, Manko and Ruiz [7] reconsidered the inter-

pretation of Bonnor for the general family of Taub-NUT
solutions, containing a constant C in the nondiagonal part
of the metric, gt’ / 2nðcos# þ CÞ. This constant then

defines the position of the singularity on the axis of the
respective Taub-NUT space-time. For the special cases,
when C ¼ 1 or C ¼ �1 (as considered in [4,6]) there is
only a single semi-infinite singularity on the upper or lower
part of the symmetry axis, respectively. All other C-values
correspond to Taub-NUT solutions with two semi-infinite
singularities. The general source associated with these
singularities is then interpreted as two semi-infinite coun-
terrotating rods (or only a single semi-infinite rotating rod
in the special cases jCj ¼ 1) with a finite rod (also rotating
in general) in between them. The total mass of the NUT
solutions is M and does not depend on the choice of C. In
particular, none of the rods yields a divergent contribution
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to the total mass. For the choice C ¼ 0, the angular mo-

mentum of the middle rod J2 ¼ Cn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ n2

p
vanishes,

and the diverging angular momenta J1 and J2 of the semi-
infinite rods cancel each other. The analysis of Manko and
Ruiz is based on the exact calculation of the Komar inte-
grals for the mass and the angular momentum of the three
rods constituting the NUT source and their total values.
The unattractive properties of the Bonnor interpretation are
thus retained for this general family of Taub-NUT solu-
tions: the axial singularity and the closed timelike curves in
its vicinity.

Presuming the periodic identification of the time coor-
dinate, Misner and Taub [8] explored the geodesics of the
Taub-NUT space-time and detected the presence of incom-
plete geodesics. This may seem surprising, since the origin
and the axis are regular in their interpretation of the space-
time. However, employing Eddington-Finkelstein coordi-
nates, Misner and Taub found a singular behavior of some
geodesics at the horizons: as one of the horizons is ap-
proached for the second time, the modified time coordinate
diverges and the affine parameter terminates, thus making
these geodesics incomplete. Now the same type of behav-
ior is found for geodesics in the Reissner-Nordström space-
time, and is dealt with by analytical continuation of the
Reissner-Nordström space-time at the horizons, which
consequently allows the continuation of these respective
geodesics. The obvious question following from this ob-
servation is therefore whether the Taub-NUT space-time
can be analytically continued in an analogous fashion as
the Reissner-Nordström space-time.

Indeed, in 1971Miller, Kruskal, and Godfrey [9] applied
Kruskal-like coordinates and provided an analytic exten-
sion of the Taub-NUT metric for the entire range of
r-values. Consequently, in their approach the geodesics,
which previously terminated at a horizon, could in princi-
ple be extended in these new coordinates. They would no
longer be incomplete. However, the analytic extension
introduced in [9] came at the prize that the periodic iden-
tification of the time coordinate was no longer possible,
since it would violate the Hausdorff property of the mani-
fold. Consequently, without the periodic identification the
singularities on the axis are not evaded, and therefore the
extension of Miller, Kruskal, and Godfrey [9] is geodesi-
cally incomplete, as they note.

Leaving aside the incompleteness of certain classes of
geodesics, which apparently cannot be avoided in either
interpretation of the vacuum Taub-NUT space-time, let us
now address some further interesting aspects of this space-
time. First of all we note, that the geodesics of the Taub-
NUT space-time share many of the properties of the tra-
jectories of charged particles in the field of a magnetic
monopole. A thorough discussion and comparison of these
orbits can be found in Zimmerman and Shahir [10]. One
particular such property is that test particles always move
on a cone. This was also pointed out by Lynden-Bell and

Nouri-Zonos [11], who studied a Newtonian analogue of
monopole space-times and discussed the observational
possibilities for (gravito)magnetic monopoles. In fact, the
spectra of supernovae, quasars, or active galactic nuclei
might be good candidates to infer the existence of (gravito)
magnetic monopoles.
On the other hand, the lack of observational evidence for

the existence of gravitomagnetic masses might be ex-
plained by its presumably very large value [12], and by
not sufficiently sensitive instruments [13]. Nouri-Zonos
and Lynden-Bell [14] suggested to look for gravitomag-
netic masses by means of gravitational lensing. By consid-
ering the propagation of light in Taub-NUT space-time
they showed that the NUT deflector influences the gravi-
tational lensing effect on the null geodesics. In contrast to
the lensing in Schwarzschild space-times, the gravitomag-
netic field shears the observed form of the source. The
possibility to detect and the method to measure the grav-
itomagnetic masses with the next generation of microlens-
ing experiments was studied in [15]. In [16] even the
anomalous acceleration of the Pioneer spacecraft was as-
sociated with a gravitomagnetic charge.
We present in this paper the complete set of analytic

solutions of the geodesic equation in Taub-NUT space-
times in terms of the Weierstrass elliptic functions (the
complete set of analytical solutions of the geodesic equa-
tion in Plebański-Demiański space-times of which Taub-
NUT is a special case, can be found in [17]). We classify
the orbits by means of the analysis of the underlying
polynomials which include the parameters of the metric
and the physical quantities characterizing the test particles.
In particular, we discuss the incomplete geodesics, arising
in Eddington-Finkelstein coordinates, as one of the hori-
zons is approached for the second time, and we address the
analytic extension of the space-time necessary to extend
the geodesics, but forcing us to retain the singularity on the
axis. We also discuss observable effects in Taub-NUT
space-times on the basis of analytically defined observ-
ables, thus making other approaches to experimental sig-
nals of the NUT parameter, e.g. [18,19], more rigorous.

II. THE GEODESIC EQUATION

The general Taub-NUT solution of the Einstein field
equations is described by the metric [4,5]

ds2 ¼ �r

�2
ðdt� 2nðcos# þ CÞd’Þ2 � �2

�r

dr2

� �2ðd#2 þ sin2#d’2Þ; (1)

where �2 ¼ r2 þ n2 and �r ¼ r2 � 2Mr� n2. Here M is
the (gravitoelectric) mass of the solution, and n is the NUT
charge, regarded as gravitomagnetic mass. For n � 0 there
are always two horizons, defined by �r ¼ 0, and given by

r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ n2

p
: (2)
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One horizon is located at rþ > 2M, the other at1 �jnj<
r� < 0. Between the horizons the radial coordinate r be-
comes timelike, and the time coordinate t spacelike.

