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We study the issue of algebraic classification of the Weyl curvature tensor, with a particular focus on

numerical relativity simulations. The spacetimes of interest in this context, binary black hole mergers, and

the ringdowns that follow them, present subtleties in that they are generically, strictly speaking, type I, but

in many regions approximately, in some sense, type D. To provide meaning to any claims of ‘‘approxi-

mate’’ Petrov class, one must define a measure of degeneracy on the space of null rays at a point. We will

investigate such a measure, used recently to argue that certain binary black hole merger simulations ring

down to the Kerr geometry, after hanging up for some time in Petrov type II. In particular, we argue that

this hangup in Petrov type II is an artefact of the particular measure being used, and that a geometrically

better-motivated measure shows a black hole merger produced by our group settling directly to Petrov

type D.
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I. INTRODUCTION

The marvelous improvements in the technology of nu-
merical relativity in recent years present opportunities for
revolutionizing our understanding of the classical gravita-
tional field. In the past, much of this understanding has
come from studying solutions with extreme symmetry, and
perturbations of such solutions. However, with the help of
numerical methods, truly generic simulations, particularly
of multiple black hole systems, can now be carried out in
full general relativity.

While this work is undertaken, one must keep in mind
the fundamental nature of general relativity and its solu-
tions. In particular, the general covariance of the theory is
not naturally reflected in the numerical context, where
gauge fixing is fundamentally required in the form of
coordinate and tetrad choices. In practice, such gauge
choices are tailored to numerical convenience (or neces-
sity), rather than to physical relevance. Such a simple task
as checking that a black hole merger settles down to a Kerr
geometry can be clouded by the arbitrariness of the simu-
lation coordinates.

One way of dealing with these ambiguities would be to
apply coordinate transformations to numerical simulations
a posteriori to represent these spacetimes in physically
preferable coordinates, if they exist. If one needs to map
all quantities to an entirely new coordinate grid, then some
accuracy would presumably be lost to the interpolation
process, especially if changes of the time function require
interpolation in time. More important, however, is the
difficulty of fixing physically preferred coordinate systems
in strongly dynamical and nonsymmetric spacetimes at all.

Another, perhaps complimentary, approach is to focus
physical analysis on partially (or if possible, totally) gauge-
invariant quantities. For example, a major tool in the

analysis (and construction) of exact solutions in general
relativity is the algebraic classification system of Petrov
and Pirani [1–3], in which the Weyl tensor at any given
point in spacetime is classified according to the algebraic
properties of its associated eigenbivector problem:

Cab
cdXcd ¼ �Xab: (1)

Another view of this classification system, with a more
geometrical flavor, was expounded particularly by Bel [4]
and Penrose [5]. In this approach one classifies the Weyl
tensor in terms of the degeneracy of the so-called principal
null directions, null vectors defined up to scale by the
equation

kekfk½aCb�ef½ckd� ¼ 0: (2)

One can show (most easily in spinor language) that this
equation is always satisfied by exactly four null rays,
counting multiplicities. If all four of these null directions
are distinct, the spacetime is said to be algebraically
general or type I at that point in spacetime. If two of
them coincide, the spacetime is said to be type II there. If
three, type III. If all four principal null directions coincide,
the spacetime is said to be type N, or null, in analogy with
the pure radiation fields of vacuum electrodynamics. If the
principal null directions coincide in two distinct pairs, then
the spacetime is said to be type D. The Kerr and
Schwarzschild geometries are famous examples of glob-
ally type D spacetimes, so in some sense, one may hope to
infer that a spacetime is ‘‘settling down to an approximate
Kerr geometry’’ if its Petrov type ‘‘settles down’’ to type D
(assuming that one has ruled out other, non-Kerr, type D
spacetimes).
This line of reasoning was taken up in a paper by

Campanelli, Lousto, and Zlochower [6]. The central tool
in their approach is a certain complex polynomial equation

�4�
4 þ 4�3�

3 þ 6�2�
2 þ 4�1�þ�0 ¼ 0; (3)*owen@astro.cornell.edu
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the degeneracy of whose roots is known to correspond to
the degeneracy of the principal null directions (assuming
that�4 is nonzero). The coefficients�i of this polynomial
are the so-called Weyl scalars, components [defined in
Eq. (9) below] of the Weyl tensor in a given Newman-
Penrose null tetrad. If�4 is nonzero, then the fundamental
theorem of algebra ensures that the polynomial has exactly
four complex roots, counting multiplicities.

Once the four roots �i have been computed for Eq. (3) at
any given point, then one can also compute six distinct
positive-definite root differences:

�ij :¼ j�i � �jj: (4)

If two of these root differences vanish and the other four
are nonzero, meaning that the four roots coincide in two
distinct pairs, then the spacetime is type D at that point. In
Ref. [6] Campanelli et al. took the next logical step:
interpreting the two smallest �ij values as measures of

the ‘‘nearness’’ of an algebraically general (in that case,
numerical) spacetime to Petrov type D. While this is a
reasonable interpretation of �ij and we will not suggest

any fundamental modification to this approach of defining
approximate algebraic speciality, there are important
subtleties in this interpretation, not fully explored in
Ref. [6]. These subtleties relate to the geometrical meaning
of �ij and its behavior under tetrad transformations. The

main purpose of this paper is to explore these subtleties,
present an alternative degeneracy measure that avoids
certain blowups that are intricately related to the choice
of tetrad (and should therefore not be considered physi-
cally relevant), and apply both degeneracy measures to a
numerical simulation from the SpEC code [7]. In the
process we will also investigate an interesting conclusion
from Ref. [6]: that in the ringdown of a binary black hole
merger to Kerr geometry, the spacetime approaches Petrov
type II very quickly, and type D much later. We will argue
that this conclusion is due essentially to a coordinate
singularity on the space of null rays, and the fact that the
tetrad used in Ref. [6] was much better suited to represent-
ing the degeneracy of one pair of principal null directions
than the other pair, when the degeneracy measure �ij is

used. The alternate degeneracy measure that we will in-
troduce,�ij defined in Eq. (46) below, shows both pairs of

principal null directions approaching degeneracy at the
same rate.

Though much of the discussion in this paper centers on
the behavior of these measures of degeneracy under tetrad
transformations, we will unfortunately not be able to pro-
vide a measure of nearness to Petrov type D that is funda-
mentally any more invariant than �ij. This is because no

such measure appears to exist. Geometrically this fact can
be understood in terms of the nonexistence of a boost-
invariant geometry on the space of null rays in Minkowski
space, an issue referred to physically as the ‘‘relativistic

aberration of starlight.’’ This viewpoint is explored in more
detail in Sec. IV below.
The issue can also be understood at the algebraic level,

as in Petrov’s original construction. The problem shown in
Eq. (1) can be written more compactly if one works in the
three-complex-dimensional space of anti-self-dual bivec-
tors rather than in the six-real-dimensional space of real
bivectors. In this space, the eigenbivector problem can be
written as

