
Primordial perturbations from multifield inflation with nonminimal couplings

David I. Kaiser*

Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

Audrey T. Todhunter†
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Realistic models of particle physics include many scalar fields. These fields generically have non-

minimal couplings to the Ricci curvature scalar, either as part of a generalized Einstein theory or as

necessary counterterms for renormalization in curved background spacetimes. We develop a gauge-

invariant formalism for calculating primordial perturbations in models with multiple nonminimally

coupled fields. We work in the Jordan frame (in which the nonminimal couplings remain explicit) and

identify two distinct sources of entropy perturbations for such models. One set of entropy perturbations

arises from interactions among the multiple fields. The second set arises from the presence of nonminimal

couplings. Neither of these varieties of entropy perturbations will necessarily be suppressed in the long-

wavelength limit, and hence they can amplify the curvature perturbation � , even for modes that have

crossed outside the Hubble radius. Models that overproduce long-wavelength entropy perturbations

endanger the close fit between predicted inflationary spectra and empirical observations.
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I. INTRODUCTION

High-precision measurements of the cosmic microwave
background (CMB) radiation provide some of the most
stringent tests of inflationary cosmology [1,2]. As is well
known, inflationary models make specific predictions for
the spectrum of primordial perturbations. The gauge-
invariant formalism for performing those calculations,
based on coupled metric perturbations and quantum field
fluctuations, has reached a high state of maturity. (For
reviews, see [3–7].)

An important feature of the perturbation spectra con-
cerns the balance between adiabatic perturbations and iso-
curvature (or entropy) perturbations. Models that
overproduce entropy perturbations can result in significant
differences between predicted inflationary spectra and em-
pirical observations [5,8,9]. In particular, entropy pertur-
bations can amplify the curvature perturbation on the
longest (cosmologically relevant) length scales, even after
those modes have crossed outside the Hubble radius.
Single-field models generically predict little to no entropy
perturbations on the longest length scales. But models that
involve multiple interacting scalar fields do, in general,
produce long-wavelength entropy perturbations, which can
threaten the conservation of the curvature perturbation and
hence the matching of inflationary predictions to observa-
tions [8,10].

The authors of [11] identified a second source of entropy
perturbations: scalar fields with noncanonical kinetic terms

will induce entropy perturbations distinct from the usual
source that stems from fields’ interactions with each other.
Building on that important observation, recent work
[12,13] has considered perturbations in generalized multi-
field inflationary models, in which arbitrarily many scalar
fields possess noncanonical kinetic terms. The analyses in
[11–13] were conducted in the Einstein frame, in which all
fields have minimal couplings to the Ricci curvature scalar
R.
Noncanonical kinetic terms are often associated with

exotic forms of matter (such as axions and moduli fields
from string theory), if not outright pathologies. Scalar
fields with the ‘‘wrong’’ sign of the kinetic term, for
example, can signal a tachyonic instability in a model.
On the other hand, noncanonical kinetic terms also appear
upon making a conformal transformation to the Einstein
frame and rescaling any fields which, in the Jordan frame,
possessed nonminimal couplings to R—even if those fields
had canonical kinetic terms in the Jordan frame. As is well
known, nonminimal couplings are generic for scalar fields.
They arise from a variety of model-building efforts (in
supergravity, string theory, and more) [14,15]. They are
also required as counterterms when considering renormal-
ization of scalar fields in curved background spacetimes
[16,17]. Indeed, in many models the nonminimal coupling
strength � grows without bound under renormalization-
group flow [17].
As has recently been shown [18], for models that incor-

porate multiple nonminimally coupled scalar fields, there
does not exist any combination of conformal transforma-
tion and field rescalings that can bring both the gravita-
tional portion of the action and the fields’ kinetic terms into
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canonical form. Thus one may work in a frame that incor-
porates canonical Einstein gravity but necessarily includes
noncanonical kinetic terms for the scalar fields; or one may
work in a frame in which the nonminimal couplings remain
explicit but the scalar fields have canonical kinetic terms.