For test particles or light (g��u
�u� ¼ �, � ¼ 1 for

massive test particles and � ¼ 0 for light) moving on a
geodesic one immediately infers the conserved energy E
and angular momentum L

E ¼ �r

�2

�
dt

d�
� 2nðcos# þ CÞ d’

d�

�
(3)

L ¼ 2nðcos# þ CÞ�r

�2

�
dt

d�
� 2nðcos# þ CÞ d’

d�

�

þ �2sin2#
d’

d�
; (4)

where � is an affine parameter along the geodesic.
For convenience, we introduce dimensionless quantities

(rS ¼ 2M)

~r¼ r

rS
; ~t¼ t

rS
; ~�¼ �

rS
; ~n¼ n

rS
; ~L¼ L

rS
:

(5)

It is straightforward to see that in Taub-NUT space-times
the Hamilton-Jacobi equation

2
@S

@�
¼ g�� @S

@x�
@S

@x�
(6)

is separable and yields for each coordinate a corresponding
differential equation �

d~r

d�

�
2 ¼ R (7)

�
d#

d�

�
2 ¼ � (8)

d’

d�
¼ L0 � 2~nE cos#

sin2#
; with L0 ¼ ~L� 2~nEC (9)

d~t

d�
¼ E

~�4

~�r

þ 2~nðcos# þ CÞL
0 � 2~nE cos#

sin2#
: (10)

Here we used ~�2 ¼ ~r2 þ ~n2 and ~�r ¼ ~r2 � ~r� ~n2 and
introduced the Mino time � through ~�2d� ¼ d~� [20].
We also defined

R ¼ ð~r2 þ ~n2Þ2E2 � ~�rð�~r2 þ ~L2 þ kÞ (11)

� ¼ k� �~n2 þ ~L2 � ðL0 � 2~nE cos#Þ2
sin2#

: (12)

The separation constant k is known as the Carter constant.

A study of the geodesic equation in Weyl coordinates has
been performed in [21].

A. Gauge transformation

Consider a transformation t ¼ t0 þ 2nC’. It brings the
metric (1) into C-independent form:

ds2 ¼ �r

�2
ðdt0 � 2n cos#d’Þ2 � �2

�r

dr2

� �2ðd#2 þ sin2#d’2Þ; (13)

with corresponding conserved energy E0 ¼ E and angular
momentum L0 ¼ ~L� 2~nEC for a test particle or light.
Thus, the apt notation L0 introduced in the Hamilton-
Jacobi equations (7)–(10) represents a conserved angular
momentum in the gauge transformed metric (13).
The Hamilton-Jacobi equation for each coordinate of the

metric (13) yields �
d~r

d�

�
2 ¼ R (14)

�
d#

d�

�
2 ¼ � (15)

d’

d�
¼ L0 � 2~nE cos#

sin2#
(16)

d~t0

d�
¼ E

~�4

~�r

þ 2~n cos#
L0 � 2~nE cos#

sin2#
; (17)

with

R ¼ ð~r2 þ ~n2Þ2E2 � ~�rð�~r2 þ L02 þ k0Þ (18)

� ¼ k0 � �~n2 þ L02 � ðL0 � 2~nE cos#Þ2
sin2#

: (19)

The Carter constant k0 is related to k as k0 � k ¼ ~L2 � L02.
From the considerations above one concludes that the

metric (1) can be brought into form (13) which corresponds
to the metric (1) for C ¼ 0. The same feature is observed
for the Hamilton-Jacobi equations (7)–(10) and (14)–(17)
under interchange of the constants L0 and ~L, k0 and k and
the coordinates ~t0 and ~t.

III. COMPLETE CLASSIFICATION OF
GEODESICS

Consider the Hamilton-Jacobi equations (7)–(10). The
properties of the orbits are given by the polynomial R (11)
and the function � (12). The constants of motion (energy,
angular momentum and separation constant) as well as the
parameters of the metric (dimensionless NUT parameter)
characterize these polynomials and, as a consequence, the
types of orbits. In this section we discuss the motion in

1From r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ n2

p
we obtain r2� � 2r�M ¼ n2.

Since r� < 0 it follows that �jnj< r�.
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Taub-NUT space-times in terms of the properties of the
underlying polynomial R and the function �.

A. The #-motion

In order to obtain from Eq. (8) real values of the coor-
dinate # we have to require � � 0. This implies c2 :¼
k� �~n2 þ ~L2 � 0. With the new variable � :¼ cos#,
Eq. (8) turns into the equation�

d�

d�

�
2 ¼ �� with �� :¼ a�2 þ b�þ c; (20)

with a simple polynomial of second order on the right-hand
side, where a ¼ �ðc2 þ 4~n2E2Þ, b ¼ 4~nEL0, and c ¼
c2 � L02. Since c2 � 0 we have a < 0. This means that
�� can be positive if and only if there are real zeros of��.

The polynomial �� plays the role of an effective potential

for the #-motion. The zeros of � define the angles of two
cones which confine the motion of the test particles. (A
similar feature appears in Kerr space-times [22].)
Moreover, every trajectory is not only constrained by these
cones but lies itself on a cone in 3-space [8,10,11] (the
discussion for C ¼ �1 in the papers [8,10] can be ex-
tended for the general family of Taub-NUT solutions).

The discriminant D ¼ b2 � 4ac of the polynomial ��

can be written asD ¼ 4c1c2 with c1 :¼ c2 � L02 þ 4~n2E2.
The existence of real zeros of �� requires D � 0. This
implies that both c1 and c2 should be non-negative

c1 ¼ c2 � L02 þ 4~n2E2 � 0 c2 ¼ k� �~n2 þ ~L2 � 0:

(21)

These are conditions on the parameters E, ~L, and k for
some given ~n. As long as k� �~n2 is positive there are no
constraints on ~L and E. When k� �~n2 becomes negative
the inequalities (21) imply lower limits for the energy and

angular momentum given by ~Lmin ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�~n2 � k

p
and

Emin ¼ 1
2~nð1�C2Þ ð� ~LC� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�~n2 � kþ c2C
2

p Þ.
One can show that

� ¼ c1 � ðL0 cos# � 2E~nÞ2
sin2#

¼ c2 � ðL0 � 2E~n cos#Þ2
sin2#

:

(22)

The zeros of �� are given by

�1;2 ¼
2E~nL0 � ffiffiffiffiffiffiffiffiffi

c1c2
p

c1 þ L02 : (23)

The conditions (21) ensure the compatibility of � 2
½�1; 1� with �� � 0.

The function�� describes a parabola with the maximum

at ( 2~nEL0
c1þL02 ,

c1c2
c1þL02 ). For nonvanishing ~n, E, and ~L the maxi-

mum of the parabola is no longer located at � ¼ 0 or,
equivalently, the zeros are no longer symmetric with re-
spect to � ¼ 0. Only for vanishing ~n, E, or ~L both cones are
symmetric with respect to the equatorial plane.

The #-motion can be classified according to the sign of
c2 � L02:
(1) If c2 � L02 < 0 then �� has 2 positive zeros for

L0E~n > 0 and # 2 ð0; �=2Þ, so that the particle
moves above the equatorial plane without crossing
it. If L0E~n < 0 then # 2 ð�=2; �Þ.

(2) If c2 � L02 ¼ 0 then �� has two zeros: �1 ¼ 0 and

�2 ¼ 4E~nL0
L02þ4E2 ~n2

. If L0E~n � 0 then � 2 ½0; 1Þ and

# 2 ð0; �2 ]. If L0E~n � 0 then � 2 ð�1; 0� and # 2
½�2 ; �Þ. If L0 ¼ 2E~n then the #-motion fills the

whole upper hemisphere # 2 ½0; �2�. The motion

fills the whole lower hemisphere with # 2 ½�2 ; ��
if L0 ¼ �2E~n.