Wab
cdZcd ¼ �Zab; (5)

whereWabcd :¼ Cabcd þ i?Cabcd,
?Zab ¼ �iZab, and� is

a complex number. Because this is a three-dimensional
problem one can expect three possible values for�, though
the fact that the Weyl tensor is tracefree implies that these
three eigenvalues must sum to zero. The degeneracy of the
eigenvalues and the completeness of the corresponding
eigenspaces determine the classification of the Weyl tensor
at the point under consideration. If all three eigenvalues are
distinct then the spacetime is algebraically general. If two
roots coincide, then the spacetime is either type II or
type D. If all three coincide (and therefore vanish, as
they must sum to zero) then the spacetime is either
type III, type N, or conformally flat. The eigenvalues are
geometrically defined at each point in spacetime, indepen-
dent of the vector basis used to represent the eigenproblem.
The differences between these eigenvalues can therefore be
used to construct invariant measures of the approach to
algebraic speciality. For example, the absolute value of the
difference between the two nearest eigenvalues can be
thought of as such an invariant measure. Unfortunately
this measure is not very specific: it vanishes for Petrov
types II, D, III, and N.1 The latter pair can be distinguished
from the former pair by the fact that all three eigenvalues
vanish in type III and type N, but distinguishing type II
from type D, or type III from type N, requires more
information than just the eigenvalues.
If two of the eigenvalues in Eq. (5) coincide, so that the

eigenvalues can be written as f�;�;�2�g, then the dis-
tinction between Petrov type II and type D can be made by
the following quantity2:

Tab
cd

:¼ ðWab
ef ��Iabef ÞðWef

cd þ 2�IefcdÞ; (6)

where Iabcd is the identity operator on the space of anti-self-

1In this sense it is like other scalar measures of algebraic
speciality, such as the ‘‘cross ratio’’ of principal null directions,
defined in Ref. [8], whose explicit relationship to the eigenvalues
is described in Sec. 8.3 of Ref. [9], or the Baker-Campanelli
‘‘speciality index’’ [10], which takes a special value for any type
of algebraic speciality, but cannot distinguish between the vari-
ous types.

2Incidentally, if one wishes to avoid the assumption that the
spacetime is at least type II, such that the eigenvalues can be
written as f�;�;�2�g, this can be done with the help of certain
curvature invariants. See Ref. [11].
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dual bivectors. The object Tab
cd vanishes in type D, but not

in type II [3]. The difficulty with using this as a measure of
nearness to Petrov type D is that it is a tensorial object, and
its components are, by definition, basis-dependent. In order
to collapse this object to a single number for each point in
spacetime, one might hope to construct a positive-definite
tensor norm:

Q :¼ maembfm
cgmdhTab

cd
�Tef

gh; (7)

where mab is a positive-definite inner product on space-
time. Unfortunately, the only inner product that one natu-
rally has available on spacetime is the indefinite spacetime
metric. If a timelike ‘‘observer’’ is introduced, with unit
tangent vector ua, then one can construct a positive-definite
inner product as

mab :¼ gab þ 2uaub; (8)

but then the quantity Q is not strictly a scalar, as its
definition is dependent on the extra structure of this
observer.

Though the language is very different in the geometric
approach involving principal null directions, wewill find in
Sec. IV that the ambiguity in defining a measure of near-
ness to Petrov type D is in that context essentially the same
as here, requiring the choice of a timelike observer at every
point in spacetime. While this state of affairs seems to
endanger any attempt at defining the nearness to any
specific Petrov class, there are some cases where a well-
defined fleet of observers can be chosen. In particular, in
any stationary spacetime, one can choose the stationary
observers. In cases such as the ringdown to Kerr geometry,
one can expect an approximate stationarity to be ap-
proached at late times, again providing a preferred class
of observers at least during the late ringdown. A major
practical goal of this paper will be to study this ringdown
process, as in Ref. [6]. In particular, we will argue that the
degeneracy measure �ij that was used in Ref. [6] is in

some sense adapted to a null observer that happened in that
case to be nearly aligned with one of the nearly degenerate
pairs of principal null directions, making this pair of null
directions seem much more degenerate, and the other,
much less. This causes the appearance of a holdup in
Petrov type II before the spacetime geometry falls to
type D.

The structure of this paper is as follows: in Sec. II we
will investigate the ambiguity of the measure �ij under

tetrad rotations, particularly those that leave the timelike
tetrad leg fixed. In Sec. III we will emphasize the fact that a
tetrad well-suited to gravitational wave extraction, in par-
ticular, the quasi-Kinnersley tetrad [12], may be particu-
larly ill-suited to measuring the nearness to Petrov type D
using �ij. In Sec. IV we will describe the geometry under-

lying�ij in spinorial language, and in the process motivate

a modification that is much better suited to situations such
as the ringdown to Kerr geometry. In Sec. V wewill present

numerical results applying these degeneracy measures to a
binary black hole merger simulation, demonstrating in de-
tail the approach to Petrov type D. Finally in Sec. VI we
conclude with further discussion of the subtleties that have
been addressed, and those that remain.

II. TETRAD DEPENDENCE

The method put forth in Ref. [6] to define nearness to a
Petrov class begins with the polynomial in Eq. (3), whose
coefficients are components of the Weyl tensor in a
Newman-Penrose tetrad [13]:

�0 :¼ Cabcd‘
amb‘cmd; (9a)

�1 :¼ Cabcd‘
anb‘cmd; (9b)

�2 :¼ 1

2
Cabcdð‘anb‘cnd � ‘anbmc �mdÞ; (9c)

�3 :¼ Cabcdn
a‘bnc �md; (9d)

�4 :¼ Cabcdn
a �mbnc �md: (9e)

The tetrad f‘a; na; ma; �mag is made up of two future-
directed real null vectors ‘a and na and two complex
conjugate null vectors ma and �ma with spacelike real and
imaginary parts. These vectors are normalized by the con-
ditions

‘an
a ¼ �1; (10)

ma �m
a ¼ 1; (11)

‘am
a ¼ nam

a ¼ 0: (12)

These normalization conditions are preserved by three
types of tetrad transformations which, taken together, are
equivalent to the proper Lorentz group. First, there are the
‘‘null rotations about ‘a,’’ sometimes referred to as the
‘‘type I’’ transformations3:

‘a � ‘a; (13a)

ma � ma þ a‘a; (13b)

�ma � �ma þ �a‘a; (13c)

na � na þ �ama þ a �ma þ a �a‘a; (13d)

where a is a complex number, and can vary over spacetime.
Second, there are the null rotations about na, sometimes
referred to as ‘‘type II’’ transformations:

‘a � ‘a þ �bma þ b �ma þ b �bna; (14a)

ma � ma þ bna; (14b)

�ma � �ma þ �bna; (14c)

na � na; (14d)

3To avoid confusion with the Petrov types, we will hereafter
refer to tetrad transformations as ‘‘null rotations about ‘a,’’ ‘‘null
rotations about na,’’ or ‘‘spin boosts,’’ rather than ‘‘type I,’’
‘‘type II,’’ or ‘‘type III.’’
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for complex b. Third, there are the ‘‘spin-boost’’ trans-
formations, sometimes referred to as the ‘‘type III’’ trans-
formations:

‘a � jcj2‘a; (15a)

ma � e2i argðcÞma; (15b)

�ma � e�2i argðcÞ �ma; (15c)

na � jcj�2na; (15d)

for complex c.
These transformation laws for the tetrad imply trans-

formation laws for the Weyl scalars. Under the null rota-
tions about ‘a, Eqs. (13), the Weyl scalars transform as

�0 � �0; (16a)

�1 � �1 þ �a�0; (16b)

�2 � �2 þ 2 �a�1 þ �a2�0; (16c)

�3 � �3 þ 3 �a�2 þ 3 �a2�1 þ �a3�0; (16d)

�4 � �4 þ 4 �a�3 þ 6 �a2�2 þ 4 �a3�1 þ �a4�0: (16e)

Under null rotations about na, Eqs. (14), the Weyl scalars
transform as

�0 � b4�4 þ 4b3�3 þ 6b2�2 þ 4b�1 þ�0; (17a)

�1 � b3�4 þ 3b2�3 þ 3b�2 þ�1; (17b)

�2 � b2�4 þ 2b�3 þ�2; (17c)