Here we revisit the calculation of [12,13], performing
the entire calculation in the Jordan frame. By working in
the Jordan frame, the second source of entropy perturba-
tions described in [11–13] appears rather straightforward:
it arises from the presence of the nonminimal couplings
and persists even for scalar fields that retain canonical
kinetic terms (in the Jordan frame). That is, models that
have a perfectly mundane matter sector—each scalar field
with a canonical kinetic term, and each with a simple
nonminimal coupling (as required for renormalization)—
include the second source of entropy perturbations identi-
fied in [11–13]. In the process, we build on previous work
that extended the gauge-invariant perturbation formalism
to generalized Einstein theories [3,19–22] to present what
is (to the best of our knowledge) the first calculation of
inflationary perturbations for models with multiple non-
minimally coupled fields, conducted in the Jordan frame in
which the nonminimal couplings remain explicit. (See
[15,23] for reviews of the single-field, nonminimally
coupled case.)

We perform the calculation in the Jordan frame because
we believe other aspects of inflationary model building
may be tackled more conveniently in the Jordan frame.
In addition to the fields’ canonical kinetic terms, interac-
tions among the scalar fields may be readily analyzed
without the appearance of new (and often nonrenormaliz-
able) interactions among the transformed fields, which
necessarily appear in multifield models upon making use
of a conformal transformation [18,24].

The formalism developed here should be helpful for
calculating primordial perturbation spectra for all manner
of models of recent interest, whether inspired by string
cosmology or not. Indeed, because nonminimal couplings
are generic for scalar fields in curved spacetime—and
because realistic models of particle physics (including
the standard model and its various generalizations) contain
many scalar fields that could play important roles in the
early Universe [25]—it is essential to have a robust, gauge-
invariant formalism that can accommodate multiple non-
minimally coupled fields. We have in mind, for example,
the recent model of ‘‘Higgs inflation,’’ in which the Higgs
sector of the electroweak standard model drives a phase of
early-universe inflation, thanks to a significant nonminimal
coupling, �� 104 [26]. In renormalizable gauges appro-
priate to the high-energy inflationary regime, the standard
model Higgs sector includes four scalar fields rather than
just one: the (real) Higgs scalar field plus three Goldstone
fields [18,24,27]. Higgs inflation thus involves four non-
minimally coupled scalar fields, each of which possesses a
canonical kinetic term in the Jordan frame. The formalism

developed here will allow one to analyze perturbation
spectra for models like these.
The remainder of the paper is organized as follows. In

Sec. II we derive the equations governing linearized metric
perturbations for the general case of multiple nonmini-
mally coupled scalar fields. In Sec. III we examine the
curvature perturbation on uniform-density hypersurfaces
for such models, � , to highlight under what conditions �
may vary considerably between the time a mode first
crosses outside the Hubble radius during inflation and the
time that mode reenters the Hubble radius at the epoch of
CMB last scattering. Concluding remarks follow in
Sec. IV.

II. BACKGROUND AND PERTURBATIONS

We work in ð3þ 1Þ spacetime dimensions, with metric
signature ð�;þ;þ;þÞ. We consider models involving N
scalar fields,�I, each of which is nonminimally coupled to
the Ricci curvature scalar. The action is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
fð�IÞR� 1

2
GIJg

���I
;��

J
;� � Vð�IÞ

�
:

(1)

We denote covariant derivatives (with respect to the space-
time metric g��) with semicolons and use the Einstein

summation convention both for repeated spacetime indices
ð�; �Þ and field-space indices ðI; JÞ. Since our goal is to
demonstrate the relationship between entropy perturba-
tions and nonminimal couplings, we will restrict attention
to trivial (Euclidean) field spaces, with GIJ ¼ �IJ. Hence
every scalar field in the models we consider has a canonical
kinetic term in the action. More complicated field-space
metrics may be treated by the methods developed in
[12,13].
Varying the action with respect to g�� yields the

Einstein field equations

G�� ¼ R�� � 1

2
g��R ¼ 1

M2
pl

T��; (2)

where Mpl is the reduced Planck mass,

Mpl � 1ffiffiffiffiffiffiffiffiffiffi
8�G

p ¼ 2:43� 1018 GeV: (3)

The energy-momentum tensor takes the form

T�� ¼ M2
pl

2fð�IÞ
�
�IJ�

I
;��

J
;� � g��

�
1

2
�KLg

�	�K
;��

L
;	

þ Vð�IÞ
�
þ 2fð�IÞ;�;� � 2g��hfð�IÞ

�
: (4)

The coefficient M2
pl=ð2fÞ on the right-hand side of Eq. (4)

is necessary in order for T�� to be conserved, T��
;� ¼ 0.

