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We investigate motion of test particles in exact spacetimes with an expanding impulsive gravitational

wave which propagates in a Minkowski, a de Sitter, or an anti-de Sitter universe. Using the continuous

form of these metrics we derive explicit junction conditions and simple refraction formulas for null,

timelike, and spacelike geodesics crossing a general impulse of this type. In particular, we present a

detailed geometrical description of the motion of test particles in a special class of axially symmetric

spacetimes in which the impulse is generated by a snapped cosmic string.
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I. INTRODUCTION

In the fundamental work [1] Roger Penrose introduced
an elegant geometric ‘‘cut and paste’’ method for construc-
tion of impulsive spherical gravitational waves in a flat
background. This is based on cutting Minkowski space
along a null cone and then reattaching the two pieces
with a suitable warp. An explicit class of such spacetimes,
using coordinates in which the metric functions are con-
tinuous across the impulse, was subsequently given by
Nutku and Penrose [2], Hogan [3,4] and, to include a
nonvanishing cosmological constant, in [5–7]. An addi-
tional acceleration parameter can also be introduced [8].

This gives the complete family of expanding spherical
waves of a very short duration which propagate in a
Minkowski, a de Sitter, or an anti-de Sitter universe, that
is in spacetimes with a constant curvature (zero, positive,
or negative, respectively). Such solutions can naturally be
understood as impulsive limits of Robinson-Trautman
type-N vacuum solutions [9,10], namely, a suitable family
of spherical sandwich waves of this type [6,11].

A stereographic interpretation of complex spatial coor-
dinate involved in the Penrose junction condition across
the impulse can be used for an explicit construction of
specific solutions of this type, in particular, those which
describe impulsive spherical waves generated by colliding
and snapping cosmic strings [7]. A first such solution given
already in [2] represents the snapping of a cosmic string,
identified by a deficit angle in the region outside the
spherical impulsive gravitational wave. The collision and
breaking of a pair of cosmic strings can also be described in
this way.

The particular solution for a spherical gravitational im-
pulse generated by a snapping cosmic string in Minkowski
space was alternatively described by Bičák and Schmidt
[12]. This was obtained as a limiting case of the Bonnor-

Swaminarayan solution for an infinite acceleration of a pair
of Curzon-Chazy particles (see Chapter 15 of [10]). It was
observed in [13] that such a situation is equivalent to the
splitting of an infinite cosmic string as described in [14] or,
rather, of two semi-infinite cosmic strings approaching at
the speed of light and separating again at the instant at
which they ‘‘collide.’’
The same explicit solution was also obtained in the limit

of an infinite acceleration in the more general class which
represents a pair of uniformly accelerating particles with
an arbitrary multipole structure [15], or as an analogous
limit of the C metric which describes accelerating black
holes [16]. In the latter case, a nonvanishing cosmological
constant can also be considered. This leads to a specific
expanding spherical impulse generated by a snapping cos-
mic string in the (anti)de Sitter universe [17].
More details concerning these impulsive metrics and

other references can be found in the review works
[18,19] and in Chapter 20 of [10]. Note also that particle
creation and other quantum effects in such spacetimes were
investigated, e.g., by Hortaçsu and his collaborators [20–
23].
The main objective of the present work is to study

specific properties of these spacetimes, namely, the motion
of test particles influenced by the spherical impulsive
waves. In fact, Podolský and Steinbauer in [24] already
investigated and described the behavior of exact geodesics
in the case when the impulse expands in Minkowski flat
space. Here wewill generalize this study to any value of the
cosmological constant, i.e., we will analyze the effects on
geodesics when the spherical impulse expands in a
de Sitter or an anti-de Sitter universe. Moreover, we will
present the results in a form which is more convenient for
physical and geometric interpretation.
Our paper is organized as follows. In Sec. II we review

the class of spacetimes under consideration and describe
the geometry of the expanding impulses. By employing a
continuous form of the metric, in Sec. III we investigate a
large class of C1 geodesics crossing the spherical impulse.
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We explicitly derive the junction conditions and the refrac-
tion formulas, we study a subfamily of privileged global
geodesics, and rewrite the junction conditions in a conve-
nient five-dimensional formalism when � � 0. In Sec. IV
we focus on impulsive waves generated by a snapped
cosmic string. We discuss in detail the physical and geo-
metric interpretation of the motion of test particles influ-
enced by an impulse of such type.

II. EXPANDING IMPULSIVE WAVES IN
CONSTANT-CURVATURE BACKGROUNDS

As a natural background for constructing the family of
spherical expanding impulsive waves, we consider the
conformally flat metric

ds20 ¼
2d�d ��� 2dUdV

½1þ 1
6�ð� ���UV Þ�2 : (2.1)

This is a unified form for all spaces of constant curvature,
namely, Minkowski space when � ¼ 0, de Sitter space
when �> 0, and anti-de Sitter space when �< 0.

Indeed, with the standard representation of the double
null coordinates

U ¼ 1ffiffiffi
2

p ðt� zÞ; V ¼ 1ffiffiffi
2

p ðtþ zÞ; �¼ 1ffiffiffi
2

p ðxþ iyÞ;
(2.2)

the metric (2.1) reads

ds20 ¼
�dt2 þ dx2 þ dy2 þ dz2

½1þ 1
12�ð�t2 þ x2 þ y2 þ z2Þ�2 ; (2.3)

which for � ¼ 0 is the familiar form of the flat space. In
the case � � 0, it is well known that the corresponding
de Sitter and anti-de Sitter spaces can be represented as a
four-dimensional hyperboloid,

� Z2
0 þ Z2

1 þ Z2
2 þ Z2

3 þ "Z2
4 ¼ "a2; (2.4)

embedded in a flat five-dimensional spacetime,

ds20 ¼ �dZ2
0 þ dZ2

1 þ dZ2
2 þ dZ2

3 þ "dZ2
4; (2.5)

where " ¼ 1 for the de Sitter space (�> 0), " ¼ �1 for

the anti-de Sitter space (�< 0), and a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
3=j�jp

. The
specific parametrization of (2.4) given as

Z 0 ¼ 1ffiffiffi
2

p ðV þUÞ
�
1þ 1

6
�ð� ���UV Þ

��1
;

Z1 ¼ 1ffiffiffi
2

p ðV �UÞ
�
1þ 1

6
�ð� ���UV Þ

��1
;

Z2 ¼ 1ffiffiffi
2

p ð�þ ��Þ
�
1þ 1

6
�ð� ���UV Þ

��1
;

Z3 ¼ �iffiffiffi
2

p ð�� ��Þ
�
1þ 1

6
�ð� ���UV Þ

��1
;

Z4 ¼ a

�
1� 1

6
�ð� ���UV Þ

��
1þ 1

6
�ð� ���UV Þ

��1
;

(2.6)

or inversely

U ¼ ffiffiffi
2

p
a
Z0 � Z1

Z4 þ a
;

V ¼ ffiffiffi
2

p
a
Z0 þ Z1

Z4 þ a
;

� ¼ ffiffiffi
2

p
a
Z2 þ iZ3

Z4 þ a
; (2.7)

takes (2.5) to the metric form (2.1). Consequently, for U,
V 2 ð�1;þ1Þ, and � an arbitrary complex number,
these coordinates cover the entire (anti)de Sitter manifold
(except the coordinate singularities at U, V ¼ 1). For
more details about these coordinates and other properties
of maximally symmetric spacetimes, see Chapters 3–5 of
[10].
The Penrose ‘‘cut and paste’’ method [1] for construct-

ing impulsive spherical waves in such backgrounds of
constant curvature can now be performed explicitly as
follows (see [5,7]).
In the region U � 0, let us consider the transformation

V ¼ Vþ ¼ AV �DU;

U ¼ Uþ ¼ BV � EU;

� ¼ �þ ¼ CV � FU; (2.8)

to coordinates ðU;V; Z; �ZÞ, where

A ¼ 1

pjh0j ; B ¼ jhj2
pjh0j ; C ¼ h

pjh0j ;

D ¼ 1

jh0j
�
p

4

��������
h00

h0

��������
2þ�

�
1þ Z

2

h00

h0
þ �Z

2

�h00
�h0

��
;

E ¼ jhj2
jh0j

�
p

4

��������
h00

h0
� 2

h0

h

��������
2

þ �

�
1þ Z

2

�
h00

h0
� 2

h0

h

�
þ �Z

2

� �h00
�h0
� 2

�h0
�h

���
;

F ¼ h

jh0j
�
p

4

�
h00

h0
� 2

h0

h

� �h00
�h0

þ �

�
1þ Z

2

�
h00

h0
� 2

h0

h

�
þ �Z

2

�h00
�h0

��
; (2.9)
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with

p ¼ 1þ �Z �Z; � ¼ �1; 0;þ1 (2.10)

(the parameter � is the Gaussian curvature of the spatial 2-
surfaces in the closely related Robinson-Trautman folia-
tion of the spacetimes, cf. Sec. 19.2 of [10]). Here

h � hðZÞ (2.11)

is an arbitrary complex function, and the derivative with
respect to its argument Z is denoted by a prime. The
Minkowski and (anti)de Sitter metric (2.1) then becomes

ds20 ¼
2jðV=pÞdZþUp �Hd �Zj2 þ 2dUdV � 2�dU2

½1þ 1
6�UðV � �UÞ�2 ;