�3 � b�4 þ�3; (17d)

�4 � �4: (17e)

Finally, under the spin boosts, Eqs. (15), the Weyl scalars
simply rescale, as

�n � c2ð2�nÞ�n: (18)

The transformation laws for the coefficients of the poly-
nomial in Eq. (3) imply transformation laws for the roots. It
is straightforward to show that under the transformation in
Eq. (16), the roots of the polynomial transform as

� �
�

�a�þ 1
: (19)

Under transformations of the form (17), the roots transform
as

� � �þ b: (20)

Finally, under spin-boost transformations, Eq. (18), the
roots transform as

� � c2�: (21)

In Ref. [6], nearness to Petrov type D was mainly argued
through the approach of the absolute values of root differ-
ences [�ij as defined in Eq. (4)] to zero. While this quantity

would indeed be expected to vanish when �i and �j con-

stitute a degenerate root pair, if they are not exactly degen-
erate, then the foregoing discussion implies that this

difference is not invariant under tetrad transformations.
The transformation in Eq. (20) would leave�ij unchanged,

but that in Eq. (21) would directly rescale any given root
difference (though the complex phase of c would not
appear in the absolute value), and transformations of the
form (19) would change �ij in a more complicated way.

Arbitrary Lorentz transformations, given by arbitrary com-
binations of the above transformations, could alter j�i �
�jj in a very complicated manner.

To investigate the practical relevance of this tetrad am-
biguity in the degeneracy measure �ij, let us consider a

particular case of possible physical relevance that requires
a combination of all three of the above tetrad transforma-
tions. Take the case where one has a particular timelike
vector defined at a point in spacetime, for example, a
timelike Killing vector, or a kind of approximate Killing
vector generating time translations in a spacetime that is
approaching stationarity in some sense. Given a Newman-
Penrose tetrad f‘a; na; ma; �mag, one can construct a stan-
dard orthonormal tetrad in the following way:

ea0 :¼ ð‘a þ naÞ= ffiffiffi
2

p
; (22a)

ea1 :¼ ffiffiffi
2

p
Re½ma�; (22b)

ea2 :¼ ffiffiffi
2

p
Im½ma�; (22c)

ea3 :¼ ð‘a � naÞ= ffiffiffi
2

p
: (22d)

Rotations of the tetrad legs in the ~e1- ~e2 plane are easily
accomplished, through a simple spin-boost transformation

with the parameter c ¼ ei�=2. Such rotations also however
leave the degeneracy measure �ij unchanged. For a non-

trivial test case, consider a rotation in the ~e1- ~e3 plane:

~e00 ¼ ~e0 (23a)

~e01 ¼ cosð�Þ ~e1 � sinð�Þ ~e3 (23b)

~e02 ¼ ~e2 (23c)

~e03 ¼ cosð�Þ ~e3 þ sinð�Þ ~e1: (23d)

A straightforward calculation shows that such a transfor-
mation can be carried out by a sequence of the above
transformations. First, one makes a null rotation about
‘a, Eqs. (13), with parameter a ¼ � tanð�=2Þ. Second,
there is a null rotation about na, Eqs. (14), with parameter
b ¼ ð1=2Þ sinð�Þ. The final step is a spin-boost, Eqs. (15),
with parameter c ¼ secð�=2Þ. In this particular case, all
three parameters are real. Composing the transformation
laws for the roots, Eqs. (19)–(21), with these parameters,
the resulting transformation law is

�0 ¼ � cosð�=2Þ � sinð�=2Þ
� sinð�=2Þ þ cosð�=2Þ : (24)

If we express � as a ratio of two complex numbers, � ¼
�=�, then Eq. (24) takes a very simple matrix form:
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�0
�0

� �
¼ cosð�=2Þ � sinð�=2Þ

sinð�=2Þ cosð�=2Þ
� �

�
�

� �
: (25)

The general form of this matrix, for arbitrary reorientations
using three Euler angles, is given in Eq. (1.2.34) of Ref. [8].
The SLð2;CÞ form of this transformation suggests a spi-
norial interpretation of �, a point to which we will return in
Sec. IV.

For now let us consider the behavior of the degeneracy
measure �ij under these spatial rotations. For concrete-

ness, consider the case where the four roots of Eq. (3) are
�1 ¼ 0:005þ 0:047i, �2 ¼ 0:005þ 0:05i, �3 ¼
�5þ 15i, and �4 ¼ �5þ 15:5i. These values are chosen
to very roughly mirror the late-term values seen in Fig. 8 of
Ref. [6], with degeneracies roughly similar to those seen in
Figs. 3 and 4 of that paper. The values estimated here are
extremely rough, and should not be taken as having any
quantitative importance, but merely as tools for illustrating
the qualitative features of the transformation law in
Eq. (24). So long as one pair of nearly degenerate roots
is larger, by a few orders of magnitude, than the other pair,
the qualitative behavior that we will describe seems
roughly the same regardless of the particular choice of
roots.

The degeneracy measure �ij for the two most nearly

degenerate root pairs, under rotation of the ~e1- ~e3 plane, is
shown in Fig. 1. If the tetrad’s spatial legs were rotated
through about 90 degrees, then both root pairs would
appear equally close to degeneracy. If the tetrad were
rotated through 180 degrees, then the root pair that origi-
nally appeared closer to degeneracy would begin to seem

farther away from it, and the one that originally seemed
less degenerate would seem more so.
This variation in the degeneracy measure can be inter-

preted as a coordinate effect. The quantity � has no inher-
ent geometrical meaning without a particular reference
tetrad. It is essentially a coordinate on the space of null
rays at a point in spacetime. This space of null rays is
topologically a two-dimensional sphere, as can be demon-
strated by cutting a future null cone with a spacelike
hyperplane, such as the t ¼ 1 plane in Minkowski space.
A two-sphere cannot be covered smoothly with a single
coordinate patch. If the quantity � is taken as a (complex)
coordinate labeling all the null rays at a point, then there
must be a coordinate singularity somewhere, near which
coordinate distances are particularly ill-suited to represent-
ing the true geometry that may be defined on the manifold.
We will study this issue in more detail in Sec. IV. For now
we simply note that the locations of the sharp peaks in
Fig. 1 seem to imply that such a coordinate singularity may
have a particularly strong effect in the original, unrotated
tetrad. The following section gives an extreme example of
this effect.

III. THE QUASI-KINNERSLEY TETRAD

It appears from the results of the previous section that a
tetrad that seems reasonable for purposes of wave extrac-
tion can be particularly ill-suited to the problem of defining
nearness to a Petrov class. To investigate this point in more
detail, here we consider a special family of tetrads de-
signed especially for wave extraction.
Consider an algebraically general spacetime (eventually

wewill allow this spacetime to ‘‘asymptote’’ toward Petrov
type D, but we will consider it always to be, strictly speak-
ing, type I). As described in Ref. [12], at any point where
the Weyl tensor is type I, there are precisely three distinct
families of tetrads in which two particular Weyl scalars
vanish, �1 ¼ �3 ¼ 0 (they each amount to families of
tetrads, rather than three particular tetrads, because this
condition is preserved by the spin-boost freedom). A par-
ticular tetrad field, chosen from these three families to
coincide with the conventional Kinnersley tetrad near in-
finity, is often referred to as a quasi-Kinnersley tetrad. The
usual purpose of such a tetrad is to aid in gravitational
wave extraction, where the relative uniqueness of the tetrad
provides a preferred reference frame in which to define
gravitational radiation. Such a tetrad also simplifies the
polynomial in Eq. (3):

�4�
4 þ 6�2�

2 þ�0 ¼ 0: (26)

If, as we are assuming, the spacetime is strictly type I, and
not a more special algebraic type, then �4 and �0 will be
nonzero. In the limit that the spacetime asymptotes to
type D, they will both settle to zero, indicating a failure
of the polynomial roots to represent the principal null
directions in the conventional sense. What we wish to
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FIG. 1 (color online). Behavior of the degeneracy measure �ij

under the tetrad rotation in Eq. (23) for a particular (though
essentially arbitrary) choice of roots, stated in the text. Under a
rotation through 180 degrees, the root pair that originally seemed
more degenerate becomes less degenerate, and the pair that
originally seemed less degenerate becomes more degenerate.
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investigate is the behavior of these roots as this limit is
approached.