Varying the action with respect to each field �I yields
the equations of motion
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h�I � VI þ fIR ¼ 0; (5)

where h�I ¼ g���I
;�;�, VI ¼ @V=@�I, and fI ¼

@f=@�I. Because both V and f depend on multiple scalar
fields,�I;�J; . . . ; �N , the fields’ equations of motion will,
in general, become coupled.

We may next consider linearized perturbations around a
spatially flat Friedmann-Robertson-Walker metric in ð3þ
1Þ spacetime dimensions. The scalar degrees of freedom of
the perturbed line element may be written

ds2 ¼ �ð1þ 2AÞdt2 þ 2að@iBÞdxidt
þ a2½ð1� 2c Þ�ij þ 2@i@jE�dxidxj; (6)

where Latin indices run over spatial coordinates, i; j ¼
1; 2; 3, and aðtÞ is the scale factor. The well-known
gauge-invariant Bardeen potentials are defined as [3,5]

� � A� d

dt

�
a2
�
_E� B

a

��
; � � c þ a2H

�
_E� B

a

�
;

(7)

where overdots denote derivatives with respect to cosmic
time t and H ¼ _a=a is the Hubble parameter. In the lon-
gitudinal gauge, which corresponds to setting E ¼ B ¼ 0,
the perturbed line element reduces to

ds2 ¼ �ð1þ 2�Þdt2 þ a2ð1� 2�Þ�ijdx
idxj: (8)

We may also separate each scalar field into a spatially
homogenous background and a fluctuation:

�Iðx�Þ ¼ ’IðtÞ þ ��Iðx�Þ: (9)

In the spacetime metric associated with Eq. (8), the equa-
tions of motion, Eq. (5), separate into background and first-
order expressions:

€’ I þ 3H _’I þ VIð’IÞ � fIð’IÞR ¼ 0;

� €�I þ 3H� _�I � 1

a2
r2��I þ ðVIJ � fIJRÞ��J

¼ �2VI�þ _’Ið _�þ 3 _�Þ þ fIð2R�þ �RÞ;
(10)

where r2 ¼ @i@i is the spatial Laplacian in comoving
coordinates, and

R ¼ 6ð _Hþ 2H2Þ;
�R ¼ �6 €�� 6Hð _�þ 4 _�Þ � 12ð _H þ 2H2Þ�

� 2

a2
r2ð�� 2�Þ:

(11)

We expand the Einstein field equations to first order in
�, �, and ��I,

Gð0Þ
�� þ �G�� ¼ 1

M2
pl

½Tð0Þ
�� þ �T���; (12)

with background quantities labeled by (0). It will prove
convenient to write the energy-momentum tensor in terms

of fluid quantities first and later use Eq. (4) to relate
quantities such as the energy density 
 and the pressure
p to the fields and their fluctuations. We follow the con-
vention of labeling fluid quantities and their perturbations
in terms of the mixed-index energy-momentum tensor:

T0
0 ¼ �ð
þ �
Þ; T0

i ¼ @i�q;

Ti
j ¼ �i

jðpþ �pÞ þ�i
j;

(13)

where �
 is the density perturbation, �q is the momentum
flow, �p is the isotropic pressure perturbation, and �ij is
the anisotropic pressure. Note that �ij has no timelike
components; it is symmetrical in its indices (�ij ¼ �ji);
and it is traceless (�i

i ¼ 0). Thus we may write �ij in

terms of a projection operator:

�ij ¼ ½@i@j � 1
3�ijr2��: (14)

As we will see below, �ij � 0 in models with at least one

nonminimally coupled scalar field. The decomposition of
T�� in Eq. (13) is completely general: this form applies