(2.12)

where H is the Schwarzian derivative of h given as

HðZÞ ¼ 1

2

�
h000

h0
� 3

2

�
h00

h0

�
2
�
: (2.13)

In the complementary region U � 0, we apply a highly
simplified form of the transformation (2.8) which arises for
the special choice of the function hðZÞ ¼ Z. In view of
(2.9), this implies relations

V ¼ V� ¼ V

p
� �U;

U ¼ U� ¼ jZj2
p

V �U;

� ¼ �� ¼ Z

p
V: (2.14)

Since H ¼ 0 in this case, by applying the transformation
(2.14) the metric (2.1) takes the form

ds20 ¼
2ðV=pÞ2dZd �Zþ 2dUdV � 2�dU2

½1þ 1
6�UðV � �UÞ�2 : (2.15)

Both in the coordinates of (2.12) and in the ones used in
(2.15), the boundary hypersurface U ¼ 0 is a null cone
given by � ���UV ¼ 0. Using (2.2), it is obviously an
expanding sphere x2 þ y2 þ z2 ¼ t2 in flat Minkowski
space. In view of (2.7), it is also an expanding sphere Z2

1 þ
Z2
2 þ Z2

3 ¼ Z2
0 in the (anti)de Sitter universe. Considering

the relation (2.4), it follows that such null hypersurface
U ¼ 0 is the vertical cut Z4 ¼ a through the de Sitter and
anti-de Sitter hyperboloid in a flat five-dimensional space-
time, as shown in Fig. 1. This represents a spherical
impulse which originates at time Z0 ¼ 0 and subsequently
for Z0 > 0 expands with the speed of light in these back-
grounds (alternatively, for Z0 < 0 the impulse is
contracting).

An explicit globalmetric which is continuous across the
impulse at U ¼ 0 is now easily obtained by attaching the
line element (2.15) for U < 0 to (2.12) for U > 0. The
resulting metric takes the form

ds2 ¼ 2jðV=pÞdZþU�ðUÞp �Hd �Zj2 þ 2dUdV � 2�dU2

½1þ 1
6�UðV � �UÞ�2 ;

(2.16)

where �ðUÞ is the Heaviside step function. Such a com-
bined metric is continuous, but the discontinuity in the
derivatives of the metric functions across U ¼ 0 yields
an impulsive gravitational wave term in the curvature
proportional to the Dirac � distribution. More precisely,
in a suitable null tetrad, the only nonvanishing component
of theWeyl tensor is�4 ¼ ðp2H=VÞ�ðUÞ (for more details
see [7]). The spacetime is thus conformally flat everywhere
except on the impulsive-wave surface U ¼ 0. Also, the
only nonvanishing tetrad component of the Ricci tensor is
�22 ¼ ðp4H �H=V2ÞU�ðUÞ. This demonstrates that the
spacetime is vacuum everywhere, except on the impulse
at V ¼ 0 and at possible singularities of the function p2H.
The expanding spherical impulse located at U ¼ 0 ob-

viously splits the spacetime into two separate conformally
flat vacuum regions (Minkowski, de Sitter, or anti-de Sitter,
according to �). For brevity, in the following we shall
denote the constant-curvature half-space U > 0 as being
‘‘in front of the wave’’, and the other constant-curvature
half-space U < 0 as being ‘‘behind the wave.’’

III. GEODESIC MOTION IN SPACETIMES WITH
EXPANDING IMPULSIVE WAVES

The purpose of this paper is to investigate the effect of
expanding impulsive waves on motion of freely moving
test particles. We start by recalling geodesics in Minkowski
and (anti)de Sitter spaces, then we will derive junction
conditions for complete geodesics in the impulsive space-
times summarized in the previous section and we will
present the refraction formulas.

Z0

Z1
Z4

FIG. 1. An expanding spherical impulse can be visualized as a
section Z4 ¼ a of the four-dimensional hyperboloids represent-
ing de Sitter (left) and anti-de Sitter (right) spaces. The bold lines
are trajectories of opposite poles of an expanding spherical wave
surface given by Z2 ¼ 0 ¼ Z3. The time-reversed situation in the
region Z0 < 0, indicated by dashed lines, corresponds to con-
tracting impulsive waves.
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A. Geodesics in the backgrounds

Geodesic motion in spaces of constant curvature (2.3),
the background spaces in which an impulse propagates, is
well known.

When � ¼ 0, this is just flat Minkowski space. General
geodesics are, of course, given by

t ¼ ��; x ¼ xi þ _xið�� �iÞ;
y ¼ yi þ _yið�� �iÞ; z ¼ zi þ _zið�� �iÞ;

(3.1)

with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2i þ _y2i þ _z2i � e

q
, i.e., � is a normalized affine

parameter of timelike (e ¼ �1) or spacelike (e ¼ þ1)
geodesics. For null geodesics (e ¼ 0) it is always possible
to scale the factor � to unity. The constants xi; yi; zi and
_xi; _yi; _zi characterize the position and velocity, respectively,
of each test particle at the instant

�i ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i þ z2i

q
; (3.2)

when the geodesic intersects the null cone U ¼ 0. At �i
each particle is hit by the impulse and its trajectory is
refracted, see Sec. III C.

In the case of a nonvanishing cosmological constant �,
to express all geodesics in the corresponding de Sitter and
anti-de Sitter spaces it is very useful to employ the five-
dimensional formalism. It can be shown [25] that, using the
coordinates of (2.5), the explicit geodesic equations have a
very simple and unified form, namely €Zp þ 1

3�eZp ¼ 0,

where p ¼ 0; 1; 2; 3; 4. Thus, explicit geodesics on the
hyperboloid (2.4) are

Z p ¼ Zpi þ _Zpið�� �iÞ when "e ¼ 0; (3.3)

Z p ¼ Zpi cosh

�
�� �i

a

�
þ a _Zpi sinh

�
�� �i

a

�

when "e < 0;

(3.4)

Z p ¼ Zpi cos

�
�� �i

a

�
þ a _Zpi sin

�
�� �i

a

�

when "e > 0;

(3.5)

where a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
3=j�jp

. The relation (3.3) describes null geo-
desics, expression (3.4) represents timelike geodesics in
de Sitter space (" ¼ 1) or spacelike geodesics in anti-
de Sitter space (" ¼ �1), whereas (3.5) corresponds to
spacelike/timelike geodesics in de Sitter/anti-de Sitter
space, respectively. Here � is an affine parameter and
Zpi; _Zpi are constants of integration, namely, the positions

and velocities at the instant of interaction with the impulse
� ¼ �i. These ten constants are constrained by the follow-
ing three conditions:

� ð _Z0iÞ2 þ ð _Z1iÞ2 þ ð _Z2iÞ2 þ ð _Z3iÞ2 þ "ð _Z4iÞ2 ¼ e;

(3.6)

� ðZ0iÞ2 þ ðZ1iÞ2 þ ðZ2iÞ2 þ ðZ3iÞ2 þ "ðZ4iÞ2 ¼ "a2;

(3.7)

� Z0i
_Z0i þ Z1i

_Z1i þ Z2i
_Z2i þ Z3i

_Z3i þ "Z4i
_Z4i ¼ 0:

(3.8)

Equation (3.6) is the normalization of the affine parameter,
Eq. (3.7) follows from the constraint (2.4), and Eq. (3.8)
from its derivative.
By combining relations (2.7), (3.3), (3.4), and (3.5) it is

now straightforward to express explicitly all geodesics in
the four-dimensional metric representation of the (anti)
de Sitter universe (2.1). Considering (2.2), which implies

t ¼ 2aZ0

Z4 þ a
; z ¼ 2aZ1

Z4 þ a
;

x ¼ 2aZ2

Z4 þ a
; y ¼ 2aZ3

Z4 þ a
;

(3.9)

we also obtain geodesics in the metric (2.3), and by using
other parametrizations of the hyperboloid (2.4), as summa-
rized in [10], we may easily derive geodesics in any
standard metric form of these constant-curvature space-
times. Some of them will be given below.
Notice finally that close to the impulse (where �� �i is

small) and also in the limit � ! 0 (so that 1=a is small)
expressions (3.3), (3.4), and (3.5) take the same linear form
Zp � Zpi þ _Zpið�� �iÞ. In view of (3.9) this is fully con-

sistent with Eq. (3.1).