Carrying on under the assumption that �4 is nonzero,
the roots of Eq. (26) are readily found:

�2 ¼ 3�2

�4

�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��0�4

9�2
2

s �
: (27)

If we now consider the approach to a Kerr geometry, in
which the quantity �0�4=ð9�2

2Þ approaches zero, we can
expand the square root in the above expression to first order
in this small quantity4:

�2 � 3�2

�4

�
�1�

�
1��0�4

18�2
2

��
; (28)

� �
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 6�2

�4

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� �0

6�2

s �
: (29)

So in the Kerr limit, as �4 ! 0 and �0 ! 0, two of these
roots approach zero, and so does their difference, but the
other two approach infinity (this is a standard behavior of
polynomial roots as the leading polynomial coefficient
approaches zero). Moreover, they approach the point at
infinity from different directions, so their difference also
approaches infinity. Geometrically, one would think that
the problem is solved if the roots are considered not as
numbers on the complex plane, but as points on the
Riemann sphere. The roots that blow up would then be
taken as approaching a degenerate root at the point at
infinity. In the following section, we will motivate such a
viewpoint in detail, and in the process, outline the geomet-
rical meaning of the degeneracy measure �ij and present

an alternative that avoids the danger of representing any
particular null ray as a ‘‘point at infinity.’’

Before moving on, though, we should investigate the
robustness of this behavior under tetrad rotations. In prac-
tice, the tetrads used in numerical relativity simulations are
usually simple coordinate-adapted tetrads, rather than
carefully constructed quasi-Kinnersley tetrads. But be-
cause they are usually adapted to a spherical coordinate
basis, they very roughly tend to approximate the quasi-
Kinnersley tetrad during black hole ringdown, by force of
topology alone. For this reason, it is interesting to inves-
tigate the behavior of the polynomial roots not only in the
quasi-Kinnersley tetrad, but also in tetrads slightly offset
from it.

In particular, consider the ringdown to a Kerr black hole,
where in the true Kinnersley tetrad of a Kerr background
one would expect the absolute value of �4 to approach
zero exponentially in time at a rate determined by the

quasinormal frequencies of the hole. The roots

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�6�2=�4

p
would then be expected to grow exponen-

tially at half that rate. Consider, for example, a case whereffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�6�2=�4

p ¼ i expð�Þ for some time function �.5 The
roots �i expð�Þ, if the tetrad were rotated spatially as in
Eq. (24), would instead take the values

�0� ¼ �i expð�Þ cosð�=2Þ � sinð�=2Þ
�i expð�Þ sinð�=2Þ þ cosð�=2Þ : (30)

So in the limit that � ! 1, these roots would become
degenerate at the value cotð�=2Þ, and their difference, as
measured by �ij, would eventually fall to zero. The details

of how this occurs are plotted in Figs. 2 and 3.
In Fig. 2, the profile of�0þ� :¼ j�0þ � �0�j, as a function

of tetrad rotation angle � in Eq. (30), is shown for a few
values of the fiducial time label �. Each curve is peaked, as
in Fig. 1, at the quasi-Kinnersley tetrad. The value of this
peak grows exponentially in �, while the values well out-
side the peak (representing more arbitrary tetrads) decay
exponentially in �. What is of particular interest to us is the
behavior near � ¼ 0. Because the peak sharpens as it
grows, values of �0þ� slightly offset from � ¼ 0 grow
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FIG. 2 (color online). Profiles of the behavior of the degener-
acy measure �ij under tetrad rotations of the form in Eqs. (23)

from a quasi-Kinnersley tetrad, for various values of a fiducial
time coordinate, assuming that this degeneracy measure grows
exponentially in this fiducial time coordinate for the true quasi-
Kinnersley tetrad (� ¼ 0). The peak value grows exponentially
in time, by construction, but values well outside the peak decay
exponentially in time. The peak sharpens as it grows, so that
values slightly offset from the peak grow initially, and decay
later.

4Note that the numerator in this quantity, �0�4, which we
are evaluating in a ‘‘transverse frame’’—one where �1 ¼
�3 ¼ 0—is the Beetle-Burko ‘‘radiation scalar’’ described in
Ref. [14].

5The imaginary factor i is inserted to avoid the rotated tetrad
vector exactly coinciding with a principal null direction at some
time, a possibility that, however possible, would not be expected
to occur generically.
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initially, and eventually decay. This behavior is more
clearly visible in Fig. 3, where �0þ� is shown as a function
of � for various choices of the offset angle. For any fixed
nonzero value of�, the curve initially grows exponentially
before eventually falling at the same rate. The smaller this
rotation angle is, the later the curve turns around. So the
nearer a tetrad is to quasi-Kinnersley, the longer it takes for
�0þ� to eventually decay as one might naively expect.

Incidentally, we should note that the ‘‘peak’’ in Fig. 2,
and indeed in Fig. 1, is actually a saddle point if considered
in a larger space of tetrad rotations. To keep the discussion
simple, in Sec. II we considered only rotations in the local
~e1- ~e3 tangent plane. Had we considered the case of general
rotations of the spatial tetrad, as in Eq. (1.2.34) of Ref. [8],
we would have found that the degeneracy measure �ij

becomes infinite whenever the rotated tetrad ~n vector co-
incides with a principal null direction.

IV. INTERPRETING DEGENERACY MEASURES

The geometrical underpinnings of the polynomial in
Eq. (3), and the sense in which � constitutes a coordinate
on the space of null rays, are most cleanly explained in the
language of two-component spinors. Because many nu-
merical relativists are unfamiliar with this formalism I
will attempt to keep the discussion self-contained by
briefly reviewing crucial elements as we go along. For a
detailed account of spinor methods in spacetime geometry,
see Refs. [8,9], or for a more compact treatment specifi-
cally geared to numerical relativists, see Ref. [15].

Throughout this paper, objects with capital Latin indices
will be referred to as spinors, elements of a two-complex-
dimensional vector space (or its higher tensorial orders).
The complex conjugate of a spinor is also a spinor, but is
defined in a different spinor space, because complex con-
jugation does not commute with multiplication by a com-
plex scalar. To distinguish objects in spinor space from
objects in the complex conjugate space, we will apply the
standard convention of appending indices referring to the
latter space with a prime:

�A ¼ ��A0
: (31)

Spinors are useful in relativity theory because a simple
correspondence exists between spinor space and
Minkowski space (and therefore also to the tangent space
to spacetime at any given point, given an orthonormal
tetrad). From a spinor �A a unique vector can be con-
structed in Minkowski space:

Va ¼ �A ��A0
�a

AA0 ; (32)

where the �a
AA0 are soldering forms, specifically referred to

as Infeld-van den Waerden symbols, conventionally repre-
sented as Pauli matrices. In practice, the transformation
provided by �a

AA0 is often (and hereafter) taken as implied,

with pairs of capital Latin indices (one primed and one
unprimed, with the same letter) taken to correspond ab-
stractly to a single spacetime index.
Vectors defined directly from univalent spinors as in