(with different values of 
, �
, and so on) for simple
models involving one minimally coupled field as well as
for models with several nonminimally coupled fields.
To background order, the Einstein equations of Eq. (12)

yield the usual dynamical equations:

3H2 ¼ 1

M2
pl


; 2 _H þ 3H2 ¼ � 1

M2
pl

p: (15)

The first-order perturbed Einstein equations yield

3Hð _�þH�Þ � 1

a2
r2� ¼ � 1

2M2
pl

�
; (16)

_�þH� ¼ � 1

2M2
pl

�q; (17)

€�þ 3H _�þH _�þ ð2 _H þ 3H2Þ�

¼ 1

2M2
pl

�
�p� 2

3
r2�

�
; (18)

and

1

a2
@i@jð���Þ ¼ 1

M2
pl

@i@j�; (19)

where Eq. (16) follows from the 00 component of the
Einstein field equations; Eq. (17) from the 0i component;
Eq. (18) from the i ¼ j component; and Eq. (19) from the
i � j component.
Because of the Bianchi identity, the covariant derivative

of the left-hand side of the Einstein field equation vanishes
identically, G��

;� ¼ 0. Thanks to Eq. (2), that implies

energy-momentum conservation, T��
;� ¼ 0. Upon calcu-

lating the Christoffel symbols to first order in the metric
perturbations and keeping terms linear in the perturbations,
we find
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T0�
;� ¼ ½ _
þ 3Hð
þ pÞ�ð1� 2�Þ þ � _


þ 3Hð�
þ �pÞ þ 1

a2
r2�q� 3ð
þ pÞ _� ¼ 0:

(20)

We consider the background and first-order terms to be
separately conserved, which yields

_
þ 3Hð
þ pÞ ¼ 0;

� _
þ 3Hð�
þ �pÞ ¼ � 1

a2
r2�qþ 3ð
þ pÞ _�:

(21)

Note that the anisotropic pressure �ij drops out of the

conservation equations because it is traceless.
Comparing Eqs. (4) and (13), we may identify the fluid

components (
, �
, and so on) in terms of the matter-field
content of our family of models. We expand the nonmini-
mal coupling term as

fð�IÞ ¼ fð’IÞ þ �fð’I; ��IÞ þOð��I��JÞ; (22)

where fð’IÞ ¼ fð0Þ. In what follows we will drop the
superscript (0) on f; it should be understood that f written
with no explicit argument refers to fð’IÞ. Then the 00
component yields


 ¼ M2
pl

2f

�
1

2
�IJ _’I _’J þ V � 6H _f

�
;

�
 ¼ M2
pl

2f

�
�IJð _’I� _�J � _’I _’J�Þ þ VK��

K

þ 6 _fð _�þ 2H�Þ � 6Hð� _fþH�fÞ þ 2

a2
r2�f

�
:

(23)

The 0i component becomes

�q ¼ �M2
pl

2f
½�IJ _’I��J þ 2ð� _f�H�f� _f�Þ�: (24)

The diagonal terms within Ti
j yield

p ¼ M2
pl

2f

�
1

2
�IJ _’I _’J � V þ 2 €fþ 4H _f

�
;

�p ¼ M2
pl

2f

�
�IJð _’I� _�J � _’I _’J�Þ � VK��

K � 4 €f�

� 2 _fð _�þ 2H�Þ � 2

M2
pl

p�fþ 2� €fþ 4H� _f

� 2

a2
r2�f

�
: (25)

The i � j term, coming from the anisotropic pressure,
becomes

@i@jð���Þ ¼ � 1

f
@i@j�f: (26)

Thus in models with at least one nonminimally coupled
scalar field, the two Bardeen potentials, � and �, will

differ. In the limit fð�IÞ ! M2
pl=2 ¼ constant, Eqs. (23)–

(25) approach the corresponding expressions for the multi-
field, minimally coupled case [see Eqs. (72)–(74) of [5]],
and � ! �.