B. Explicit continuation of geodesics across the impulse

Now we will investigate geodesics in complete space-
times (2.16) with the wave localized on U ¼ 0. Geodesics
which pass through the impulse have the same form (3.1)
or (3.3), (3.4), and (3.5) both in front of the impulse and
behind it. However, the constants of integration Zpi; _Zpi

may have different values on both sides.
We thus have to find explicit relations between these

constants. To apply the appropriate junction conditions, we
assume that the geodesics are C1 across the impulse in the
continuous coordinate system of (2.16). It means that the
corresponding functions Zð�Þ, Vð�Þ, Uð�Þ and also their
first derivatives with respect to the affine parameter �,
evaluated at the interaction time � ¼ �i [such that Uð�iÞ ¼
0], are continuous across the impulse. With this assump-
tion, the constants

Zi � Zð�iÞ; Vi � Vð�iÞ; Ui � Uð�iÞ ¼ 0;

_Zi � _Zð�iÞ; _Vi � _Vð�iÞ; _Ui � _Uð�iÞ; (3.10)

describing positions and velocities at �i have the same
values when evaluated in the limits U ! 0 both from the
region in front (U > 0) and behind the impulse (U < 0).
To express the corresponding values in the conformally

flat coordinates of (2.1), it is now straightforward to sub-
stitute (3.10) into the transformations (2.8) and (2.14),
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V þ
i ¼ AVi; V�

i ¼ Vi

p
;

Uþ
i ¼ BVi; U�

i ¼ jZij2
p

Vi;

�þ
i ¼ CVi; ��

i ¼ Zi

p
Vi;

(3.11)

and their derivatives,

_V þ
i ¼ ViðA;Z

_Zi þ A; �Z
_�ZiÞ þ A _Vi �D _Ui;

_Uþ
i ¼ ViðB;Z

_Zi þ B; �Z
_�ZiÞ þ B _Vi � E _Ui;

_�þ
i ¼ ViðC;Z

_Zi þ C; �Z
_�ZiÞ þ C _Vi � F _Ui;

(3.12)

_V �
i ¼ � �Vi

p2
ðZi

_�Zi þ �Zi
_ZiÞ þ

_Vi

p
� � _Ui;

_U�
i ¼ Vi

p2
ðZi

_�Zi þ �Zi
_ZiÞ þ jZij2

p
_Vi � _Ui;

_��
i ¼ Vi

p2
ð _Zi � �ZiZi

_�ZiÞ þ Zi

p
_Vi;

(3.13)

respectively [here A, B, C, D, E, F, p and their derivatives
are constants, namely, the coefficients (2.9) and (2.10)
evaluated at Z ¼ Zi].

Since wewish to express the ‘‘�’’ parameters behind the
impulse in terms of the ‘‘þ’’ parameters in front of the
impulse, we invert expressions (3.11) and (3.12) in the half
space in front of the wave, which yields

hðZiÞ ¼ �þ
i

Vþ
i

; Vi ¼ Uþ
i

B
¼ Vþ

i

A
¼ �þ

i

C
;

_Zi ¼ p2

Vi

ð �C; �Z _�þ
i þ C; �Z

_��þ
i � A; �Z

_Uþ
i � B; �Z

_Vþ
i Þ;

_Vi ¼ D _Uþ
i þ E _Vþ

i � �F _�þ
i � F _��þ

i þ 2� _Ui;

_Ui ¼ 1

Vi

ð ��þ
i _�þ

i þ �þ
i
_��þ
i �Vþ

i
_Uþ
i �Uþ

i
_Vþ
i Þ:
(3.14)

In order to obtain these relations, we employed the iden-
tities valid for the coefficients (2.9),

AB� C �C ¼ 0; DE� F �F ¼ �;

AEþ BD� C �F� �CF ¼ 1;
(3.15)

and also for their derivatives

DE;Z þD;ZE� F �F;Z � F;Z
�F ¼ 0; A;ZEþ B;ZD� C;Z

�F� �C;ZF ¼ 0; AE;Z þ BD;Z � C �F;Z � �CF;Z ¼ 0;

A;ZBþ AB;Z � C;Z
�C� C �C;Z ¼ 0; A;ZB;Z � C;Z

�C;Z ¼ 0; D;ZE;Z � F;Z
�F;Z ¼ 0;

A;ZE;Z þ B;ZD;Z � C;Z
�F;Z � �C;ZF;Z ¼ H; C;Z

�C; �Z þ C; �Z
�C;Z � A;ZB; �Z � A; �ZB;Z ¼ 1

p2
;

F;Z
�F; �Z þ F; �Z

�F;Z �D;ZE; �Z �D; �ZE;Z ¼ p2jHj2;
A;ZE; �Z þ A; �ZE;Z þ B;ZD; �Z þ B; �ZD;Z � C;Z

�F; �Z � C; �Z
�F;Z � �C;ZF; �Z � �C; �ZF;Z ¼ 0; (3.16)

plus their complex conjugates.
Now it only remains to substitute (3.14) into the expres-

sions for positions (3.11) and velocities (3.13) behind the
impulse. For the positions we thus obtain

V�
i ¼ jh0jVþ

i ;

U�
i ¼ jh0j jZij2

jhj2 Uþ
i ;

��
i ¼ jh0jZi

h
�þ
i ;

(3.17)

while for the velocities, after straightforward but somewhat
lengthy calculation, we get

_V �
i ¼ bV

_Vþ
i þ aV

_Uþ
i þ �cV _�þ

i þ cV _��þ
i ;

_U�
i ¼ bU

_Vþ
i þ aU

_Uþ
i þ �cU _�þ

i þ cU _��þ
i ;

_��
i ¼ b�

_Vþ
i þ a�

_Uþ
i þ �c� _�þ

i þ c� _��þ
i ;

(3.18)

where

bV ¼ jhj2
4jh0j

��������
h00

h0
� 2

h0

h

��������
2

;

aV ¼ 1

4jh0j
��������
h00

h0

��������
2

;

cV ¼ � h

4jh0j
�
h00

h0
� 2

h0

h

� �h00
�h0
;

(3.19)

bU ¼ jhj2
jh0j

��������1þ
Zi

2

�
h00

h0
� 2

h0

h

���������
2

;

aU ¼ 1

jh0j
��������1þ

Zi

2

h00

h0

��������
2

;

cU ¼ � h

jh0j
�
1þ Zi

2

�
h00

h0
� 2

h0

h

���
1þ �Zi

2

�h00
�h0

�
;

(3.20)
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b� ¼ jhj2
2jh0j

�
1þ Zi

2

�
h00

h0
� 2

h0

h

��� �h00
�h0
� 2

�h0
�h

�
;

a� ¼ 1

2jh0j
�
1þ Zi

2

h00

h0

� �h00
�h0
;

�c� ¼ �
�h

2jh0j
�
1þ Zi

2

h00

h0

�� �h00
�h0
� 2

�h0
�h

�
;

c� ¼ � h

2jh0j
�
1þ Zi

2

�
h00

h0
� 2

h0

h

�� �h00
�h0
;

(3.21)

and, naturally, �cV ¼ cV , �cU ¼ cU. Again, all these co-
efficients are constants which are obtained by evaluating
the function h and its derivatives at Z ¼ Zi. Interestingly,
they do not depend on the parameter �. For hðZÞ ¼ Z there
is no refraction effect, which is consistent with the fact that
H ¼ 0, i.e., the impulse is absent.

Finally, using the transformation (2.2) we may rewrite
the expressions for junction conditions (3.17) and (3.18) in
the natural conformally flat background coordinates,

namely,

x�i ¼ jh0jZi þ �Zi

hþ �h
xþi ; y�i ¼ jh0jZi � �Zi

h� �h
yþi ;

z�i ¼ jh0j jZij2 � 1

jhj2 � 1
zþi ; t�i ¼ jh0j jZij2 þ 1

jhj2 þ 1
tþi ;

(3.22)

for positions and

_x�
i ¼ ax _x

þ
i þ bx _y

þ
i þ cx _z

þ
i þ dx _t

þ
i ;

_y�i ¼ ay _x
þ
i þ by _y

þ
i þ cy _z

þ
i þ dy _t

þ
i ;

_z�i ¼ az _x
þ
i þ bz _y

þ
i þ cz _z

þ
i þ dz _t

þ
i ;

_t�i ¼ at _x
þ
i þ bt _y

þ
i þ ct _z

þ
i þ dt _t

þ
i ;

(3.23)

for velocities. The coefficients in (3.22) and (3.23) are
somewhat complicated functions of Zi, h � hðZiÞ and its
derivatives h0 � h0ðZiÞ, h00 � h00ðZiÞ:

ax ¼ 1

2
ðc� þ c �� þ �c� þ �c ��Þ; bx ¼ i

2
ð�c� � c �� þ �c� þ �c ��Þ; cx ¼ 1

2
ð�a� � a �� þ b� þ b ��Þ;

dx ¼ 1

2
ða� þ a �� þ b� þ b ��Þ; ay ¼ 1

2i
ðc� � c �� þ �c� � �c ��Þ; by ¼ 1

2
ð�c� þ c �� þ �c� � �c ��Þ;

cy ¼ 1

2i
ð�a� þ a �� þ b� � b ��Þ; dy ¼ 1

2i
ða� � a �� þ b� � b ��Þ; az ¼ 1

2
ð�cU � �cU þ cV þ �cV Þ;

bz ¼ i

2
ðcU � �cU � cV þ �cV Þ; cz ¼ 1

2
ðaU � aV � bU þ bV Þ; dz ¼ 1

2
ð�aU þ aV � bU þ bV Þ;

at ¼ 1

2
ðcU þ �cU þ cV þ �cV Þ; bt ¼ i

2
ð�cU þ �cU � cV þ �cV Þ; ct ¼ 1

2
ð�aU � aV þ bU þ bV Þ;

dt ¼ 1

2
ðaU þ aV þ bU þ bV Þ;

(3.24)

where the constants on the right-hand sides are given by
expressions (3.19), (3.20), and (3.21).

To complete the derivation, it only remains to express
the complex number Zi explicitly in terms of the initial
position of the test particle in front of the impulse. From
Eqs. (3.14) and (2.2) it follows immediately that hðZiÞ ¼
�þ
i =V

þ
i ¼ ðxþi þ iyþi Þ=ðtþi þ zþi Þ, i.e.,

Zi ¼ h�1

�
xþi þ iyþi
tþi þ zþi

�
; (3.25)

where h�1 denotes the complex inverse function to h.