Eq. (32) turn out always to be null. For that reason uni-
valent spinors can be understood as defining null vectors in
spacetime. The standard geometrical interpretation of a
univalent spinor (again, see Ref. [8,15]) is as a ‘‘null
flag,’’ a null vector with a particular spacelike half-plane
attached to it. This flag plane, encoded in the spinor’s
complex phase, is unimportant for our current purposes.
The spacetime Weyl tensor can be written in terms of a

four-index totally symmetric object called the Weyl spinor
�ABCD and the antisymmetric metric �AB on spinor space:

Wabcd ¼ �ABCD ��A0B0 ��C0D0 : (33)

Here, as in the introduction,Wabcd refers to theWeyl tensor
in its complex anti-self-dual form, Wabcd :¼ Cabcd þ
i?Cabcd. A basic result in spinor algebra (due essentially

to the fundamental theorem of algebra) is that any totally
symmetric spin tensor can be decomposed into a symme-
trized product of univalent spinors. In particular, for the
Weyl spinor,

�ABCD ¼ �ðA�B	C
DÞ; (34)

for univalent spinors�A,�B, 	C, 
D defined up to arbitrary
complex scaling (any one of them can be scaled at the cost
of inversely scaling another). These are referred to as
principal spinors of �ABCD. Because the principal spinors
are defined only up to a complex scaling, their correspond-
ing null vectors are defined only up to an arbitrary real
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FIG. 3 (color online). Behavior over time of the degeneracy
measure �0þ�ð�Þ :¼ j�0þ � �0�j, for roots �0� given by Eq. (30),
for a few values of the tetrad rotation parameter �. Each curve
initially grows exponentially in the time parameter � before
eventually falling. The more offset the tetrad is from the
quasi-Kinnersley tetrad (� ¼ 0), the sooner this turnaround
occurs.
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scaling, and their flag planes are completely undefined.
The corresponding null vectors, defined up to scale, are
the principal null directions of the Weyl tensor at the
spacetime point under consideration.

Because the metric on spinor space, �AB, is antisymmet-
ric, all spinors have vanishing norm:

�A�
A ¼ 0: (35)

For this reason, the condition for �A to be a principal
spinor of the Weyl spinor is

�ABCD�
A�B�C�D ¼ 0: (36)

To consider this equation more concretely, we introduce a
basis, foA; �Ag, in spinor space, normalized by the standard
condition �ABo

A�B ¼ 1. Such a spin dyad is equivalent6 to

a Newman-Penrose tetrad through the definitions ‘a ¼
oA �oA

0
, na ¼ �A ��A

0
, ma ¼ oA ��A

0
. Given a spin dyad, an

arbitrary spin vector can be written as

�A ¼ �oA þ ��A; (37)

for complex components �, �. Because we are only inter-
ested in spinors up to arbitrary complex scaling, we can
divide by � to let

�A ¼ oA þ ��A; (38)

where � ¼ �=� is a possibly infinite complex number, an
element of the one-point-compactified complex plane, C [
f1g, the Riemann sphere.

Scaling an arbitrary spinor to be of this form, and
inserting it into Eq. (36), the resulting equation is

�4�
4 þ 4�3�

3 þ 6�2�
2 þ 4�1� þ�0 ¼ 0; (39)

where we have used the standard spinorial definition of the
Weyl scalars:

�0 :¼ �ABCDo
AoBoCoD; (40a)

�1 :¼ �ABCDo
AoBoC�D; (40b)

�2 :¼ �ABCDo
AoB�C�D; (40c)

�3 :¼ �ABCDo
A�B�C�D; (40d)

�4 :¼ �ABCD�
A�B�C�D: (40e)

We thus find, comparing Eq. (3) with Eq. (39), that the
quantity � can be interpreted as the complex stereographic
coordinate � on the Riemann sphere, and, in particular, as
defining a spinor �A of the form in Eq. (38) in a given spin
dyad. Hereafter we will consider � and � to be the same
quantity, and use the symbols interchangeably.

This stereographic interpretation of � (or �) is not
merely a formality. As described in Chapter 1 of Ref. [8],
the space of future-directed null rays at a point in space-
time is topologically a two-sphere. This can be demon-
strated by cutting a future null cone with a spacelike 3-
plane, given by t ¼ 1 in some local Minkowski coordinate
system. Furthermore, if we choose a particular such cut,
whose intersection with the null cone we will label Sþ and
call the anticelestial sphere, after Ref. [8], the metric
induced on this two-sphere from that in the local
Minkowski spacetime is

ds2 ¼ 4d�d ��

ð1þ � ��Þ2 ; (41)

where for the coordinate we have chosen the � value of the
spinor, of the form in Eq. (38), whose associated null
direction intersects Sþ. Applying the transformation to
conventional spherical coordinates,

� ¼ ei
 cotð�=2Þ; (42)

we arrive at the standard form of the unit sphere metric:

ds2 ¼ d�2 þ sin2ð�Þd
2: (43)

As a geometrical method for defining the nearness of
two null directions to degeneracy, one can consider the
metric (43) on the anticelestial sphere. If �i and �j are two

roots of Eq. (3), then one can translate them to spherical
coordinates ð�i; 
iÞ, ð�j; 
jÞ by inverting Eq. (42), and

then use the metric distance function on the unit sphere,
given by the haversine formula as

�ij :¼ 2 arcsinfðsin2½ð�i � �jÞ=2�
þ sin�i sin�jsin

2½ð
i �
jÞ=2�Þ1=2g: (44)

This can also be written directly in terms of the stereo-
graphic coordinates as

�ij ¼ 2 arcsin

� j�i � �jjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �i ��iÞð1þ �j ��jÞ

q
�
: (45)

As one can verify by a direct substitution of Eq. (24), this
degeneracy measure is invariant under spatial rotations of
the form in Eq. (23), or indeed any tetrad rotation that
leaves the timelike tetrad leg invariant.
We must stress, however, that even this is not a totally

invariant measure of degeneracy. In fact, there are funda-
mentally as many degrees of ambiguity in this measure as
there are in j�i � �jj. The ambiguity in �ij is encoded in

the choice of cut one makes to the null cone in order to
construct Sþ. This can be interpreted physically as a result
of the special relativistic effect known as ‘‘relativistic
aberration of starlight,’’ by which the inferred geometry

6Strictly speaking, the correspondence is two-to-one, as the
spin dyad f�oA;��Ag defines the same tetrad as foA; �Ag. The
distinction, however, is not important here.
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of the celestial (or as in this case, anticelestial) sphere is
conformally mapped under Lorentz boosts.

A geometrical interpretation of the degeneracy measure
�ij :¼ j�i � �jj can be found in spinor space. Two spinors

�A
1 and�

A
2 are proportional—and therefore their associated

real null vectors are proportional—if and only if their
antisymmetrized product vanishes:

½�1; �2� :¼ �AB�
A
1�

B
2 ¼ 0: (46)

It is tempting to use this quantity as a measure of the
degeneracy of the null rays associated with �A

1 and �A
2 ,

but we must remember to account for the scaling ambiguity
of the spinors. If ½�1; �2� is nonzero, then an arbitrary
rescaling of either spinor, which should not alter any
reasonable measure of the degeneracy of the null rays,
would directly rescale ½�1; �2�. This ambiguity must be
fixed by imposing a condition on the scaling of �A

1 and �A
2 .