(3) If c2 � L02 > 0 then �� has a positive and a nega-

tive zero and # 2 ð0; �Þ, and the particle crosses the
equatorial plane during its motion.

In general, the second term of the function � in (22)
diverges for # ! 0, �. However, if L0 ¼ 2E~n this term is
regular for # ¼ 0 and if L0 ¼ �2E~n it is regular for # ¼
�. If L0 ¼ �2E~n, then c1 ¼ c2. The regularity of � in
these cases can be seen from

� ¼ c2 � 4E2~n2
ð1� cos#Þ2

sin2#
; (24)

by application of l’Hôpital’s rule. If, furthermore, E2 ¼ 0
then � ¼ k� �~n2 þ ~L2 which is independent of #.
In the special cases when one of the constants c1 or c2 or

both vanish, �� has a double root which is the only

possible value for #. One can distinguish three cases:
(1) If c1 ¼ 0 and c2 > 0, then � ¼ 2E~n

L0 for L02 > 4E2n2.

(2) If c2 ¼ 0 and c1 > 0 then � ¼ L0
2E~n for L

02 < 4E2n2.

(3) If c1 ¼ c2 ¼ 0 then � ¼ �1 implying that # ¼ 0 or
# ¼ � are possible. In this case L0 ¼ �2E~n (as
discussed above).

This means that during a test particle’s motion the coor-
dinate# is constant and the trajectory lies on a cone around
the # ¼ ð0; �Þ-axis with the opening angle arccos�. In this
case we immediately obtain from (9) that ’ð�Þ ¼ Cð��
�inÞ with a constant C ¼ L0�2~nE�

1��2 which in case 1 is C ¼ L0

and in case 2 is C ¼ 0.
Thus, the nonvanishing of c1 and c2 indicates that the

motion of the particle is not symmetric with respect to the
# ¼ ð0; �Þ-axis. Therefore, these two constants may be
regarded to play the role of a generalized Carter constant
which appears, e.g., in the motion of particles in a Kerr
space-time.

B. The ~r-motion

1. Possible types of orbits

Before discussing the ~r-motion we introduce a list of all
possible orbits:
(1) Transit orbits (TO) with ~r 2 ð�1;�1Þ with a

single transit of r ¼ 0.
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(2) Escape orbits (EO) with ranges
(a) (r1, 1) with r1 > 0 or
(b) (�1, r01) with r01 < 0.

These escape orbits do not cross r ¼ 0.
(3) Crossover escape orbits (CEO) with ranges
(a) (r1, 1) with r1 < 0 or
(b) (�1, r01) with r01 > 0,

which cross r ¼ 0 twice.
(4) Bound orbits (BO) with range ~r 2 ðr1; r2Þwith r1 <

r2 and
(a) either r1, r2 > 0 or
(b) r1, r2 < 0.
(5) Crossover bound orbits (CBO) with range ~r 2

ðr1; r2Þ where r1 < 0 and r2 > 0.
The mathematical condition from the geodesic equation

for crossing the origin ~r ¼ 0 is Rð0Þ � 0. This implies
Rð0Þ ¼ ~n2ð~n2E2 þ c2 þ �~n2Þ � 0, which is always ful-
filled under the conditions (21).

2. The radial motion

The right-hand side of differential equation (7) has the
form R ¼ P

4
i¼0 bi~r

i with the coefficients

b4 ¼ E2 � � (25)

b3 ¼ � (26)

b2 ¼ 2~n2E2 � c2 (27)

b1 ¼ c2 þ �~n2 (28)

b0 ¼ ~n2ð~n2E2 þ c2 þ �~n2Þ: (29)

Let us now consider massive particles only, that is � ¼ 1.
In order to obtain real values for ~r from (7) we have to
require R � 0. The regions for which R � 0 are bounded
by the zeros of R. The number of zeros depend on the
values of E, ~L, and ~n. For E2 � 1 � 0 there are regions
with j and j� 2 real zeros whose boundaries are given by
R ¼ 0 and R0 ¼ 0. This is used for the parameter plots
shown in Fig. 1. One has to additionally take care of the
change of the sign of E2 � 1 when E2 crosses E2 ¼ 1.
Then the sign of Rð~rÞ for ~r ! �1 changes. Furthermore,
the case E2 ¼ 1 requires additional attention: if the line
E2 ¼ 1 is contained in a region with 4 or 2 zeros then on
this portion of the line we have 1 zero less, that is only 3 or
1 zeros, respectively. Taking all these features into account
we obtain the ~L-E diagrams of Fig. 1.

Before classifying all orbits we show that it is not
possible to have an orbit completely constrained to the
region between the two horizons. If such an orbit would
exist then the turning points should lie in this region. These
turning points are given by

0 ¼
�
d~r

d�

�
2 ¼ ð~r2 þ ~n2Þ2

�
E2 � ~�r

~r2 þ ~L2 þ k

ð~r2 þ ~n2Þ2
�
; (30)

where ~L2 þ k � 0 as can be inferred from (21). Then it is

clear that for E2 ¼ 0 we have ~�r ¼ 0 which gives the
horizons r ¼ r� as turning points. This case requires k �
~n2. If E2 > 0 then also ~�r > 0, implying that the turning
points are in the outer regions, that is in r > rþ and r < r�.
Therefore it is not possible to have geodesic motion com-
pletely constrained to the region between the two horizons.
Moreover, having crossed one of the horizons once, a
particle is forced to pass the origin r ¼ 0 and then cross
the other horizon as well.
Furthermore, it is not possible to have a turning point at

one of the horizons only. If, e.g., r ¼ r� is a turning point,
then�rðr�Þ ¼ 0. Then we necessarily have E2 ¼ 0. In this
case also r ¼ rþ is a turning point. Therefore it is not
possible to have a turning point at one of the horizons only.
If E2 ¼ 0 then the turning points at the horizon are the only
turning points. That is, if one of the turning points is on one
of the horizons then a second one is lying on the other
horizon, and there are no further turning points.
The expression

Veff :¼ ~�r

~r2 þ ~L2 þ k

ð~r2 þ ~n2Þ2 (31)

may be regarded as an effective potential. Though it does
not determine the motion of the particles in the usual sense
it determines the turning points through the condition E2 �
Veff ¼ 0.
Using the ~L-E diagrams in Fig. 1 as well as the above

considerations we can give all possible combinations of
zeros of R and an interpretation in terms of specific types of
orbits which are summarized in Table I. Note that at the
moment we are not discussing features related to singular-
ities and/or geodesic incompleteness. This discussion will
follow in Sec. V. In the present section we are just explor-
ing the types of orbits that are mathematically possible as
solutions of the geodesic equations.
The types of orbits related to various parameters are

given by:
(1) Region (0): no real zeros. We have TOs only with

particles moving from �1 to �1 which we call
orbit A.

(2) Region (1): one real zero. Here the coefficient of the
highest power in R, given by E2 � 1 for massive test
particles, vanishes for E2 ¼ 1. On the E2 ¼ 1 line
within region (2) there is one real zero. The orbit is a
CEO with particles coming from ~r ¼ þ1.