C. Geometric interpretation and refraction formulas

In fact, relation (3.25) and its analogous counterpart in
the region behind the impulse admits a nice geometric
interpretation of the junction condition for positions across
the impulse. Let us observe that from expressions (3.11),
(3.14), and (2.2) it follows that

Zi ¼ x�i þ iy�i
t�i þ z�i

; (3.26)

hðZiÞ ¼ xþi þ iyþi
tþi þ zþi

: (3.27)

Therefore, the complex mapping Zi $ hðZiÞ can be under-
stood as an identification of the corresponding positions of
a test particle in the region behind the impulse (U < 0) and
the region in front of the impulse (U > 0), which is
uniquely determined by expressions (3.22). In other words,
if the particle, moving along a geodesic, is located at
ðxþi ; yþi ; zþi Þ when it is hit by the impulsive wave (U ¼ 0)
at the time tþi , then it emerges from the impulse at the time
t�i at the position ðx�i ; y�i ; z�i Þ.
Moreover, when the interaction time t�i is rescaled to be

equal 1, expression (3.26) and its inverse
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x�i ¼ Zi þ �Zi

1þ jZij2
; y�i ¼ i

�Zi � Zi

1þ jZij2
;

z�i ¼ 1� jZij2
1þ jZij2

;

(3.28)

become the well-known relations for a stereographic one-
to-one correspondence between a unit Riemann sphere and
a complex Argand plane. As shown in Fig. 2, such mapping
is obtained by projecting a straight line from the pole
through P onto the equatorial plane. A point P on the
sphere is thus uniquely characterized by a complex number
Z in the complex plane (for more details see [7]).

Because of the stereographic relations (3.26) and (3.27),
the complex mapping Zi $ hðZiÞ thus represents a geo-
metric identification of the points P� � ðx�i ; y�i ; z�i Þ and
Pþ � ðxþi ; yþi ; zþi Þ on a unit sphere, which may be consid-
ered as a rescaled spherical impulsive surface U ¼ 0. The
mapping Z $ hðZÞ thus naturally encodes the junction
conditions for position of a test particle on both sides of
the impulse.

Interestingly, relations (3.26) and (3.27) do not involve a
cosmological constant �. In other words, in the confor-
mally flat coordinates (2.3), this geometric interpretation is
valid for expanding spherical impulses in Minkowski,
de Sitter, as well as in anti-de Sitter space.

For an illustrative geometrical description of the com-
plete effect of the spherical impulsive wave on test parti-
cles moving along geodesics, it is useful to introduce
suitable angles which characterize position of the particle
and inclination of its velocity vector at the instant of
interaction. Specifically, in the ðx; zÞ section we define

tan�� ¼ x�i
z�i

; tan�� ¼ _x�i
_z�i

; (3.29)

while in the perpendicular ðy; zÞ section we define

tan�� ¼ y�i
z�i

; tan�� ¼ _y�i
_z�i

: (3.30)

The superscript ‘‘þ’’ applies to quantities in front of the
expanding impulse (outside the sphere where U > 0),
whereas the superscript ‘‘�’’ applies to the same quantities

behind the impulse (inside the sphere where U < 0).
Geometrical meaning of these angles is obvious from
Fig. 3.
It is also useful to introduce components of the velocity

of the test particle with respect to the frames outside and
inside the impulse as

ðv�
x ; v

�
y ; v

�
z Þ �

�
_x�i
_t�i

;
_y�i
_t�i

;
_z�i
_t�i

�
: (3.31)

If we now substitute the definitions (3.29), (3.30), and
(3.31) into the equations (3.22) and (3.23), we obtain the
following expressions which identify the positions:

tan�� ¼ ðjhj2 � 1ÞReZi

ðjZij2 � 1ÞReh tan�þ;

tan�� ¼ ðjhj2 � 1Þ ImZi

ðjZij2 � 1Þ Imh
tan�þ;

(3.32)

and inclinations of the velocity vector,

tan�� ¼ vþ
z ðax tan�þ þ bx tan�

þ þ cxÞ þ dx
vþ
z ðaz tan�þ þ bz tan�

þ þ czÞ þ dz
;

tan�� ¼ vþ
z ðay tan�þ þ by tan�

þ þ cyÞ þ dy
vþ
z ðaz tan�þ þ bz tan�

þ þ czÞ þ dz
;

(3.33)

on both sides of the impulse. These explicit relations are
the general refraction formulas for motion of free test
particles influenced by the expanding impulsive gravita-
tional wave.

FIG. 2. Mapping in the complex plane Z $ hðZÞ is equivalent
to identifying the points P� inside the impulsive spherical
surface with the corresponding points Pþ outside through the
stereographic projection.

FIG. 3. Definition of the angles �, � characterizing position of
the particle and inclination �, � of its velocity in the ðx; zÞ
section (top) and ðy; zÞ section (bottom), respectively. Here the
superscript ‘‘þ’’ denotes quantities outside the spherical impulse
(left), while ‘‘�’’ labels analogous quantities inside the impulse
(right). The points of interaction Pþ ¼ ðxþi ; yþi ; zþi Þ and P� ¼
ðx�i ; y�i ; z�i Þ correspond to those in Fig. 2. The impulsive gravi-
tation wave is an expanding sphere indicated in each section by
the bold outer circle.
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D. Privileged exact geodesics Z ¼ const

In this part of Sec. III we restrict our attention to a
privileged class of exact global geodesics given by the
condition

Z ¼ Z0 ¼ const: (3.34)

Indeed, using the continuous form of the impulsive-wave
solution (2.16) it can easily be observed that the Christoffel
symbols ��

UU, �
�
UV , and ��

VV vanish identically when � ¼
Z; �Z. Therefore, the geodesic equations always admit
global solutions of the form (3.34), including across the
impulse localized at U ¼ 0 (i.e., without the necessity to
assume that the geodesics are C1).

In such a case, _Zi ¼ 0 and expressions (3.12) and (3.13)
thus reduce to

_V þ
i ¼ A _Vi �D _Ui;

_V�
i ¼ _Vi

p
� � _Ui;

_Uþ
i ¼ B _Vi � E _Ui;

_U�
i ¼ jZij2

p
_Vi � _Ui;

_�þ
i ¼ C _Vi � F _Ui; _��

i ¼ Zi

p
_Vi;

(3.35)

respectively. Using the relations (3.14) for velocities we
obtain the (complex) constraint

_�þ
i
�C; �Z þ _��þ

i C; �Z � _Uþ
i A; �Z � _Vþ

i B; �Z ¼ 0; (3.36)

and the following equations:

_V �
i ¼ b0

V
_Vþ
i þ a0

V
_Uþ
i þ �c0

V
_�þ
i þ c0

V
_��þ
i ;

_U�
i ¼ b0U

_Vþ
i þ a0U

_Uþ
i þ �c0U _�þ

i þ c0U _��þ
i ;

_��
i ¼ b0�

_Vþ
i þ a0�

_Uþ
i þ �c0� _�þ

i þ c0� _��þ
i ;

(3.37)

where

b0
V

¼ 1

p
ðE� 2�BÞ þ �B;

a0
V

¼ 1

p
ðD� 2�AÞ þ �A;

c0
V

¼ � 1

p
ðF� 2�CÞ � �C;

(3.38)

b0U ¼ jZij2
p

ðE� 2�BÞ þ B;

a0U ¼ jZij2
p

ðD� 2�AÞ þ A;

c0U ¼ � jZij2
p

ðF� 2�CÞ � C;

(3.39)

b0� ¼ Zi

p
ðE� 2�BÞ;

a0� ¼ Zi

p
ðD� 2�AÞ;

�c0� ¼ �Zi

p
ð �F� 2� �CÞ;

c0� ¼ �Zi

p
ðF� 2�CÞ:

(3.40)

The constants A, B, C, D, E, F, and p are given by the
values of the functions (2.9) and (2.10) at Z ¼ Zi ¼ Z0.
In terms of the real conformally flat coordinates of

metric (2.3), the velocities on both sides of the impulse
are given by relations (3.23), where now

a0x ¼ �2
ReZi

p
ReðF� 2�CÞ; b0x ¼ �2

ReZi

p
ImðF� 2�CÞ; c0x ¼ ReZi

p
½E�Dþ 2�ðA� BÞ�;

d0x ¼ ReZi

p
½EþD� 2�ðAþ BÞ�; a0y ¼ �2

ImZi

p
ReðF� 2�CÞ; b0y ¼ �2

ImZi

p
ImðF� 2�CÞ;

c0y ¼ ImZi

p
½E�Dþ 2�ðA� BÞ�; d0y ¼ ImZi

p
½EþD� 2�ðAþ BÞ�;

a0z ¼ jZij2 � 1

p
ReðF� 2�CÞ þ ð1� �ÞReC; b0z ¼ jZij2 � 1

p
ImðF� 2�CÞ þ ð1� �Þ ImC;

c0z ¼ jZij2 � 1

2p
½�EþD� 2�ðA� BÞ� þ 1

2
ð1� �ÞðA� BÞ;

d0z ¼ jZij2 � 1

2p
½�E�Dþ 2�ðAþ BÞ� � 1

2
ð1� �ÞðAþ BÞ; a0t ¼ �jZij2 þ 1

p
ReðF� 2�CÞ � ð1þ �ÞReC;

b0t ¼ �jZij2 þ 1

p
ImðF� 2�CÞ � ð1þ �Þ ImC; c0t ¼ jZij2 þ 1

2p
½E�Dþ 2�ðA� BÞ� � 1

2
ð1þ �ÞðA� BÞ;

d0t ¼ jZij2 þ 1

2p
½EþD� 2�ðAþ BÞ� þ 1

2
ð1þ �ÞðAþ BÞ: (3.41)
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Moreover, from the complex constraint (3.36) we may express two real components of the velocity in terms of the
remaining two, namely,