III. CONSERVATION OF THE CURVATURE
PERTURBATION

We may now consider the behavior of the curvature
perturbation on uniform-density hypersurfaces, � [28]. In
terms of the gauge-invariant Bardeen potential � and
working in longitudinal gauge, � may be written [5]

� ¼ ���H

_

�
 ¼ ��þ �


3ð
þ pÞ ; (27)

where the second expression follows from using Eq. (21)
for _
. Taking the time derivative we find

_� ¼ � _�þ � _


3ð
þ pÞ �
�


3ð
þ pÞ2 ð _
þ _pÞ

¼ � H�p

ð
þ pÞ �
1

3ð
þ pÞ
1

a2
r2�q� _p�


3ð
þ pÞ2 ;
(28)

upon using the expression for � _
 in Eq. (21). The non-
adiabatic pressure is defined as [5]

�pnad � �p� _p

_

�
; (29)

with which we may rewrite Eq. (28) as

_� ¼ � H

ð
þ pÞ�pnad � 1

3ð
þ pÞ
1

a2
r2�q: (30)

This expression for _� is completely general and model-
independent; it holds for any (physical) case in which the
total energy-momentum tensor is conserved.
The �q term is related to the shear, which (as we will see

in a moment) is always suppressed in the long-wavelength

limit, k � aH. Thus any deviation of _� from zero on
cosmologically interesting length scales must arise from
the presence of nonadiabatic pressure �pnad. In other
words, models which produce significant entropy pertur-

bations can have _� � 0 even in the limit k � aH.
To evaluate the r2�q term in Eq. (30) we use Eqs. (16)

and (17), relating �q and �
 to� and�. We also perform
a Fourier transform, such that r2F ¼ �k2F for any func-
tion FðxiÞ, where k is the comoving wave number. Then we
find

1

3ð
þ pÞ
k2

a2
�q ¼ � 2M2

pl

3ð
þ pÞ
k2

a2
ð _�þH�Þ

¼ 1

3
H

�
k

aH

�
2

�
�
� þ�

�
1þ 2


9ð
þ pÞ
�
k

aH

�
2
��

� ��; (31)
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where � is the scalar shear along comoving worldlines
[5,29], and we have used the definition of � in Eq. (27) as
well as the background relation between H2 and 
 of
Eq. (15). Clearly the shear will remain negligible on the
relevant length scales following Hubble crossing, with
k � aH, so long as � and � remain finite. This result is
model-independent and holds for any conserved energy-
momentum tensor. Returning to Eq. (30), we thus see that

any deviations of _� from zero in the limit k � aH will
arise from entropy perturbations �pnad.

Consider first the case of a single scalar field with
minimal coupling. Applying Eqs. (10), (15), and (23)–
(25), in the case N ¼ 1 and fð’IÞ ¼ M2

pl=2, �f ¼ 0, we

find

_p

_

¼ 1þ 2V�

3H _’
; (32)

and thus, from Eq. (29),

�pnad ¼ �2V���� 2V�

3H _’
�
 ¼ � 2V�

3H _’
ð�
þ 3H _’��Þ

¼ � 2V�

3H _’
�
m; (33)

where �
m is the gauge-invariant comoving density per-
turbation [5], defined as

�
m ¼ �
� 3H�q: (34)

In the single-field, minimally coupled case, we thus find
that �pnad / �
m. We may further evaluate �
m by com-
bining Eqs. (16) and (17), which yields

k2

a2
� ¼ � 1

2M2
pl

ð�
� 3H�qÞ ¼ � 1

2M2
pl

�
m: (35)

This expression, relating �
m to the spatial derivative of
�, is completely general and holds for any conserved
energy-momentum tensor; the proportionality of �pnad

and �
m in Eq. (33) is model-specific. In the single-field,
minimally coupled case, we therefore find

�pnad ¼ � 2V�

3H _’
�
m ¼ 4V�


9H _’

�
k

aH

�
2
�: (36)

In the simple case of a single minimally coupled field, we
find the well-known result [3,5,28–30] that both �pnad and
� are suppressed by factors of ðk=aHÞ2. From Eq. (30), we
therefore see that in single-field, minimally coupled mod-

els, the curvature perturbation remains conserved, _� ’ 0,
on cosmologically relevant length scales with k � aH. In
such models, curvature perturbation modes that are ampli-
fied during inflation and cross outside the Hubble radius
will remain effectively frozen until crossing back inside the
Hubble radius at the time of CMB last scattering.