(3) Region (2): two real zeros. Because of the fact that
the coefficient of the ~r4-term is given by E2 � 1 the
sign and, thus, the type of orbit changes for E2 larger
or smaller than 1. For E2 < 1 only CBOs are pos-
sible.

(a) Region ð2Þþ: We obtain EOs and CEOs.
(b) Region ð2Þ�: Because of the sign change men-

tioned above the types of orbits change leading
to one CBO. For 0< E2 < 1 the two turning points
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TABLE I. Types of polynomials and orbits in the Taub-NUT space-time. The thick lines represent the range of orbits. Turning points
are shown by thick dots. The regions (1) and (3) are the line E2 ¼ 1 lying in the regions (2) and (4). The indices þ and � indicate
E2 > 1 and E2 < 1, respectively. The position ~r ¼ 0 is shown by a vertical line, the horizons are indicated by a vertical double line. In
the case D0 the turning points lie on the horizons for E2 ¼ 0.

Type Region þZeros �Zeros Range of ~r Orbit

A (0) 0 0 TO

B (1) 0 1 CEO

C ð2Þþ 0 2 EO, CEO

D CBO

D0
ð2Þ� 1 1

CBO0

E (3) 2 1 CBO, EO

F ð4Þþ 2 2 EO, CBO, EO

G ð4Þ� 3 1 CBO, BO

FIG. 1 (color online). Parametric ~L-E diagrams showing the location of regions (0) through (4), which reflect the number of zeros of
the polynomial R in Eq. (11). Each region contains a set of orbits peculiar to it which are described in Table I and in the text
(Sec. III B 2). Here the influence of the independent variation of n [Figs. 1(a)–1(d)] and k [Figs. 1(e)–1(i)] on the zeros of R is
presented. The dashed region denotes the prohibited values of E and ~L following from the inequalities (21). Here C ¼ 0.
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are larger than rþ and smaller than r�, respec-
tively. For E2 ¼ 0 the two turning points are lying
on the two horizons.

(4) Region (3): three real zeros. Again, for E2 ¼ 1 the
term of highest power in R vanishes giving three
zeros for the E2 ¼ 1-line contained within re-
gion (4). For E2 > 0 the turning points cannot coin-
cide with the horizons.

(5) Region (4): four real zeros. Here again the types of
orbits change depending on the sign of the coeffi-
cient E2 � 1 of the leading term in R.

(a) Region ð4Þþ: We obtain two EOs and a CBO. For
the CBO the turning points cannot be on the
horizons.

(b) Region ð4Þ�: Here we find BOs and CBOs. The
turning points cannot be on the horizons.

The corresponding effective potentials are exhibited in
Fig. 2. We note the asymmetry of the possible types of

orbits with respect to the outer regions. In the negative r
region no bound orbits are possible, since the effective
potential is repulsive here.

IV. SOLUTION OF THE GEODESIC EQUATION

Now we present the analytical solutions of the differen-
tial equations (7)–(10).

A. Solution of the #-equation

The solution of Eq. (20) with a < 0 and D> 0 is given
by the elementary function

#ð�Þ ¼ arccos

�
1

2a
ð ffiffiffiffi

D
p

sinð ffiffiffiffiffiffiffi�a
p

�� �#
inÞ � bÞ

�
; (32)

where �#
in ¼

ffiffiffiffiffiffiffi�a
p

�in � arcsinð 2a�inþbffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p Þ and �in is the ini-

tial value of �.

B. Solution of the ~r-equation

For timelike geodesics the polynomial R in (11) is of
fourth order. A standard substitution ~r ¼ � 1

x þ ~rR, where

~rR is a zero of R, reduces (7) to a differential equation with
a third order polynomial ðdxd�Þ2 ¼ R3, where R3 ¼P3

i¼0 bix
i. A further substitution x ¼ 1

b3
ð4y� b2

3 Þ trans-

forms that into the standard Weierstrass form�
dy

d�

�
2 ¼ 4y3 � g2y� g3 :¼ P3ðyÞ; (33)

where

g2 ¼ b22
12

� b1b3
4

; g3 ¼ b1b2b3
48

� b0b
2
3

16
� b32

216
: (34)

The differential equation (33) is of elliptic type and is
solved by the Weierstrass }-function [23]

yð�Þ ¼ }ð�� �0
in; g2; g3Þ; (35)

where �0
in ¼ �in þ

R1
yin

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y3�g2y�g3

p with yin ¼ � b3
4 ð~rin �

~rRÞ�1 þ b2
12 . Then the solution of (7) acquires the form

~r ¼ � b3

4}ð�� �0
in; g2; g3Þ � b2

3

þ ~rR: (36)

C. Solution of the ’-equation

Equation (9) can be simplified by using (8) and by
performing the substitution � ¼ cos#

d’ ¼ � d�ffiffiffiffiffiffiffi
��

q L0

1� �2
þ �d�ffiffiffiffiffiffiffi

��

q 2~nE

1� �2
; (37)

where �� is given in (20). This equation can be easily

integrated and the solution for a < 0 andD> 0 is given by

r̃

Veff

G

A

D0

C

B

G

Veff

r

B

FIG. 2 (color online). Veff for orbits of type A, B, C, D, D0, E,
F, G from Table I showing the position of the orbit types CBO,
CEO, BO, EO, TO. The points indicate the turning points of the
motion and the dashed lines correspond to the values of the
energy E2. At infinity the effective potential tends to the value
lim~r!�1Veff ¼ 1.
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’ð�Þ ¼ 1

2
ðI� � IþÞ

��������
�ð�Þ

�in

þ’in; (38)

where

I� ¼ L0 � 2E~n

jL0 � 2E~nj arctan
1� uB�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2� � 1
q (39)

u ¼ 2a�þ bffiffiffiffi
D

p (40)

B� ¼ b� 2affiffiffiffi
D

p : (41)

It can be shown that

B2� � 1 ¼ 4ð�aÞ
D

ð2E~n� L0Þ2 > 0: (42)

For the special case c2 ¼ L02 and L0 ¼ 2E~n the solution
reduces to the simple form

’ð�Þ ¼ 1

2
arctan

ffiffiffi
2

p ð1� 3�Þ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��2 þ �
p

��������
�ð�Þ

�in

þ’in: (43)

D. Solution of the ~t-equation

Equation (10) consists of ~r and # parts:

~t� ~tin ¼ E
Z ~rð�Þ

~rin

~�4

~�r

d~rffiffiffiffi
R

p þ 2~n
Z #ð�Þ

#in

ðcos# þ CÞ

� L0 � 2~nE cos#

sin2#

d#ffiffiffiffiffi
�

p

¼: I~rð�Þ þ I#ð�Þ: (44)

Again with the substitution � ¼ cos# the integral I#ð#Þ
can be easily solved:

I#ð�Þ ¼ ~nðIþ þ I�Þj�ð�Þ�in
þ C~nðI� � IþÞj�ð�Þ�in

þ 4~n2Effiffiffiffiffiffiffi�a
p

� arcsin
2a�þ bffiffiffiffi

D
p

��������
�ð�Þ

�in

(45)

with I� as in (39).