One possibility, given a particular spin dyad foA; �Ag, is to
assume that the spinors are of the form (38), with �A

1 ¼
oA þ �1�

A, and �A
2 ¼ oA þ �2�

A. This condition can be
stated for the associated null vectors Va

1 and Va
2 in terms

of the Newman-Penrose tetrad as

Va
i na ¼ �1; (47)

for i 2 f1; 2g, along with the conditions that the Va
i are real

null vectors, and where the Newman-Penrose tetrad vector

na is defined from the dyad spinor �A by na :¼ �A ��A
0
. This

subset of the future null cone can be visualized as its

intersection with a null hyperplane defined by tþ z ¼ffiffiffi
2

p
in the local Minkowski coordinates. To the mind ac-

customed to Euclidean geometry, this intersection might be
assumed to be a paraboloid. However, interestingly, the
Lorentzian structure of the spacetime metric causes the
intersection to be, in terms of the induced metric, a flat two-
dimensional plane, with � a standard complex coordinate
on this plane. In fact, the absolute value of the degeneracy
measure ½�1; �2�, under this particular normalization con-
dition, is precisely the quantity �12 ¼ j�1 � �2j. For this
reason, the degeneracy measure used in [6] can be under-
stood as a geometric distance between the two associated
principal null directions along the cut made by a null
hyperplane through the future null cone.

The degeneracy measure �ij introduced in Eq. (45) can

similarly be understood in terms of the symplectic product
½�1; �2�. If the condition on the null vectors associated

with the �A
i is taken to be that ~Vi � ~e0 ¼ �1, for a timelike

tetrad vector defined from a Newman-Penrose tetrad

through Eqs. (22), rather than ~Vi � ~n ¼ �1, then the spin-
ors must be scaled as

�A
i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �i ��i

q ðoA þ �i�
AÞ: (48)

In this case the absolute value of ½�1; �2� becomes

j½�1; �2�j ¼ j�1 � �2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �1 ��1Þð1þ �2 ��2Þ

q ; (49)

essentially equivalent to �12, as defined in Eq. (46).
The distinction between the degeneracy measures �ij

and �ij can therefore be understood as a distinction be-

tween two different realizations of the geometry of the
space of null rays at a point. If the geometry in this space
is inferred by cutting the null cone with a null hyperplane,
the distance function on the set of null rays is given by �ij.

If the cut is taken by a spacelike hyperplane, the distance is
given by �ij.

The ambiguity of these distance functions stems from
the ambiguity of these cuts. Fundamentally there are
equally many degrees of ambiguity in both types of cut.
A spacelike hyperplane can be boosted in any of three
directions, translating into three continuous degrees of
ambiguity for�ij at each point in spacetime. A null hyper-

plane cut can also be given in terms of 3 degrees of free-
dom: the null normal to the hyperplane (for which there are
2 degrees of freedom, the anticelestial sphere), and a
parameter describing the translation of the hyperplane
away from the vertex of the cone. This last degree of
freedom also exists for spacelike hyperplanes, but because
the intersection of the spacelike hyperplane with the null
cone is compact (specifically a two-sphere), one can fix
this translation degree of freedom by fixing the area of the
sphere. In the case of a cut by a null hyperplane, the
intersection is noncompact, so this degree of freedom
cannot be fixed.
Though the degeneracy measure �ij may be no more

well-defined in general than �ij, there are still reasons to

prefer it for purposes of defining a notion of approximate
Petrov class. The main reason is that when a null hyper-
plane cut is made through a null cone, one special null ray
is singled out: the one parallel to the hyperplane. Again, the
intersection of the future null cone with a null hyperplane
is itself a spacelike two-dimensional plane, and because the
null ray parallel to the hyperplane never intersects the
hyperplane, it is only represented on the intersection plane
as a point at infinity. Equation (47) shows that the null ray
that gets mapped to the point at infinity is the one that
points along the tetrad ~n vector. This is the behavior that we
saw in Sec. III. The quasi-Kinnersley tetrad naturally
adapts itself to the principal null directions in the ringdown
to Kerr geometry, such that two of them fall toward the
origin of the � plane and two approach infinity. This is
because the quasi-Kinnersley tetrad is designed to adapt
itself to nearly degenerate principal null directions. To the
extent that the numerical tetrad approximates a quasi-
Kinnersley tetrad (a common implicit hope for the extrac-
tion of gravitational waveforms) this behavior will be seen
also in numerical simulations. An example of this will be
seen in the next section.
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V. NUMERICAL RESULTS

Our numerical implementation of these mathematical
tools begins, as in Ref. [6], with the fourth-order polyno-
mial in Eq. (3). We begin by computing the Weyl scalars in
a reference tetrad. The timelike orthonormal tetrad leg ~e0 is
taken to be the normal to the spatial slice, and the spacelike
orthonormal tetrad legs are constructed from a Gram-
Schmidt orthogonalization of the basis vectors of a
spherical-like coordinate system within the spatial slice,
essentially similar to the method in [6]. This tetrad is
singular at the z axis, as the complex phase of the ~m leg
becomes undefined due to the coordinate singularity of the
spherical chart, but all quantities we present will be inde-
pendent of this complex phase, and thus will have well-
defined values on the axis.

Our code computes the electric and magnetic parts of the
Weyl curvature tensor directly from data on the spatial
slice, using Gauss-Codazzi relations and assuming the
Einstein equations are satisfied and that no matter fields
are present:

Eij ¼ ð3Rij þ KKij � KikK
k
j ÞSTF (50)

Bij ¼ ð�mn
i DmKnjÞSTF: (51)

Here, Kij is the extrinsic curvature of the spatial slice,Di is

the torsion free covariant derivative compatible with the
spatial metric, 3Rij its Ricci curvature, �ijk the spatial Levi-

Civita tensor, and the subscript STF means that the quan-
tity in brackets is made symmetric and tracefree in the
indices i and j. Once these tensors are computed, we
construct the Weyl scalars from them as in Eqs. (4) of
Ref. [16], using the radial tetrad leg for ~u, and the polar leg
plus i times the azimuthal leg for ~m.

Once the Weyl scalars are known, one can go about
solving for the roots �i of Eq. (3). We do so point by point
on the computational grid with simple Newton-Raphson
iteration and polynomial deflation [17]. In many cases,
these methods are conventionally followed by root polish-
ing—using the computed roots of the deflated polynomials
as initial guesses in new Newton-Raphson iterations of the
initial polynomial, with the hope of correcting roundoff
error accumulated in the deflation process—but in this case
root polishing has no noticeable effect. This is presumably
because the roots under consideration are very nearly
degenerate, so error in the Newton-Raphson iterations
themselves dominates the error accumulated in the poly-
nomial deflation.

As in Ref. [6], we focus our attention on a simulation of
the ringdown of a binary black hole merger to Kerr ge-
ometry. The simplest example of such a merger is one
following the inspiral of two equal mass nonspinning black
holes in a noneccentric configuration. This data set was
presented in detail in Ref. [18], and the multipolar structure
of the post-merger horizon was studied in Ref. [19]. In the

former paper, it was noted that two independent measures
of black hole spin, designed to agree if the final black hole
is a Kerr geometry, agreed to well within the estimated
accuracy of the numerical truncation. In the latter paper,
this correspondence was studied in much greater detail,
demonstrating that all of the multipole moments on the
apparent horizon that we were able to compute agreed very
well with those of the Kerr horizon (see Refs. [20,21] for a
similar analyses). While these provide a very compelling
case that the final black hole is a Kerr geometry, they do not
present a major benefit of the methods described here and
in Ref. [6], being fully local. The degeneracy measures
described here can be computed independently at each
point in spacetime, rather than simply for the apparent
horizon as a whole. In this way one can imagine demon-
strating not just the fact that a spacetime is settling down to
Kerr geometry, but where it is doing so more quickly and
more slowly, and possibly even the relationship between
the approach to Kerr geometry and the presence of gravi-
tational radiation.
This locality of the approximate Petrov classification