We may now use the formalism of Sec. II to see how this
result generalizes to the case of multiple scalar fields, each
with nonminimal couplings. From Eq. (23), we find

_
 ¼
_f

f

� 3HM2

pl

2f
½�IJ _’I _’J þ 2 €f�; (37)

upon using Eq. (10) for €’I, Eq. (11) for R, Eq. (15) to relate

H2 and 
, and the relation _f ¼ fI _’
I. Proceeding similarly,

from Eq. (25) we find

_p ¼ _
� 3

2

_f

f
ð
þ pÞ � 2

_f

f
p

þM2
pl

2f
½�2VI _’

I þ 2f
:::þ 10H €f�: (38)

From Eqs. (15) and (21) we may write

ð
þ pÞ ¼ � 1

3H
_
 ¼ �2M2

pl
_H: (39)

Combining, we find

_p

_

¼ 1þ

�M2
pl

2f

�
2VI _’

I

3Hð
þ pÞ þ S; (40)

where we have defined

S � 1

2H

_f

f

�
1þ 4p

3ð
þ pÞ
�
þ 1

6H _H

�
f
:::

f
þ 5H

€f

f

�
; (41)

and we have again used f ¼ fð’IÞ ¼ fð0Þ for the non-
minimal coupling function evaluated in terms of the back-
ground fields, ’I. Similar calculation yields

�p� �
 ¼
�M2

pl

2f

�
½�2VI��

I �F þ �F �; (42)

where

F � 4 €f�þ 2 _f _�þ10 _fð _�þ 2H�Þ;

�F � 2

M2
pl

ð
� pÞ�fþ 2� €fþ 10H� _fþ 4
k2

a2
�f:

(43)

Combining Eqs. (40), (41), and (43) and using Eq. (24) for
�q, we thus find for Eq. (29)

�pnad ¼ �
�M2

pl

2f

��
2VI _’

I

3Hð
þ pÞ�
m þ 2VI�
I þF � �F

�
�
2f

M2
pl

�
S�


�
; (44)

where we have defined

�I � ��I þ �q

ð
þ pÞ _’I: (45)

In the minimally coupled case, fð’IÞ ! M2
pl=2 ¼ constant

and �f ! 0, and thus ðS;F ; �F Þ ! 0.
We may quickly confirm the well-known result that

multifield models, each with canonical kinetic terms and
minimal coupling, generically produce entropy perturba-
tions that need not be suppressed in the limit k � aH
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[5,8,10,11,31,32]. For simplicity, consider a two-field
model with fields � and �. Then Eq. (44) becomes

�pnad ¼ �ð2V�
_�þ 2V� _�Þ

3Hð _�2 þ _�2Þ �
m

� 2 _� _�

ð _�2 þ _�2Þ ð _�V� � _�V�Þ
�
��
_�
� ��

_�

�
: (46)

As usual, the term proportional to �
m will remain sup-
pressed in the long-wavelength limit, thanks to Eq. (35),
but the second term need not be negligible even for k �
aH. Multiple interacting fields will generically produce
entropy perturbations which can in turn amplify the curva-
ture perturbation.

From Eq. (44) it is also clear that nonminimal couplings
will generate a second, distinct source of entropy pertur-
bations, which likewise need not be suppressed in the limit
k � aH. To distinguish this second source of entropy
perturbations from those that are generically produced in
the multifield case, consider a model with a single non-
minimally coupled scalar field. Upon using Eqs. (23)–(25)
in the case N ¼ 1, ðf; �fÞ � constant, Eq. (44) becomes

�pnad ¼ �
�M2

pl

2f

��
2V� _’

3Hð
þ pÞ�
m þ 2V��ð�Þ

þF � �F þ
�
2f

M2
pl

�
S�


�
; (47)

where S is defined in Eq. (41), F and �F are defined in
Eq. (43), and, in the single-field case, Eq. (45) reduces to

�ð�Þ ¼ 2

½ _’2 þ 2 €f� 2H _f�
� ½ _’ð� _f�H�f� _f�Þ � ��ð €f�H _fÞ�: (48)

From Eqs. (35) and (47) we again see that the first term in
�pnad, proportional to �
m, will remain suppressed for
k � aH, whereas all of the remaining terms—which arise
solely from the nonminimal coupling—can source entropy
perturbations even in the long-wavelength limit.