We now consider I~r. The substitution ~r ¼ � b3

4y�b2
3

þ ~rR

reexpresses I~r in terms of y:

I~rð�Þ ¼ E
Z y

yin

� dyffiffiffiffiffiffiffiffiffiffiffiffi
P3ðyÞ

p

� fð~rRð4y� b2
3 Þ � b3Þ2 þ n2ð4y� b2

3 Þ2g2
ð4y� b2

3 Þ2�y

; (46)

where �y ¼ ~�rð~rRÞð4y� b2
3 Þ2 � ð2~rR � 1Þb3ð4y� b2

3 Þ þ

b23 ¼ 16~�rð~rRÞðy� p1Þðy� p2Þ. Here, p1 and p2 are two

zeros of �y.

We next apply a partial fractions decomposition upon
Eq. (46)

I~rð�Þ ¼ E
Z �

�in

� dyffiffiffiffiffiffiffiffiffiffiffiffi
P3ðyÞ

p
�
K0 þ

X3
j¼1

Kj

y� pj

þ K4

ðy� p3Þ2
�
;

(47)

where p3 ¼ b2
12 and Ki, i ¼ 0; . . . ; 4, are constants which

arise from the partial fractions decomposition. These de-
pend on the parameters of the metric and the test particle

and on ~rR. After the substitution y ¼ }ðvÞ with }0ðvÞ ¼
ð�1Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4}3ðvÞ � g2}ðvÞ � g3
p

, where � is either 0 or 1
depending on the sign of }0ðvÞ in the considered interval
and on the branch of the square root, Eq. (47) simplifies to

I~rð�Þ ¼ �E
Z v

vin

ð�1Þ�
�
K0 þ

X3
j¼1

Kj

}ðvÞ � pj

þ K4

ð}ðvÞ � p3Þ2
�
dv: (48)

Here v ¼ vð�Þ ¼ �� �0
in and vin ¼ vð�inÞ.

The final solution takes the form (details can be found in
the appendixes B and C)

I~rð�Þ ¼ �ð�1Þ�E
�
ðK0 þ A2K4Þðv� vinÞ

þX2
i¼1

�X3
j¼1

Kj

}0ðvjiÞ
�
	ðvjiÞðv� vinÞ

þ log

ðv� vjiÞ

ðvin � vjiÞ

�
� K4

ð}0ðv3iÞÞ2
�
	ðv� v3iÞ

� 	ðvin � v3iÞ þ }00ðv3iÞ
}0ðv3iÞ log


ðv� v3iÞ

ðvin � v3iÞ

���
;

(49)

where vji are the poles of the functions ð}ðvÞ � pjÞ�1 and

ð}ðvÞ � p3Þ�2 in (47) such that }ðvj1Þ ¼ pj ¼ }ðvj2Þ
since }ðvÞ is an even elliptic function of order two which
assumes every value in the fundamental parallelogramwith
multiplicity two. Here 	ðvÞ is the Weierstrass zeta function
and 
ðvÞ is the Weierstrass sigma function [23];

A2 ¼ �X2
i¼1

�
}ðv3iÞ

ð}0ðv3iÞÞ2
þ }00ðv3iÞ	ðv3iÞ

ð}0ðv3iÞÞ3
�

is a constant.

E. The complete orbits

With these analytical results we have found the full set
of orbits for massive point particles: a TO is shown in
Fig. 3, a BO in Fig. 4, a CBO in Fig. 5, an EO in Fig. 6, and
a CEO in Fig. 7. The degenerate case of a CBO where the
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FIG. 3 (color online). TO with parameters ~n ¼ 1, k ¼ 1, ~L ¼ 2, E2 ¼ 3. The figures combine both regions r > 0 (blue) and r < 0
(sea green).

FIG. 4 (color online). BO with parameters ~n ¼ 0:5, k ¼ 1:0, ~L ¼ 2:0, E2 ¼ 0:940 84. The sphere denotes the horizon at rþ.

FIG. 5 (color online). CBO with parameters ~n ¼ 0:5, k ¼ 1:0, ~L ¼ 2:0, E2 ¼ 0:940 84. In the three-dimensional plot the orbit for
positive r (blue) is shown. The transition to negative r (sea green) can be seen in the projection onto the x-z plane.
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FIG. 6 (color online). An example for an EO.

FIG. 7 (color online). An example for a CEO. The figures combine both regions r > 0 (blue) and r < 0 (sea green).

FIG. 8 (color online). Two degenerate orbits. A CBO with the horizons as turning points and a CBO crossing the # ¼ ð0; �Þ-axis.
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turning points are lying on the horizons is exhibited in
Fig. 8(a). A further degenerate case, an orbit which crosses
the # ¼ 0-axis, is shown in Fig. 8(b). The CBO, CEO, and
TO contain a positive r and a negative r part. For simplicity
and since it does not create confusion, these two parts are
included in the same plot. In Fig. 3, 5(b), 7(b), and 8(a) the
part of the orbit with negative r is plotted in sea green,
whereas the blue color always represents positive r.

The constant C appearing in the general family of Taub-
NUT solutions [Eq. (1)] is chosen zero in the calculation of
the geodesics. In general, it follows from the Hamilton-
Jacobi equations (7)–(9) that the constant C can be ab-
sorbed in the constant L0 and does not influence the char-
acteristic features of the geodesics in the Taub-NUT space-
times discussed in Sec. III. Moreover, as it is shown in
Sec. II A) one can switch between the C-dependent metric
(1) and Hamilton-Jacobi equations (7)–(10) and the
C-independent metric (13) and Hamilton-Jacobi equations
(14)–(17) by introducing a gauge transformed coordinate t0
and interchanging the constants of motion L0 and ~L, k0 and
k.

These orbits are just solutions of the geodesic equation
for the spatial coordinates. The complete discussion of
these orbits is possible only by including the solutions
for the time coordinate and the proper time, which is
critical for the issue of geodesic incompleteness and other
singularities. This is done in the next section.

V. THE ISSUE OF SINGULARITIES

In this section we discuss the nature of the singularities
which are present in the Taub-NUT space-times. We ad-
dress these singularities in terms of the analytic solutions
of the geodesic equation. Different interpretations of the
Taub-NUT space-time give rise to different types of singu-
larities.

(1) The family of Taub-NUT space-times as given by
the metric (1) possesses a singularity along the
whole # ¼ ð0; �Þ-axis when jCj�1 [7], which in-
cludes our choiceC ¼ 0, Eq. (1). The choice jCj¼1
leads only to singular semiaxes (see e.g. Misner [5]).

(2) In the interpretation of Misner [5] and Misner and
Taub [8] one can avoid the singularity present on the
axis by employing a periodic identification of the
time coordinate. Hypersurfaces r ¼ const then pos-
sess the topology S3. In this case it is, however, not
possible to eliminate the geodesic incompleteness
which arises at the horizons, as discussed below.