_yþ
i ¼ ½ _xþi ½ðB� AÞ ImF� ðE�DÞ ImC� þ 2 _zþi ðReC ImF� ImCReFÞ�=½ðB� AÞReF� ðE�DÞReC�;
_tþi ¼ ½ _xþi ðBD� AEÞ � _zþi ½ðBþ AÞReF� ðEþDÞReC��=½ðB� AÞReF� ðE�DÞReC�: (3.42)

Substituting these two relations and the coefficients (3.41)
into (3.23), and using Eqs. (3.22) which relate the interac-
tion positions, we finally obtain

_x�i ¼ x�i
ðE�DÞ _xþi þ 2ReF _zþi
ðE�DÞxþi þ 2ReFzþi

;

_y�i ¼ y�i
ðE�DÞ _xþi þ 2ReF _zþi
ðE�DÞxþi þ 2ReFzþi

;

_z�i ¼ ½z�i ½ðE�DÞ _xþi þ 2ReF _zþi �
� ð1� �Þðzþi _xþi � _zþi xþi Þ�=½ðE�DÞxþi þ 2ReFzþi �;

_t�i ¼ ½t�i ½ðE�DÞ _xþi þ 2ReF _zþi �
þ ð1þ �Þðzþi _xþi � _zþi xþi Þ�=½ðE�DÞxþi þ 2ReFzþi �:

(3.43)

These relations are valid for any value of the cosmological
constant � and for an arbitrary spherical impulse. They
generalize Eqs. (4.5) obtained previously in [24] for a
special impulse generated by a snapping cosmic string in
the case when � ¼ 0.

E. Junction conditions in the five-dimensional
representation of (anti)de Sitter space

Finally, it will be illustrative to rewrite the explicit
junction conditions for positions (3.22) and velocities
(3.23) of test particles crossing the impulse in terms of
the representation of de Sitter or anti-de Sitter space as the
four-dimensional hyperboloid (2.4) in flat five-dimensional
spacetime (2.5). Conformally flat coordinates of the metric
(2.3) are obtained by the parametrization (2.6) with (2.2),
i.e.,

Z 0 ¼ t

�
; Z1 ¼ z

�
; Z2 ¼ x

�
;

Z3 ¼ y

�
; Z4 ¼ a

�
2

�
� 1

�
;

(3.44)

where� ¼ 1þ 1
12�ð�t2 þ x2 þ y2 þ z2Þ, or inversely by

t ¼ 2aZ0

Z4 þ a
; z ¼ 2aZ1

Z4 þ a
;

x ¼ 2aZ2

Z4 þ a
; y ¼ 2aZ3

Z4 þ a
;

(3.45)

with � ¼ 2a=ðZ4 þ aÞ.
As explained in Sec. II, the expanding spherical impulse

located atU ¼ 0 corresponds to the cut Z4 ¼ a through the
hyperboloid, see Fig. 1. Therefore, at the instant of inter-

action the particle is located at

ti ¼ Z0i; zi ¼ Z1i; xi ¼ Z2i;

yi ¼ Z3i; �i ¼ 1:
(3.46)

The junction conditions (3.22) for positions thus imply

Z�
0i ¼ jh0j jZij2 þ 1

jhj2 þ 1
Zþ
0i; Z�

1i ¼ jh0j jZij2 � 1

jhj2 � 1
Zþ
1i;

Z�
2i ¼ jh0jZi þ �Zi

hþ �h
Zþ
2i; Z�

3i ¼ jh0jZi � �Zi

h� �h
Zþ
3i;

Z�
4i ¼ a ¼ Zþ

4i: (3.47)

By differentiating Eqs. (3.44) and evaluating them at the
interaction time we obtain the relations

_Z 0i ¼ _ti � _�iti; _Z1i ¼ _zi � _�izi;

_Z2i ¼ _xi � _�ixi; _Z3i ¼ _yi � _�iyi;

_Z4i ¼ �2a _�i;

(3.48)

where _�i ¼ 1
6�ð�ti _ti þ xi _xi þ yi _yi þ zi _ziÞ, which are

valid both in front and behind the impulse. From expres-
sions (3.23) and (3.46) we thus obtain the following rela-
tions between velocities on both sides of the impulse:

_Z�
pi ¼ ap _Z

þ
2i þ bp _Z

þ
3i þ cp _Z

þ
1i þ dp _Z

þ
0i þ np _Z

þ
4i;

_Z�
4i ¼ �2a _�i ¼ _Zþ

4i;
(3.49)

where we denoted p ¼ 0; 1; 2; 3. The constant coefficients
ða0; a1; a2; a3Þ � ðat; az; ax; ayÞ, and similarly bp, cp, dp,

are given by (3.24). The coefficients np are defined as

np ¼ � 1

2a
ðapZþ

2i þ bpZ
þ
3i þ cpZ

þ
1i þ dpZ

þ
0i � Z�

piÞ;
(3.50)

where Z�
pi should be expressed using (3.47). Relations

(3.49) can also be written in the matrix form:

_Z�
2i
_Z�
3i
_Z�
1i
_Z�
0i
_Z�
4i

0
BBBBB@

1
CCCCCA
¼

ax bx cx dx nx
ay by cy dy ny
az bz cz dz nz
at bt ct dt nt
0 0 0 0 1

0
BBBBB@

1
CCCCCA

_Zþ
2i
_Zþ
3i
_Zþ
1i
_Zþ
0i
_Zþ
4i

0
BBBBB@

1
CCCCCA
: (3.51)

Expressions (3.47) and (3.51) are explicit junction condi-
tions which relate the positions and velocities of test par-
ticles when they cross an expanding spherical impulse.
They are expressed in the natural five-dimensional coor-
dinates of constant-curvature spaces with � � 0, namely,
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the (anti)de Sitter half space in front of the impulse, and the
analogous half space behind it. Obviously, the junction
conditions depend on the complex function hðZÞ which
defines the specific impulse of this type.

The advantage of expressing the junction conditions for
geodesics in the ‘‘geometrical’’ five-dimensional formal-
ism is that they may easily be applied to obtain the corre-
sponding explicit conditions in terms of any standard
coordinates of de Sitter or anti-de Sitter background space.
We will demonstrate this procedure in the next section in
which we concentrate of spherical impulses generated by a
snapping cosmic string. Their influence on particles will
most naturally be expressed in global coordinates in
de Sitter space with a synchronous time coordinate, see
Sec. IVC.

IV. GEODESICS CROSSING THE IMPULSE
GENERATED BYA SNAPPED COSMIC STRING

The general results obtained above will now be applied
to an important particular family of spacetimes in which
the expanding spherical impulsive wave is generated by a
snapped cosmic string (identified by a deficit angle in the
region U > 0 in front of the impulse). Such exact vacuum
solutions were introduced and discussed in a number of
works, e.g. [2,7,12–17]. These can be written in the form of
the metric (2.16) with

HðZÞ ¼
1
2�ð1� 1

2�Þ
Z2

; (4.1)

which is obtained from the complex function

hðZÞ ¼ Z1��; (4.2)

using the expression (2.13). Here � 2 ½0; 1Þ is a real con-
stant which characterizes the deficit angle 2	� of the
snapped string that is located in the region outside the
impulse along the z axis given by � ¼ 0, as shown in
Fig. 4 (see [2,7] for more details).

A. Explicit junction conditions

Expressions (3.22) which are the junction conditions for
positions (in the natural conformally flat background co-

ordinates on both sides of the impulse) are thus

x�i ¼ ð1� �ÞjZij�� Zi þ �Zi

Z1��
i þ �Z1��

i

xþi ;

y�i ¼ ð1� �ÞjZij�� Zi � �Zi

Z1��
i � �Z1��

i

yþi ;

z�i ¼ ð1� �Þ jZij � jZij�1

jZij1�� � jZij��1
zþi ;

t�i ¼ ð1� �Þ jZij þ jZij�1

jZij1�� þ jZij��1
tþi ;

(4.3)

where, in view of relation (3.25),

Z1��
i ¼ xþi þ iyþi

tþi þ zþi
: (4.4)

Let us also recall that ðx�i Þ2 þ ðy�i Þ2 þ ðz�i Þ2 ¼ ðt�i Þ2 be-
cause the positions are evaluated on the impulse U ¼ 0.
Similarly, it is straightforward to evaluate the specific

form of the coefficients (3.24) which relate the velocities in
Eqs. (3.23), namely,

ax ¼ jZij�
2ð1� �Þ

��
1� 1

2
�

�
2ðZ��

i þ �Z��
i Þ þ 1

4
�2jZij�2ðZ2��

i þ �Z2��
i Þ

�
;

bx ¼ jZij�
2ið1� �Þ

��
1� 1

2
�

�
2ðZ��

i � �Z��
i Þ þ 1

4
�2jZij�2ðZ2��

i � �Z2��
i Þ

�
;

cx ¼
�ð1� 1

2�Þ
4ð1� �Þ jZij�½ðZ�1

i þ �Z�1
i Þ � jZij�2�ðZi þ �ZiÞ�;

dx ¼ ��ð1� 1
2�Þ

4ð1� �Þ jZij�½ðZ�1
i þ �Z�1

i Þ þ jZij�2�ðZi þ �ZiÞ�;