system, while beneficial for the reasons described above,
unfortunately comes at the cost of another type of gauge
ambiguity. If one wishes to investigate the time depen-
dence of the degeneracy measures, then one must choose a
worldline in spacetime along which to compute these
quantities. In principle one could reduce this ambiguity,
for example, by computing along timelike geodesics, or
worldlines preferred by some sort of symmetry, if any
exist. For example, the symmetries inherent in a merger
of equal mass, initially nonspinning holes provide at least
one preferred axis for consideration. The initial data satisfy
a discrete symmetry under 180-degree rotations about a
certain axis, taken in our simulations to be the coordinate z
axis, along which the initial ‘‘orbital angular momentum
vector’’ can be intuitively said to point. To the extent that
the numerical simulation preserves this discrete symmetry,
the z axis sweeps out a geometrically well-defined world-
sheet in spacetime. In principle this timelike worldsheet
could be restricted to a single well-defined timelike world-
line, on which data can be extracted, by intersecting the
worldsheet with a level surface of some curvature invari-
ant. Here, however, we do not go to such lengths, electing
instead to follow coordinate worldlines, as in Ref. [6], but
paying special attention to the symmetry axis.
In Fig. 4, data are shown for the two smallest—smallest

among the various possible root pairings—values of the
degeneracy measures �ij and �ij evaluated at the coordi-

nate location x ¼ y ¼ 0, z ¼ 4:57 as a function of coor-
dinate time after the formation of the common apparent
horizon in the data set described in Ref. [18]. Because the

7For a sense of scale we note that the apparent horizon, in
these coordinates, settles down at late times roughly to a coor-
dinate sphere with radius of 2.61.
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tetrad is, by construction, adapted to the symmetry axis at
this location,8 it is forced to be ‘‘transverse’’ in the sense of
Sec. III (a fact which we have verified by a direct inspec-
tion of the computed values of j�1j and j�3j). In Fig. 4, we
initially see exponential growth in the second-smallest root
difference �ij, as one would expect from the considera-

tions of Sec. III. Eventually, this exponential growth gives
way to exponential decay, similar to the behavior seen in
Fig. 3. This occurs because the data we compute here are
actually interpolated to the polar axis from data on grid
points slightly offset from it. On these grid points, the
tetrad differs slightly from the quasi-Kinnersley tetrad, as
in the discussion near the end of Sec. III. One might hope
that this eventual decay would only occur on these offset
grid points, and that the data interpolated to the axis would

grow indefinitely as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�6�2=�4

p
, but as the black hole

settles down the growing peak in Fig. 2 shrinks in width, so
eventually one would expect it not to be resolved by the
spectral discretization. Incidentally, we have confirmed
that the rates of exponential decay in the decaying curves,
and the rate of exponential growth in the growing curve,
each roughly equal half of the damping rate of the least-
damped quasinormal mode of a Kerr black hole of the same
final mass and spin as our final remnant. One would expect
this from Eq. (29). The most important issue to note about
Fig. 4, though, is the discrepancy between the picture
implied by the �ij values, and that implied by the �ij

values. The highest and lowest curves are the two relevant
values of�ij. At early times, even the qualitative behaviors

of these curves are different, one growing and one decay-
ing. Even at late times, when both curves decay exponen-
tially (and eventually settle to fixed limits due to numerical
truncation error), they still differ by 4 orders of magnitude.
If �ij were naively interpreted as defining the nearness to

any Petrov class, then the response to Fig. 4 would be that
the final result of the numerical simulation is of Petrov
type II, not type D, on this axis. The other two curves in
Fig. 4 tell a very different story. The two heavier curves in
Fig. 4 show the two smallest values of the �ij measure.

Both curves fall exponentially at the same rate, and they lie
within roughly a factor of 10 of one another throughout the
entire ringdown. According to�ij the spacetime falls quite

unambiguously to Petrov type D on the polar axis.
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FIG. 4 (color online). The ringdown after the merger of two
equal mass, initially nonspinning holes. The curves show the
behavior of the two smallest values of each of the degeneracy
measures �ij and �ij, with respect to coordinate time, evaluated

at z ¼ 4:5, x ¼ y ¼ 0 in an asymptotically inertial coordinate
system. The heavier curves show the two values of the �ij

measure, the lighter curves the �ij measure. The solid curves

show the smaller values of these measures, and the dashed
curves the larger. The symmetries along this axis force the tetrad
to satisfy the basic conditions of a ‘‘quasi-Kinnersley’’ tetrad, as
described in Sec. III, and the results of that section explain the
initial exponential growth of the higher �ij curve.
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FIG. 5 (color online). The two smallest values of the degen-
eracy measures �ij and �ij evaluated at the coordinate location

x ¼ 4:5, y ¼ z ¼ 0 in the ringdown after a merger of equal
mass, initially nonspinning black holes, as in Fig. 4. The lighter
curves, which are generally the highest and lowest curves, are the
two values of the �ij measure. The heavier curves represent the

�ij measure. Initial growth of the larger �ij value is still present,

but less striking than in Fig. 4. Nonetheless, the two �ij values

again differ by multiple orders of magnitude, while the two �ij

values generally differ by only one.

8Actually the tetrad is, strictly speaking, not well defined on
the axis, because it is constructed from the spherical coordinate
basis, which is singular there. However, for the objects we
compute, this singularity has no effect. The ~‘ and ~n tetrad legs
are well-defined on the axis, it is just the complex phasing of the
~m vector that becomes undefined there. The actual quantities we
compute, however, �ij and �ij, are invariant under spin trans-
formations [spin-boost transformations with jcj ¼ 1 in Eq. (15)].
Because there are no grid points on the axis, these quantities can
always be computed, and because they are spin-invariant, they
can be smoothly interpolated to the axis.
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The behavior at different coordinate locations is less
striking, but shows roughly similar features. Figure 5
presents the same quantities as Fig. 4 computed instead
at x ¼ 4:5, y ¼ z ¼ 0. Again, the highest and lowest
curves are the two relevant values of �ij. The higher one

grows slightly (on average) in the early ringdown, but
settles into exponential decay quite a bit sooner than in
Fig. 4, and throughout the ringdown remains separated
from the values in the lowest curve by roughly 2 to 3 orders
of magnitude. This still, however, provides a marked con-
trast from the two �ij curves, which again lie within

roughly a single order of magnitude of one another
throughout the ringdown. A particularly interesting feature
is visible in the uppermost curve of Fig. 5 from the begin-
ning of the post-merger data set to roughly the coordinate
time 8275. This time frame is magnified in Fig. 6. Because
the spacetime is symmetric under reflections across the
z ¼ 0 plane, the spatial projections of the principal null
directions on this plane must either be tangent to the plane,
or otherwise reflection-symmetric across it. The jagged
peaks in Fig. 6 imply that the former possibility seems to
apply here. When the tetrad ~n vector happens to point
along a principal null direction, the corresponding � value
of the polynomial root becomes infinite. If the spatial
projections of two of the principal null directions lie in
the same plane as the spatial projection of the tetrad ~n
vector, and they oscillate in direction, repeatedly crossing
the spatial projection of ~n (due either to physical or gauge
effects), then one would expect the �ij values involving

these principal null directions to show sharp, repeating
peaks, such as those in Fig. 6. Eventually, such crossings
could be expected to stop as the angle between the spatial

projections of the principal null directions becomes small
and as gauge and physical oscillations become less wild.
After roughly t ¼ 8275 in these code units9 the oscillations
in this curve become smoother, implying that the principal
null directions are no longer crossing ~n.
Figure 7 presents L2 norms of the same degeneracy

measures for the same ringdown data set. While this avoids
the choice of a specific coordinate location for observation,
we should note that there is still a certain amount of
coordinate ambiguity in this quantity. The L2 norm is
only over a certain subset of the spatial slice. The inner
boundary is the excision boundary of the simulation,
slightly inside the apparent horizon. The outer boundary
is a boundary of subdomains in the simulation, with coor-
dinate radius 5. The purpose of this outer boundary is to
avoid numerical difficulties when the Weyl scalars become
too small to calculate accurately the roots of the polyno-
mial in Eq. (3). Again in Fig. 7, we see the larger value
of �ij hanging up while both values of �ij decay

exponentially.