(3) When analytically extending the space-time at the
horizons by gluing further copies of the space-time
following Miller, Kruskal, and Godfrey [9], one has
to retain the singularity along the # ¼ ð0; �Þ-axis.
Therefore one finds the space-times considered by
Bonnor [6] and Manko and Ruiz [7], where the axial
singularity is interpreted as a physical singularity.
Such a singularity might possibly be avoided, how-
ever, if an appropriate interior solution were
included.

Before discussing the singularities of Taub-NUT space-
times in terms of the behavior of the geodesics, we visual-
ize Taub-NUT space-times using Carter-Penrose diagrams.

A. Singularities in a single copy of Taub-NUT
space-time

The Carter-Penrose diagram for a single copy of Taub-
NUT space-time is shown in Fig. 9. It consists of three
regions: region I with 1>r>rþ>0, region II with rþ>
r>r�, and region III with 0>r�>r>�1. This diagram
is helpful in discussing the singularity issues. One can
consider two versions of it because the geodesic motion
in regions I and III is different. (Recall that the potential in

FIG. 9. Two causal versions of Taub-NUT space-time in a Carter-Penrose diagram. Here region I is given by r > rþ, region II by
r� < r < rþ, and region III by r < r�. For the Kruskal-like analytic continuation see Fig. 12.
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region III is repulsive.) Thus the motion of a particle
depends on whether it starts in region I or region III.

The possible orbits obtained above are depicted in
Fig. 10. From this diagram it is immediately clear that
the CEOs shown in red, as well as the CBOs shown in
blue (and the D0 shown in green which represent a special
case of the CBOs) are geodesically incomplete in a single
copy of Taub-NUT space. The CEOs, for instance, start at
spatial infinity, cross the horizons rþ and r�, and are
forced to end when they reach the horizon r� a second
time. Therefore, as long as there is only a single copy of
Taub-NUT space, there is no way for such a geodesic to
cross the horizon r� a second time, implying geodesic
incompleteness of the space-time. This illustrates the prob-
lem in the interpretation of Misner and Taub, where the

periodic identification of the time coordinate precludes the
analytic extension of the space-time with further copies.

B. Singularities in the Misner and Taub version of the
Taub-NUT space-time

The geodesic incompleteness in this version of Taub-
NUT space-time has been investigated by Misner and Taub
[8]. We now explicitly demonstrate this geodesic incom-
pleteness by means of our analytic solution: By introduc-
ing Eddington-Finkelstein–like coordinates c� through

2nc� ¼ t� R
r
�2

�r
dr, one eliminates the singular behavior

of the metric (1) at the horizons �r ¼ 0 and one obtains
two metrics

FIG. 10 (color online). Topology of orbits in Carter-Penrose diagrams of Taub-NUT space-time. The orbits drawn in black are
standard orbits with infinite proper time, the orbits in red, blue, and green are geodesically incomplete.

FIG. 11 (color online). Taub-NUT space-time: cþ and c� for ~n ¼ 0:5, k ¼ 1, ~L ¼ 2, and E2 ¼ 0:93. The orbit is a CBO of the
type depicted in Fig. 5(a).
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ds2 ¼ 4n2
�r

�2
ðdc � ðcos# þ CÞd’Þ2

� 4nðdc � ðcos# þ CÞd’Þdr
� �2ðd#2 þ sin2#d’2Þ: (50)

With I~rð�Þ and I#ð�Þ as in (44) the equation for the
coordinate c takes the form

2~nðc� � c inÞ ¼ ð~t� ~tinÞ �
Z ~r

~rin

~�2

~�r

d~r

¼ I~rð�Þ þ I#ð�Þ �
�
~rþ 1

2
logj~�rj

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~n2

p
log

��������
2~r�1ffiffiffiffiffiffiffiffiffiffi
4~n2þ1

p � 1

ð2~r�1Þffiffiffiffiffiffiffiffiffiffi
4~n2þ1

p þ 1

��������
���������

~rð�Þ

~rin

:

(51)

Figure 11 shows the c ð�Þ-dependence which reveals the
incompleteness of crossover bound geodesics. Consider
e.g. cþ in Fig. 11(a). A test particle starting its motion

somewhere in the region ~�r > 0 can cross the horizons rþ
and r� only once; when it approaches r� for the second
time the function c ð�Þ diverges and prevents the particle

from leaving the region ~�r � 0. This behavior represents
the geodesic incompleteness observed by Misner and Taub
[8]. Also if a particle starts from ~r ¼ 0 the geodesic is

incomplete, since once a particle leaves the region ~�r � 0
after crossing one of the horizons r� or rþ, it cannot cross
this horizon a second time, because c ð�Þ diverges there.
At the same time the affine parameter � cannot be con-
tinued further, which indicates the geodesic incomplete-
ness of the Taub-NUT space-time.

Figure 11(b) for c� demonstrates the incompleteness of
the geodesics at the first pair of horizons.

Thus, the Eddington-Finkelstein–like transformations
eliminate the singular behavior of the original
Schwarzschild-like coordinates only at the first crossing
of the horizons, but lead to incomplete geodesics at the
attempted second crossing.

Because an analytic extension of the space-time with a
second copy is not possible without destroying the
Hausdorff property of the underlying topological space
[9], the Taub-NUT space-time with periodically identified
time coordinate is geodesically incomplete.

C. Singularities in the Kruskal-like analytic extension
of the Taub-NUT space-time

In order to extend these incomplete geodesics, Miller,
Kruskal, and Godfrey [9] presented a Kruskal-like analytic
extension of the Taub-NUT space-time, where an infinite
sequence of further copies of Taub-NUT space-time is
added. This procedure is completely analogous to the
case of the Reissner-Nordström space-time discussed in

Appendix A. The Carter-Penrose diagram of this extension
of Taub-NUT space-time is presented in Fig. 12.
In this extended space-time it is possible to continue the

CEOs and CBOs. These geodesics are therefore no longer
forced to terminate at a horizon, when trying to pass it for a
second time. This is illustrated in Fig. 13, where these
orbits are displayed in the Carter-Penrose diagram.
The price to pay for the continuation of the geodesics at

the horizons is, however, that the singular # ¼ ð0; �Þ-axis
cannot be eliminated by a periodic identification of the
time coordinate. Thus, the axis represents a singularity,
where geodesics must terminate. In the classification of
Ellis and Schmidt [24,25] this type of singularity has been
termed a quasiregular singularity, since the curvature re-

FIG. 12. Kruskal-like analytic continuation of Taub-NUT
space-time in a Carter-Penrose diagram. Here region I is given
by r > rþ, region II by r� < r < rþ and region III by r < r�.
One copy of Taub-NUT space corresponds to the regions I, II,
and III glued together diagonally; compare Fig. 9.
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mains finite (see also [26,27]). Nevertheless, a geodesic
ends when reaching the singularity, analogous to the more
often encountered conical singularity. A further discussion
of this type of singularity may be found in [28,29], classi-
fying this singularity further as a torsion singularity.