(4.5)

FIG. 4. Geometry of a spherical impulse expanding with the
speed of light. It is generated by a snapped cosmic string, whose
remnants are two semi-infinite strings located along the z axis
outside the impulsive wave. Any point P on the impulse is
described by two angles � and � which characterize its projec-
tions to the ðx; zÞ and ðy; zÞ planes, respectively (cf. Fig. 3).
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ay ¼ ijZij�
2ð1� �Þ

��
1� 1

2
�

�
2ðZ��

i � �Z��
i Þ � 1

4
�2jZij�2ðZ2��

i � �Z2��
i Þ

�
;

by ¼ jZij�
2ð1� �Þ

��
1� 1

2
�

�
2ðZ��

i þ �Z��
i Þ � 1

4
�2jZij�2ðZ2��

i þ �Z2��
i Þ

�
;

cy ¼
i�ð1� 1

2�Þ
4ð1� �Þ jZij�½ðZ�1

i � �Z�1
i Þ þ jZij�2�ðZi � �ZiÞ�;

dy ¼
�ð1� 1

2�Þ
4ið1� �Þ jZij�½ðZ�1

i � �Z�1
i Þ � jZij�2�ðZi � �ZiÞ�;

(4.6)

az ¼
�ð1� 1

2�Þ
4ð1� �Þ jZij�½ðZ1��

i þ �Z1��
i Þ � jZij�2ðZ1��

i þ �Z1��
i Þ�;

bz ¼
�ð1� 1

2�Þ
4ið1� �Þ jZij�½ðZ1��

i � �Z1��
i Þ � jZij�2ðZ1��

i � �Z1��
i Þ�;

cz ¼ 1

2ð1� �Þ
��

1� 1

2
�

�
2ðjZij� þ jZij��Þ � 1

4
�2ðjZij2�� þ jZij��2Þ

�
;

dz ¼ �1

2ð1� �Þ
��

1� 1

2
�

�
2ðjZij� � jZij��Þ þ 1

4
�2ðjZij2�� � jZij��2Þ

�
;

(4.7)

at ¼ ��ð1� 1
2�Þ

4ð1� �Þ jZij�½ðZ1��
i þ �Z1��

i Þ þ jZij�2ðZ1��
i þ �Z1��

i Þ�;

bt ¼
i�ð1� 1

2�Þ
4ð1� �Þ jZij�½ðZ1��

i � �Z1��
i Þ þ jZij�2ðZ1��

i � �Z1��
i Þ�;

ct ¼ �1

2ð1� �Þ
��

1� 1

2
�

�
2ðjZij� � jZij��Þ � 1

4
�2ðjZij2�� � jZij��2Þ

�
;

dt ¼ 1

2ð1� �Þ
��

1� 1

2
�

�
2ðjZij� þ jZij��Þ þ 1

4
�2ðjZij2�� þ jZij��2Þ

�
:

(4.8)

Considering the structure of these relations, it is very
convenient to reparametrize the complex number Zi in the
polar form as

Zi � Rei�; (4.9)

where R ¼ jZij and� are constants representing its modu-
lus and phase, respectively. It immediately follows from
the relation (4.4) that

R ¼
�ðxþi Þ2 þ ðyþi Þ2

ðtþi þ zþi Þ2
�
1=2ð1��Þ ¼

�
tþi � zþi
tþi þ zþi

�
1=2ð1��Þ

;

tanðð1� �Þ�Þ ¼ yþi
xþi

: (4.10)

The junction conditions (4.3) for positions then take the
form

x�i ¼ ð1� �Þ cos�

cosðð1� �Þ�Þ x
þ
i ;

y�i ¼ ð1� �Þ sin�

sinðð1� �Þ�Þ y
þ
i ;

z�i ¼ ð1� �Þ R� R�1

R1�� � R��1
zþi ;

t�i ¼ ð1� �Þ Rþ R�1

R1�� þ R��1
tþi ;

(4.11)

and the coefficients (4.5), (4.6), (4.7), and (4.8) simplify to

ax ¼ 1

1� �

��
1� 1

2
�

�
2
cosð��Þ þ 1

4
�2 cosðð2� �Þ�Þ

�
;

bx ¼ �1

1� �

��
1� 1

2
�

�
2
sinð��Þ � 1

4
�2 sinðð2� �Þ�Þ

�
;

cx ¼
�ð1� 1

2�Þ
2ð1� �Þ ðR��1 � R1��Þ cos�;

dx ¼ ��ð1� 1
2�Þ

2ð1� �Þ ðR��1 þ R1��Þ cos�; (4.12)
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ay ¼ 1

1� �

��
1� 1

2
�

�
2
sinð��Þ þ 1

4
�2 sinðð2� �Þ�Þ

�
;

by ¼ 1

1� �

��
1� 1

2
�

�
2
cosð��Þ � 1

4
�2 cosðð2� �Þ�Þ

�
;

cy ¼
�ð1� 1

2�Þ
2ð1� �Þ ðR��1 � R1��Þ sin�;

dy ¼ ��ð1� 1
2�Þ

2ð1� �Þ ðR��1 þ R1��Þ sin�; (4.13)

az¼
�ð1�1

2�Þ
2ð1��Þ ðR�R�1Þcosðð1��Þ�Þ;

bz¼
�ð1�1

2�Þ
2ð1��Þ ðR�R�1Þsinðð1��Þ�Þ;

cz¼ 1

2ð1��Þ
��

1�1

2
�

�
2ðR�þR��Þ�1

4
�2ðR2��þR��2Þ

�
;

dz¼ �1

2ð1��Þ
��

1�1

2
�

�
2ðR��R��Þþ1

4
�2ðR2���R��2Þ

�
;

(4.14)

at¼��ð1�1
2�Þ

2ð1��Þ ðRþR�1Þcosðð1��Þ�Þ;

bt¼��ð1�1
2�Þ

2ð1��Þ ðRþR�1Þsinðð1��Þ�Þ;

ct¼ �1

2ð1��Þ
��

1�1

2
�

�
2ðR��R��Þ�1

4
�2ðR2���R��2Þ

�
;

dt¼ 1

2ð1��Þ
��

1�1

2
�

�
2ðR�þR��Þþ1

4
�2ðR2��þR��2Þ

�
:

(4.15)

Notice finally that the terms involving R could also be
conveniently expressed using the hyperbolic functions as

R� R�1 ¼ 2 sinhr;

Rþ R�1 ¼ 2 coshr;

R� � R�� ¼ 2 sinhð�rÞ;
R� þ R�� ¼ 2 coshð�rÞ;

R1�� � R��1 ¼ 2 sinhðð1� �ÞrÞ;
R1�� þ R��1 ¼ 2 coshðð1� �ÞrÞ;
R2�� � R��2 ¼ 2 sinhðð2� �ÞrÞ;
R2�� þ R��2 ¼ 2 coshðð2� �ÞrÞ;

(4.16)

where

r � logR ¼ 1

2ð1� �Þ log
�
tþi � zþi
tþi þ zþi

�
: (4.17)

Employing the relation tþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþi Þ2 þ ðyþi Þ2 þ ðzþi Þ2

q
¼

zþi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2�þ þ tan2�þp

, this can be written explicitly

in terms of the initial position as

r ¼ 1

2ð1� �Þ log
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2�þ þ tan2�þp � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2�þ þ tan2�þp þ 1

�
: (4.18)

Moreover,

tanðð1� �Þ�Þ ¼ tan�þ

tan�þ : (4.19)

The above formulas enable us to investigate behavior of
arbitrary geodesics which cross the spherical impulse gen-
erated by a snapped cosmic string.