The behavior of the curvature perturbation � thus de-
pends upon the entropy perturbations �pnad. The entropy
perturbations, in turn, depend on several terms involving
the nonminimal couplings: �I, F , �F , and S�
. From
Eqs. (23), (24), (41), (43), and (45), we see that �I,F , and
S�
 are each proportional to the field fluctuations ��I,
while the F term depends on the time dependence of the
nonminimal coupling function fð’IÞ. During inflation, we
expect all of these contributions to �pnad to remain negli-
gible, at least in the limit k � aH. The field fluctuations in
many models will remain close to the usual value in
de Sitter spacetime, h��Ii �H=2�. Likewise, the back-
ground fields ’I should vary slowly during the slow-roll

phase of inflation, so that _f, €f, and similar terms should
remain relatively unimportant.

As inflation ends and preheating begins, however, both
of these conditions can change dramatically. The inflaton’

will begin to oscillate rapidly, and hence _f, €f, and similar
terms need not remain small. Furthermore, under certain
conditions, the field fluctuations ��I

k can become reso-

nantly amplified, growing exponentially even for super-
Hubble modes with k � aH. (For reviews of preheating,
see [5,33].) Thus during preheating, the entropy perturba-
tions arising from nonminimal couplings can grow rapidly.
This growth, in turn, can amplify the entropy perturbations

�pnad and drive _� � 0.

IV. CONCLUSIONS

Models with multiple nonminimally coupled scalar
fields generically produce two distinct sources of entropy
perturbations. When analyzed in the Jordan frame, these
two sources are easily distinguished. One set arises strictly
from the interactions of multiple fields (and persists even
when all fields are minimally coupled), and a second set
arises strictly from nonminimal couplings (even in the case
of a single field). The term �I of Eq. (45) contributes to
both sources of entropy perturbations, because the quanti-
ties 
, p, and �q acquire terms dependent on the non-
minimal couplings, fð�IÞ. The additional new terms that
we have identified—S,F , and �F in Eqs. (41) and (43)—
each contribute entropy perturbations due to the presence
of nonminimal couplings. All of these terms arise for fields
with canonical kinetic terms in the action; and none of the
new sources of entropy perturbations will necessarily be
suppressed in the limit k � aH.
The various sources of entropy perturbations may be

understood intuitively. Consider pouring multiple fluids
into a container. Mixing the fluids will naturally produce
entropy; think of how difficult it would be to unmix the
fluids after they have been poured in. That source of
entropy corresponds to the entropy perturbations present
in any multifield model. Next imagine that the walls of the
container were allowed to wobble in response to the slosh-
ing of the fluids. The walls’ vibrations would further in-
crease the number of allowable states toward which the
system could evolve. That effect is akin to the nonminimal
couplings, which introduce an added degree of freedom to
the way spacetime responds to the presence of matter. [In
effect, the nonminimal couplings make the local strength
of gravity depend on space and time,G / 1=fð�IÞ.] Hence
the nonminimal couplings contribute a separate source of
entropy to the system.
In the single-field case, one may always perform a

conformal transformation and field rescaling so that the
dynamics (in terms of the rescaled field) appear identical to
the single-field minimally coupled case, akin to Eq. (33)
[19,22,34]. But in the multifield case, no combination of
conformal transformation and field rescalings exists that
could make all fields appear to have both minimal cou-
plings to R and canonical kinetic terms in the action [18].
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The new source of entropy perturbations identified here,
which arises from nonminimal couplings in the Jordan
frame, would appear in the transformed frame to arise
from fields’ noncanonical kinetic terms [11–13]. One
way or another, in the multifield case, there exist two
separate sources of entropy perturbations even in the
long-wavelength limit.
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