Thus, the introduction of the Kruskal-like analytical
extension of the space-time eliminates the geodesic incom-
pleteness at the horizons but only trades it for a physical
singularity along the # ¼ ð0; �Þ-axis, where the geodesics

are forced to terminate: consequently the geodesic incom-
pleteness of Taub-NUT space-times is retained in either
interpretation of this intriguing vacuum solution.

VI. THE OBSERVABLES

As in any other space-time orbits in Taub-NUT space-
time possess some invariantly defined observables like
perihelion shift, light deflection, the deflection angle for
flyby orbits, or the Lense-Thirring effect. These quantities
are directly or indirectly related to the periods of the # and
the ~r motion.
The two fundamental periods of the }-function where

2!1 2 R and 2!2 2 C are

!1 ¼
Z e2

e1

dyffiffiffiffiffiffiffiffiffiffiffiffi
P3ðyÞ

p ; !2 ¼
Z e3

e2

dyffiffiffiffiffiffiffiffiffiffiffiffi
P3ðyÞ

p : (52)

For a bound orbit in region ð4Þ� the ~r-motion of the test
particle is periodic ~rð�þ!~rÞ ¼ ~rð�Þ, in particular, it os-
cillates between rmin and rmax with a period !~r ¼ 2!1

!~r ¼ 2
Z rmax

rmin

d~rffiffiffiffi
R

p ¼ 2
Z e2

e1

dyffiffiffiffiffiffiffiffiffiffiffiffi
P3ðyÞ

p ¼ 2!1; (53)

where e1 and e2 are the zeros of P3ðyÞ related to rmin and
rmax. The corresponding orbital frequency is 2�

!~r
.

The #-period of a bound orbit in region ð4Þ� is simply
given by

!# ¼ 2
Z #max

#min

d#ffiffiffiffiffi
�

p ¼ �2
Z �min

�max

d�ffiffiffiffiffiffiffi
��

q ¼ 2�ffiffiffiffiffiffiffi�a
p ; (54)

and the corresponding frequency by 2�
!#

.

The secular rates at which the angle ’ and the time t
accumulate are given by (for L0 > 2E~n):

Y’ ¼ 2

!#

Z �min

�max

L0 � 2~nE�

1� �2

�
� d�ffiffiffiffiffiffiffi

��

q
�

¼ 1

!#

ðI� � IþÞ
��������

�min

�max

¼ 2�

!#

¼ ffiffiffiffiffiffiffi�a
p

(55)

and

� ¼ 2

!~r

Z rmax

rmin

E
~�4

~�r

d~rffiffiffiffi
R

p þ 2

!#

Z #max

#min

ðL0 � 2~nE cos#Þ

� 2~nðcos# þ CÞ
sin2#

d#ffiffiffiffiffi
�

p

¼ 2

!~r

I~r

��������
�e2

�e1

þ4~n2Eþ 2~n
ffiffiffiffiffiffiffi�a

p
C; (56)

where I~r defined in Eq. (49) is evaluated at �ei correspond-

ing to the root ei, i ¼ 1; 2. The orbital frequencies�r,�# ,
and �’ are then given by

�~r ¼ 2�

!~r

1

�
; �# ¼ 2�

!#

1

�
; �’ ¼ Y’

�
: (57)

FIG. 13 (color online). The CEO (red) and the CBO (blue) in
the Kruskal-like analytic extension of Taub-NUT space-time. In
the Misner-Taub interpretation of Taub-NUT space-time these
orbits are incomplete at the horizons. In the Bonnor-Manko-Ruiz
interpretation of Taub-NUT space-time the orbits are incomplete
at the singular axis. The orbits then consist of incomplete pieces:
3 pieces for the CEO (red):A ! B, B ! C, C ! D, which are
incomplete at B and C; an infinite number of pieces for the CBO
(blue): A ! B, B ! C, C ! D, etc., which are incomplete at
A, B, C, D, etc. Also shown is the orbit D0 (green).
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As discussed in [30,31] the differences between these
orbital frequencies are related to the perihelion shift and
the Lense-Thirring effect

�perihelion ¼ �’ ��~r ¼
� ffiffiffiffiffiffiffi�a
p � 2�

!~r

�
1

�
(58)

�Lense-Thirring ¼ �’ ��# ¼ 0: (59)

Interestingly, there is no Lense-Thirring effect in the
Taub-NUT space-times. The geometrical reason for this
is the property that the orbits lie on cones. These cones are
fixed in space, and so the orbit reaches the maximal value
of # after each full revolution of ’ by 2�. Consequently,
the frequencies �’ and �# coincide. Thus in Taub-NUT

space-times the fixed cone plays the role of the fixed plane
of Schwarzschild space-times. We expect that in the case of
a Kerr-Taub-NUT space-time the orbital cone in the far
field region precesses like the orbital plane precesses in
Kerr space-time.

Further possible observables in the Taub-NUT space-
time are given by the deflection angle for escape and transit
orbits for massive test particles and for light.

VII. CONCLUSIONS AND OUTLOOK

In this paper we presented the analytic solution of the
geodesic equation in Taub-NUT space-times in terms of
the Weierstrass }, 
, and 	 functions. The derived orbits
depend on the particle’s energy, angular momentum, Carter
constant, and on the parameters of the gravitating source.
We discussed the general structure of the orbits and gave a
complete classification of their types.

We also addressed the properties of the geodesics in the
light of the interpretations of the Taub-NUT metric follow-
ing on the one hand Misner [5] and on the other hand
Bonnor [6]. According to Misner and Taub [8] one encoun-
ters incomplete geodesics, when the affine parameter sud-

denly terminates at the attempt to cross a horizon a second
time. In their approach Misner and Taub used Eddington-
Finkelstein transformations. Such kind of transformations
lead to incomplete geodesics also in the Reissner-Norström
space-time. This is due to the shortcoming of these coor-
dinates to not provide the complete analytical extension of
the space-time. In such a Kruskal-like extension of the
Taub-NUT space-time as performed by Miller, Kruskal,
and Godfrey [9] the incomplete geodesic behavior at the
horizons is eliminated. However, other geodesics are then
incomplete in the analytically extended Taub-NUT space-
time, because the singularity at the # ¼ ð0; �Þ-axis is
retained. A periodic identification of the time coordinate
would violate the Hausdorff property of the manifold and
is thus prohibited. Following Bonnor [6] and Manko and
Ruiz [7] the singularity on the axis must then be considered
as a physical singularity.
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APPENDIX A: INCOMPLETE BEHAVIOR OF
GEODESICS IN THE REISSNER-NORDSTRÖM

SPACE-TIMES

The ~r- and ~t-equations in the Reissner-Nordström
space-time in four dimensions take the form
[cf. Eqs. (7) and (10)]�

d~r

d�

�
2 ¼ RRN; RRN ¼ E2~r4 ��RNð~r2 þ ~L2Þ; (A1)

d~t

d�
¼ E~r4

�RN

; �RN ¼ ~r2 � ~rþ �2; (A2)

FIG. 14 (color online). Reissner-Nordström space-time: cþ and c� for � ¼ 0:4, ~L ¼ 2, and E2 ¼ 0:95.