B. Analysis and description of the resulting motion

For simplicity, let us consider a family of test particles
which are at rest in front of the impulse (i.e., in the
constant-curvature region U > 0). Specifically, we will
first assume that the velocities of the particles in the
coordinates (2.3) of Minkowski, de Sitter or anti-de Sitter
space vanish, _xþ ¼ _yþ ¼ _zþ ¼ 0.
Junction conditions (3.23) for the velocities across the

impulse thus simplify considerably to

_x�
i ¼ dx _t

þ
i ; _y�i ¼ dy _t

þ
i ; _z�i ¼ dz _t

þ
i ; _t�i ¼ dt _t

þ
i ;

(4.20)

where the constants dx, dy, dz, dt are given by (4.12),

(4.13), (4.14), and (4.15), respectively. Using the defini-
tions (3.29) and (3.30) and relations (4.11) for positions, it
is straightforward to obtain the following refraction for-
mulas:

tan�� ¼ sinhðð1� �ÞrÞ
sinhr

cos�

cosðð1� �Þ�Þ tan�
þ;

tan�� ¼ �ð1� 1
2�Þ coshðð1� �ÞrÞ cos�

ð1� 1
2�Þ2 sinhð�rÞ þ 1

4�
2 sinhðð2� �ÞrÞ ;

(4.21)

and

tan�� ¼ sinhðð1� �ÞrÞ
sinhr

sin�

sinðð1� �Þ�Þ tan�
þ;

tan�� ¼ �ð1� 1
2�Þ coshðð1� �ÞrÞ sin�

ð1� 1
2�Þ2 sinhð�rÞ þ 1

4�
2 sinhðð2� �ÞrÞ :

(4.22)

Because of the axial symmetry of the spacetime along
the z axis (where the string is located in front of the im-
pulse), it is natural to restrict attention to a ring of test par-
ticles located in the ðxþ; zþÞ plane, i.e., assuming yþ¼0.
From (3.30) it follows that �þ¼0 and, using (4.19), this
implies � ¼ 0. Consequently, Eqs. (4.22) reduce to
�� ¼ 0 ¼ ��. It follows that y�i ¼ 0 ¼ _y�i , and motion
of such particles will thus remain in the ðx�; z�Þ plane
behind the impulse. Relations (4.21), which describe the
motion in the ðx; zÞ plane, now reduce to
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tan�� ¼ sinhðð1� �ÞrÞ
sinhr

tan�þ;

tan�� ¼ �ð1� 1
2�Þ coshðð1� �ÞrÞ

ð1� 1
2�Þ2 sinhð�rÞ þ 1

4�
2 sinhðð2� �ÞrÞ ;

(4.23)

where the parameter r is given by Eq. (4.18). Because
�þ ¼ 0, this further simplifies to

r ¼ 1

1� �
log

�
tan

�þ

2

�
: (4.24)

It is now possible to visualize the effect of the impulse
generated by a snapped cosmic string on such a ring of test
particles by plotting the corresponding graphs. In Figs. 5
and 6 we draw the functions ��ð�þÞ and ��ð�þÞ, respec-
tively, which are given by (4.23) with (4.24), for several
discrete values of the parameter �. The geometrical mean-
ing of these angles is described in Figs. 3 and 4. The angle
�þ parametrizes position of a particle of the ring in front of
the impulse, while �� and �� determine, respectively, its
position and velocity vector inclination behind the
impulse.

Combining these two relations, we plot in Fig. 7 the
motion of the (initially static) ring caused by the impulse. It
can be seen that the particles are displaced towards the
string, and directions of their velocities are oriented
‘‘along’’ the string. Particles located close to the string in
front of the impulse are accelerated almost to the speed of
light behind the impulse, and are ‘‘dragged’’ along the
string (except those in the perpendicular plane z ¼ 0 cor-
responding to �þ ¼ 	

2 ). In Fig. 8 we plot the magnitude

v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�

x Þ2 þ ðv�
z Þ2

q
of the resulting velocity vector as a

function of �þ for several values of the parameter �.

Indeed, for small values of the angle �þ the speed ap-
proaches that of light, v� ! 1. The components v�

x ¼
ð _x�i = _t�i Þ ¼ dx=dt and v�

z ¼ ð _z�i = _t�i Þ ¼ dz=dt are sepa-
rately drawn in Fig. 9. Since v�

x ð0Þ ¼ 0, v�
z ð0Þ ¼ 1 for

any � > 0, the particles close to the string are accelerated
‘‘parallelly’’ along it. For � ! 0, v�

z ð�þÞ becomes zero
everywhere except at �þ ¼ 0 where the string is located.
Also, v�

z ð	2Þ ¼ 0 which means that the particles in the

transverse plane z ¼ 0 are accelerated ‘‘perpendicularly’’
and they thus stay in this plane, which is consistent with the
symmetry of the system. The velocity vectors correspond-
ing to such components are indicated in Fig. 7 by arrows.

FIG. 6. The function ��ð�þÞ which determines the depen-
dence of the velocity vector inclination behind the impulse on
the particle’s position in front of the impulse. The curves plotted
correspond to � ¼ 0:1; 0:2; . . . ; 0:8.

FIG. 5. The function ��ð�þÞ which determines the displace-
ment of the position of a particle when it crosses the impulse
generated by a snapped cosmic string. The curves correspond to
different values of the deficit angle parameter � ¼
0; 0:1; 0:2; . . . ; 0:8.

FIG. 7. The effect of the impulse with � ¼ 0:2 on a ring of
initially static test particles in the ðx; zÞ plane. The particles are
shifted and they start to move, as indicated by their velocity
vectors with components ðv�

x ; v
�
z Þ behind the impulse. The

impulse is scaled here in such a way that it is given by a unit
sphere on both sides of the impulse.
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To compare these velocity vectors for different values of
the initial position �þ, we plot them in Fig. 10 from the
common origin. The end points of these arrows for all
�þ 2 ½0; 	2� form a smooth curve, which is drawn in

Fig. 11 for several discrete values of the conicity parameter
�. For small � there is a single minimum in such curves,
while for large values of � the curves approach a unit circle
since the particles are accelerated by the impulse almost to
the speed of light in all directions.

Finally, in Figs. 12 and 13 we visualize the deformation
of the ring of test particles, initially at rest, as it evolves
with time. It can be concluded that the circle [which may
be considered as a ðx; zÞ section through a sphere] is

deformed by the gravitational impulse into an axially
symmetric pinched surface, elongated and expanding
along the moving strings in the positive z direction. Also,
the particles which initially started at x > 0 have v�

x < 0,
while those with x < 0 have v�

x > 0. This explicitly dem-
onstrates the ‘‘dragging’’ effect in such spacetimes caused
by the moving strings and the corresponding impulse. With
a growing value of the parameter �, the deformation in the
z direction is bigger.
In the complementary case, in which the ring of static

test particles is located in the ðxþ; yþÞ plane perpendicular
to the string (see Fig. 4), zþi ¼ 0 which corresponds to
�þ ¼ 	

2 . It thus follows from (4.17) that r ¼ 0, i.e., R ¼ 1.

In such a case, the explicit junction conditions for positions
simplify to

FIG. 9. The components v�
x (left) and v�

z (right) of the velocity vector behind the impulse as a function of initial position �þ. The
curves correspond to � ¼ 0:1; 0:2; . . . ; 0:8.

FIG. 10. The velocity vectors for � ¼ 0:2 plotted as a function
of the initial position �þ of the particle in the ring.

FIG. 8. The magnitude v� of the velocity vector behind the
impulse as a function of the particle’s initial position �þ. The
curves plotted correspond to different values of the parameter
� ¼ 0:1; 0:2; . . . ; 0:8.
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x�i ¼ ð1� �Þ cos�

cosðð1� �Þ�Þ x
þ
i ;

y�i ¼ ð1� �Þ sin�

sinðð1� �Þ�Þ y
þ
i ;

z�i ¼ 0; t�i ¼ ð1� �Þtþi ;

(4.25)

and the coefficients in Eqs. (4.20) relating the velocities on
both sides of the impulse become

dx ¼ ��
1� 1

2�

1� �
cos�; dy ¼ ��

1� 1
2�

1� �
sin�;

dz ¼ 0; dt ¼
1� �þ 1

2�
2

1� �
: (4.26)

Since _z�i ¼ 0 ¼ z�i , motion of the particles will remain in
the perpendicular ðx�; y�Þ plane behind the impulse. In
fact,

v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�

x Þ2 þ ðv�
y Þ2

q
¼ �

1� 1
2�

1� �þ 1
2�

2
;

v�
y

v�
x

¼ tan�:

(4.27)

This implies geometrically that all the particles will move
radially inward with the same speed, and the circular ring
will thus uniformly contract. This is in full agreement with
the corresponding partial result obtained previously in
Sec. IV B of [24].
For more general situations, in which the test particles in

front of the impulse are not static in the x, y, z coordinates,
the resulting motion can similarly be investigated using the
relations (4.11) and (3.23). In particular, employing (4.12),
(4.13), (4.14), (4.15), and (4.16) for the case when � ¼ 0,
we obtain

x�i ¼ ð1� �Þxþi ; y�i ¼ 0 ¼ yþi ;

z�i ¼ ð1� �Þ sinhr

sinhðð1� �ÞrÞ z
þ
i ;

t�i ¼ ð1� �Þ coshr

coshðð1� �ÞrÞ t
þ
i ;

(4.28)

and

_x�i ¼ 1� �þ 1
2�

2

1� �
_xþi � �

1� 1
2�

1� �
½sinhðð1� �ÞrÞ _zþi

þ coshðð1� �ÞrÞ _tþi �;
_y�i ¼ _yþi ;

_z�i ¼ �
1� 1

2�

1� �
sinhr _xþi þ ð1� 1

2�Þ2
1� �

½coshð�rÞ _zþi

� sinhð�rÞ _tþi � �
1
4�

2

1� �
½coshðð2� �ÞrÞ _zþi

þ sinhðð2� �ÞrÞ _tþi �; (4.29)

_t�i ¼ ��
1� 1

2�

1� �
coshr _xþi þ ð1� 1

2�Þ2
1� �

½� sinhð�rÞ _zþi

þ coshð�rÞ _tþi � þ
1
4�

2

1� �
½sinhðð2� �ÞrÞ _zþi

þ coshðð2� �ÞrÞ _tþi �;
where r is given by (4.24).

FIG. 11. Envelope of the velocity vectors for all �þ 2 ½0; 	2�,
plotted for � ¼ 0:1; 0:2; . . . ; 0:8.