VI. DISCUSSION

The primary goal of this paper has been to explain the
peculiar behavior, noted in Ref. [6], that the spacetimes of
binary black hole mergers seem to ‘‘hang up’’ in Petrov
type II, and if they fall to type D at all (according to one’s
choice of tolerance), they do so much later.
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FIG. 6 (color online). Magnification of the highest curve in
Fig. 4. The sharp peaks in the bottom curve before time 8275
imply that principal null directions are occasionally crossing the
tetrad legs. The upper curve corroborates this by explicitly
showing that the absolute value of the Weyl scalar �4 ap-
proaches zero at times coincident with these sharp peaks.
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FIG. 7 (color online). Ł2 norms of the two smallest values of
�ij and �ij, integrated over a thick spherical shell extending

from just within the apparent horizon, r ¼ 2:2 in code coordi-
nates, to an outer boundary at r ¼ 5 code coordinates. Again,
both values of �ij fall quickly to zero at the same rate, while the

larger �ij value hangs up initially, and eventually falls only to a

level over 2 orders of magnitude above its smaller counterpart.

9To aid in translating the code units to physically relevant
units, we note that the final mass of remnant black hole, in these
code units, is roughly 1.98.
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Properly clarifying this issue has required us to inves-
tigate the geometrical meaning of the polynomial in Eq. (3)
and the measure of degeneracy principally used in Ref. [6],
the absolute value of the difference of any two roots,
�ij :¼ j�i � �jj. The true space of interest is the space

of future-directed null rays at a point, the so-called anti-
celestial sphere. As argued in Sec. IV, the complex quantity
� acts as a coordinate on this two-dimensional space. It
should therefore not be surprising that �ij, a coordinate

distance, fails to represent geometries in the space of null
rays, since it is impossible to cover a topological sphere
with a single coordinate chart without the presence of
coordinate singularities.

It would therefore seem that the right thing to do would
be to consider truly geometrical distances in the space of
null rays as defining the nearness of principal null direc-
tions to one another. This approach, unfortunately, is
clouded by the nonexistence of a preferred metric structure
on the anticelestial sphere. The anticelestial sphere has a
six-dimensional conformal group, corresponding to the
proper Lorentz group of Minkowski spacetime. While
this group carries a three-dimensional subgroup of isome-
tries—corresponding to rotations—which have no effect
on the ‘‘distances’’ between any two null rays, the three
remaining dimensions—corresponding to boosts—confor-
mally rescale the metric on the space of null rays. For this
reason, fixing a unique geometry on the space of null rays
requires fixing a unique observer with respect to which this
boost freedom is fixed. In the introduction, we described
similar difficulties in attempting to define a concept of
approximate Petrov class by algebraic means.

In Sec. IV we also presented a geometrical interpretation
of the quantity �ij. Rather than simply as a coordinate

distance on the space of null rays, �ij can be interpreted as

a metric distance along the cut of a null cone made by a
null hyperplane. In a sense, one is here adapting the metric
on the space of null rays to a null observer. Similarly,�ij is

a distance function on the intersection of the future null
cone with a spacelike plane orthogonal to our timelike
observer.

There are equally many degrees of freedom in cutting
the null cone with a spacelike hyperplane as there are in
cutting it with a null hyperplane (once one restricts the
spacelike cuts to normalize the area of the anticelestial
sphere, a restriction that cannot be made on null hyper-
planes because the intersection is noncompact). For this
reason the degeneracy measure that we have introduced,
�ij in Eq. (45), cannot be considered fundamentally any

more invariant than �ij, though in practice it is easier to

imagine a fleet of preferred timelike observers than of null
observers, such as stationary observers in stationary space-
times, observers adapted to timelike approximate Killing
vectors in approximately stationary spacetimes (if such
vectors can be reasonably defined), or freely falling ob-
servers following timelike geodesics from infinity. We

have not, however, attempted to find any such preferred
classes of observers in the numerical results presented
here, either for fixing the geometry on the space of null
rays or for fixing the worldlines along which data are
extracted. The main value of the new degeneracy measure
�ij is not that it is more gauge-invariant, but rather that it

naturally captures the compactness of the space of null
rays, and thereby avoids relegating any particular null ray
to a point at infinity.
The need to avoid relegating any null ray to a point at

infinity is particularly acute in practice, as the rays at
infinity in the physically preferable quasi-Kinnersley tet-
rads become the principal null directions themselves as a
spacetime settles down to Kerr geometry. This behavior
was investigated in Sec. III. As principal null directions
relax to degeneracy at the point at infinity in � space, the
degeneracy measure �ij grows exponentially rather than

decaying exponentially as one would naively expect.
While the tetrads used in numerical simulations are not
commonly quasi-Kinnersley tetrads, there is generally an
implicit hope, for purposes of wave extraction, that they
are close to it in some rough sense. Indeed, as is visible in
Fig. 4, this nonintuitive behavior in the quasi-Kinnersley
tetrad can corrupt measurements of �ij in even a simple

coordinate-adapted tetrad (cf. Fig. 3).
The other figures in Sec. V tell much the same story,

though in somewhat less dramatic terms. Figure 6 shows
indications of principal null directions directly crossing the
tetrad null vectors, repeatedly causing the null directions to
be represented by the point at infinity in � space, due
purely to the choice of spatial tetrad. Figure 7 shows that
the hangups in the degeneracy measure �ij are not limited

to the partially symmetry-preferred x and z axes. In fact,
�ij, computed everywhere in a tetrad adapted to spherical

coordinates, clearly shows this hangup in Petrov type II
even in an integral L2 norm, while �ij does not.

Another motivation of this paper has been to provide
further evidence that the final remnants of our black hole
merger simulations are Kerr black holes. This was indeed
the central focus of Ref. [6], and they even went so far as to
demonstrate that their final black hole has no Newman-
Unti-Tamburino (NUT) charge or acceleration (as in the
C-metrics; see Ref. [22]), an issue that we have not ex-
plored here.
The question of whether a black hole is ‘‘settling down

to Kerr geometry’’ can be attacked at a variety of levels. In
a recent paper [19], we studied the question at a quasilocal
level, verifying that the quasilocal source multipole mo-
ments of the black hole settle to the values required by the
Kerr geometry (see also Refs. [20,21]). More recently,
Ref. [23] presented theoretical tools for approaching the
question at a global level (global on any given spacelike
slice). The approach taken in Ref. [6] was in part local
(measurement of �ij), and in part global. The method by

which Campanelli et al. verified the vanishing of the NUT
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charge and acceleration involved limits of curvature invar-
iants to large radii. If one wishes to rule out NUT charge or
acceleration at a local level, to provide a more cohesive
picture when combined with local algebraic degeneracy
measures, this can be done with quantities presented in
Ref. [11], though as described in the introduction of this
paper, collapsing tensorial quantities to scalar quantities
would require a positive-definite background metric,
which could require fixing a slicing or a threading of
spacetime.
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