ANALYTIC TREATMENT OF COMPLETE AND INCOMPLETE . . . PHYSICAL REVIEW D 81, 124044 (2010)

124044-15



where � is the normalized charge, � ¼ q
rS
, and the Mino

[20] time � is used where ~r2d� ¼ d~�. Solutions of these
equations can be derived by the same scheme as employed
in Eq. (7) with solution (36) and in Eq. (10) with solution
(44). (Note that in the Reissner-Nordström space-time the
motion can be restricted to the equatorial plane and only
the I~rð�Þ part survives.)

The incomplete behavior of geodesics in the Reissner-
Nordström space-time is similar to that in the Taub-NUT
space-time. Although the orbits are completely regular
from the ~r-, #-, and ’-equations, this interesting feature
reveals itself when one investigates the t-equation. The

Eddington-Finkelstein transformations c� ¼ ~t�R
~r

~r2

�RN
d~r convert the metric into a nonsingular form. The

affine parameter � stops to increase at some point while c
diverges there. This happens at the attempt to cross one of
the horizons a second time, as illustrated in Fig. 14. The
similarity with Fig. 11 for the Taub-NUT space-time is
immediately recognized.

The Kruskal-like extension of the Reissner-Nordström
space-time is better suited for the description of the geo-
desics. These coordinates present an analytical extension
of the space-time to the entire range of possible radial and
time coordinates, and yield an infinite set of copies of the
original Reissner-Nordström space-time. Consequently,
the geodesics which seemed to be incomplete at the hori-
zons in Eddington-Finkelstein coordinates can be
smoothly continued through the horizons to the glued
regions I, II, III of the copies. (The Carter-Penrose diagram
of the Kruskal extension for the Reissner-Nordström
space-time can be found, for instance, in [32,33].)

APPENDIX B: INTEGRATION OF ELLIPTIC
INTEGRALS OF THE THIRD KIND

We consider an integral of the type I1 ¼
R
v
vin

dv
}ðvÞ�p1

.

This integral is of the third kind because the function
f1ðvÞ ¼ ð}ðvÞ � p1Þ�1 has two simple poles v1 and v2

in a fundamental parallelogram with vertices 0, 2!1,
2!1 þ 2!2, 2!2, where 2!1 and 2!2 are fundamental
periods of }ðvÞ and }0ðvÞ.

Consider the Laurent series for the function f1 around vi

f1ðvÞ ¼ a�1;iðv� viÞ�1 þ holomorphic part; (B1)

and the Taylor series of f�1
1 about vi

f�1
1 ðvÞ ¼ }0ðviÞðv� viÞ þOðv2Þ: (B2)

Comparing the coefficients in the equality 1 ¼
f1ðvÞf�1

1 ðvÞ where

1 ¼ f1ðvÞð}0ðviÞðv� viÞ þOðv2ÞÞ
¼ a�1;i}

0ðviÞ þOðv2Þ (B3)

yields a�1;i ¼ 1
}0ðviÞ . Thus, the function f1ðvÞ has a residue

1
}0ðviÞ in vi.

TheWeierstrass 	ðvÞ function is an elliptic function with
a simple pole in 0 and residue 1. Then the function A1 ¼
f1ðvÞ �P

2
i¼1

	ðv�viÞ
}0ðviÞ is an elliptic function without poles

and therefore a constant [23], which can be determined
from f1ð0Þ ¼ 0. Thus,

f1ðvÞ ¼
X2
i¼1

	ðv� viÞ þ 	ðviÞ
}0ðviÞ ; (B4)

here }0ðv2Þ ¼ }0ð2!j � v1Þ ¼ �}0ðv1Þ. Applying now

the definition of the Weierstrass 
-function
R
v
vin

	ðvÞdv ¼
log
ðvÞ � log
ðvinÞ upon the integral I1 we get the solu-
tion

I1 ¼
Z v

vin

f1ðvÞdv

¼ X2
i¼1

1

}0ðviÞ
�
	ðviÞðv� vinÞ þ log


ðv� viÞ

ðvin � viÞ

�
: (B5)

APPENDIX C: INTEGRATION OF ELLIPTIC
INTEGRALS OF THE TYPE I2 ¼

R
v
vin

dv
ð}ðvÞ�p3Þ2

We consider the Laurent series of f2ðvÞ and the Taylor
series of f�1

2 ðvÞ around vi for f2ðvÞ ¼ 1
ð}ðvÞ�p3Þ2 :

f2ðvÞ ¼ a�2;iðv� viÞ�2 þ a�1;iðv� viÞ�1

þ holomorphic part; (C1)

f�1
2 ðvÞ ¼

�
}0ðviÞðv� viÞ þ 1

2
}00ðviÞðv� viÞ2 þOðv3Þ

�
2

¼ ð}0ðviÞÞ2ðv� viÞ2 þ }0ðviÞ}00ðviÞðv� viÞ3
þOðv4Þ: (C2)

The function f2ðvÞ has poles of second order in v1 and v2

such that f2ðv1Þ ¼ p3 ¼ f2ðv2Þ. Comparison of the coef-
ficients in

1 ¼ f2ðvÞðð}0ðviÞÞ2ðv� viÞ2 þ }0ðviÞ}00ðviÞðv� viÞ3
þOðv4ÞÞ

¼ a�2;ið}0ðviÞÞ2 þ ðv� viÞ½a�1;ið}0ðviÞÞ2
þ a�2;i}

0ðviÞ}00ðviÞ� þOðv2Þ (C3)

yields
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a�2;i ¼ 1

ð}0ðviÞÞ2
; a�1;i ¼ � }00ðviÞ

ð}0ðviÞÞ3
: (C4)

The function }ðvÞ possesses a pole of second order in
v ¼ 0 with residuum 0 and the Laurent series of } begins
with v�2. Then the Laurent series of a�2;i}ðv� viÞ around
vi begins with a�2;iðv� viÞ�2 which is similar to the first

term in (C1). The Laurent series of a�1;i	ðv� viÞ around
vi begins with a�1;iðv� viÞ�1. Thus, the function

A2 ¼ f2ðvÞ �
X2
i¼1

ð}ðv� viÞ
ð}0ðviÞÞ2

� }00ðviÞ	ðv� viÞ
ð}0ðviÞÞ3

Þ

has no poles and is constant [23] and can be calculated
from f2ð0Þ ¼ 0:

A2 ¼ �X2
i¼1

ð }ðviÞ
ð}0ðviÞÞ2

þ }00ðviÞ	ðviÞ
ð}0ðviÞÞ3

Þ:

Using of
R
v
vin

}ðvÞdv ¼ �	ðvÞ þ 	ðvinÞ and the defini-

tion of the 
-function the integral I2 takes the form

I2 ¼
Z v

vin

f2ðvÞdv

¼ A2ðv� vinÞ �
X2
i¼1

�
	ðv� viÞ � 	ðvin � viÞ

þ }00ðviÞ
}0ðviÞ log


ðv� viÞ

ðvin � viÞ

�
1

ð}0ðviÞÞ2
: (C5)
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