FIG. 12. Time sequence showing the deformation of the ring of
test particles (indicated here by an initial semicircle of unit
radius for �þ 2 ½� 	

2 ;
	
2�) caused by the spherical impulse

generated by a snapping cosmic string with � ¼ 0:2.
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C. Effect on particles comoving in de Sitter space

Finally, it will be illustrative to investigate the effect of
the impulsive spherical wave generated by a snapped cos-
mic string on test particles which are comoving in the
de Sitter (half)space in front of the impulse. Specifically,
these particles are initially given by


 ¼ 
þ
i ¼ 
0; � ¼ �þi ¼ �0; � ¼ �þ

i ¼ �0;

(4.30)

where 
0, �0, �0 are constants, in the coordinates which
naturally cover the de Sitter universe in the standard form
of the metric

ds20 ¼ �dt2 þ a2cosh2
t

a

� ðd
2 þ sin2
ðd�2 þ sin2�d�2ÞÞ:
(4.31)

Such a parametrization of the de Sitter hyperboloid (2.4) is
obtained by

Z0 ¼ a sinh
t

a
;

Z1 ¼ a cosh
t

a
sin
 cos�;

Z2 ¼ a cosh
t

a
sin
 sin� cos�;

Z3 ¼ a cosh
t

a
sin
 sin� sin�;

Z4 ¼ a cosh
t

a
cos
;

(4.32)

where t 2 ð�1;þ1Þ, 
, � 2 ½0; 	�, � 2 ½0; 2	�.
Inversely,

sinh
t

a
¼ Z0

a
; tan2
 ¼ Z2

1 þ Z2
2 þ Z2

3

Z2
4

;

tan2� ¼ Z2
2 þ Z2

3

Z2
1

; tan� ¼ Z3

Z2

:

(4.33)

The expanding impulse is located at Z4 ¼ a (see Fig. 1),
i.e., it is given by coshðt=aÞ ¼ 1= cos
 which can be
rewritten as

tanh
t

a
¼ sin
: (4.34)

The snapped cosmic string is located at Z2 ¼ 0 ¼ Z3 in the
de Sitter region in front of the impulse, which corresponds
to �þ ¼ 0, 	. The spacetime can thus be visualized as in
Fig. 14.
Notice that the impulse is always located at the fixed

value Z4 ¼ a but, as the spherical de Sitter universe ex-
pands, the impulse propagates from its north pole 
 ¼ 0 at
t ¼ 0 to its equator
 ¼ 	

2 as t ! 1. The cosmic string was

initially a closed loop around the whole meridian � ¼ 0; 	,
but it snapped in the north pole at t ¼ 0 (when the universe
had the minimum radius a) generating the impulsive gravi-
tational wave.
The convenient form of the junction conditions for geo-

desics is given in the five-dimensional representation by
Eqs. (3.47) and (3.51). Using (4.4), (3.46), (4.32), and
(4.34) we obtain a simple expression for the complex
interaction parameter

Z1��
i ¼ tan

�0
2
ei�0 (4.35)

(notice that this is consistent with the stereographic inter-
pretation shown in Fig. 2). In view of (4.9) we thus obtain

FIG. 13. Deformation of the ring of particles, as in Fig. 12, for � ¼ 0:005 (left) and � ¼ 0:8 (right).
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r ¼ 1

1� �
log

�
tan

�0
2

�
; � ¼ �0

1� �
: (4.36)

In terms of these initial data we may rewrite (3.47) and
(3.51), employing (4.16), explicitly as

Z�
0i ¼ ð1� �Þ coshr

coshðð1� �ÞrÞZ
þ
0i;

Z�
1i ¼ ð1� �Þ sinhr

sinhðð1� �ÞrÞZ
þ
4i;

Z�
2i ¼ ð1� �Þ cos�

cosðð1� �Þ�ÞZ
þ
2i;

Z�
3i ¼ ð1� �Þ sin�

sinðð1� �Þ�ÞZ
þ
3i;

Z�
4i ¼ a ¼ Zþ

4i:

(4.37)

and

_Z�
2i
_Z�
3i
_Z�
1i
_Z�
0i
_Z�
4i

0
BBBBB@

1
CCCCCA
¼

ax bx cx dx nx
ay by cy dy ny
az bz cz dz nz
at bt ct dt nt
0 0 0 0 1

0
BBBBB@

1
CCCCCA

_Zþ
2i
_Zþ
3i
_Zþ
1i
_Zþ
0i
_Zþ
4i

0
BBBBB@

1
CCCCCA
; (4.38)

where the constant coefficients ap, bp, cp, dp are given by

(4.12), (4.13), (4.14), (4.15), and (4.16) and np is deter-

mined by expression (3.50). It follows from (4.32) and
(4.34) that

Zþ
0i ¼ a tan
0;

Zþ
1i ¼ a tan
0 cos�0;

Zþ
2i ¼ a tan
0 sin�0 cos�0;

Zþ
3i ¼ a tan
0 sin�0 sin�0:

(4.39)

Similarly, by differentiating (4.32) with respect to the

proper time � ¼ t of a comoving particle we obtain

_Zþ
0i ¼

1

cos
0

;

_Zþ
1i ¼

sin2
0

cos
0

cos�0;

_Zþ
2i ¼

sin2
0

cos
0

sin�0 cos�0;

_Zþ
3i ¼

sin2
0

cos
0

sin�0 sin�0;

_Zþ
4i ¼ sin
0:

(4.40)

These parameters explicitly satisfy the constraints (3.6),
(3.7), and (3.8) for a timelike geodesic in de Sitter space
(e ¼ �1, " ¼ 1).
We can thus visualize the effect of the impulse on

initially comoving particles in a de Sitter universe in the
‘‘five-dimensional’’ pictures shown in Figs. 15 and 16,
where we plot the corresponding velocity vectors (with
the spherical space, impulse and the snapped string as in
Fig. 14).
In Fig. 15 the arrows indicate the velocities of different

test particles, given by (4.38) and (4.40) with the same
values of 
0 (and �0 suppressed), behind the impulsive
wave. The outer semicircle indicates the position of the
same particles if the impulse would be absent—they would
(comovingly) move because the de Sitter universe itself
expands. Therefore, the difference gives the ‘‘net’’ effect of
the impulse on these particles (by subtracting a natural
comoving motion due to the global expansion of the uni-

Z4

Z2

Z1

FIG. 14. The de Sitter universe with the snapped cosmic string
(indicated by a dashed line at Z2 ¼ 0 ¼ Z3) and the related
impulse (Z4 ¼ a) at a given time (the coordinate Z3 is sup-
pressed). As the universe expands, the impulse propagates from
the north pole to the equator.

FIG. 15 (color online). The de Sitter universe with the snapped
string and the impulsive wave, at a given time. The arrows
indicate the velocities of different test particles behind the
impulse. The outer semicircle locates the same comoving parti-
cles at a later time if the impulse would be absent, i.e., if they
would move solely due to the expansion of the universe.
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verse). This is shown in Fig. 16. It can be seen that the
particles close to the string are accelerated to higher speeds
and are dragged along the string, while the particles in the
transverse plane are accelerated perpendicularly to the
string. In fact, Fig. 7 can be understood as a projection
onto the horizontal section Z4 ¼ a through Fig. 16.

V. CONCLUSIONS

We presented a complete and explicit solution of geo-
desic motion which describes the effect of expanding
spherical impulsive gravitational waves propagating in
constant-curvature backgrounds, provided the trajectories
of test particles are of class C1 in a continuous coordinate
system. This generalizes results obtained previously for

Minkowski background space [24] to any value of the
cosmological constant, i.e., the de Sitter universe (�> 0)
or anti-de Sitter universe (�< 0). Also, it is a counterpart
of paper [25] in which motion of test particles in these
background spaces with nonexpanding impulses was
analyzed.
We derived a convenient form of the junction conditions

(3.22), (3.23), and (3.24) and the corresponding refraction
formulas (3.32) and (3.33), employing the natural coordi-
nates in which the background metric (2.3) is conformally
flat. Interestingly, the expressions are independent of the
parameter � ¼ �1; 0;þ1 which occurs in the continuous
metric (2.16) for the impulsive-wave spacetimes. We also
considered the five-dimensional formalism which is suit-
able when � � 0, see Eqs. (3.47) and (3.51).
Subsequently, we discussed in detail the behavior of test

particles in axially symmetric spacetimes in which the
gravitational impulse is generated by a snapped cosmic
string. In particular, we demonstrated that the particles are
dominantly dragged by the impulse in the direction of the
moving strings, and are accelerated to ultrarelativistic
speeds in their vicinity, see Figs. 7–9. These results apply
to any value of the cosmological constant. The strings and
the associated impulse would thus effectively create oppo-
site ‘‘beams’’ of particles, dominantly moving along the
strings with the speed close to the speed of light, as
visualized in Figs. 12 and 13.
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No. GAUK 259018. This work was also partially supported
by the Czech Ministry of Education under the Project
No. MSM0021610860. We are grateful to Jerry Griffiths
for some useful comments on the manuscript.

[1] R. Penrose, in General Relativity, edited by L.
O’Raifeartaigh (Clarendon, Oxford, 1972).

[2] Y. Nutku and R. Penrose, Twistor Newsletter, No. 34
(1992).

[3] P. A. Hogan, Phys. Rev. Lett. 70, 117 (1993).
[4] P. A. Hogan, Phys. Rev. D 49, 6521 (1994).
[5] P. A. Hogan, Phys. Lett. A 171, 21 (1992).
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