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Inspired by the condensed-matter analogues of black holes, we study the quantum correlations across

the event horizon reflecting the entanglement between the outgoing particles of the Hawking radiation and

their in-falling partners. For a perfectly covariant theory, the total correlation is conserved in time and

piles up arbitrary close to the horizon in the past, where it merges into the singularity of the vacuum two-

point function at the light cone. After modifying the dispersion relation (i.e., breaking Lorentz invariance)

for large k, on the other hand, the light cone is smeared out and the entanglement is not conserved but

actually created in a given rate per unit time.
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I. INTRODUCTION

One of the remaining mysteries of modern physics is the
question of why black holes seem to behave as thermal
objects, described by the Hawking temperature [1]. The
thermal nature of black holes entails important concepts
such as black hole entropy [2] and the information ‘‘para-
dox.’’ It is now widely believed that understanding the
origin of thermality would be a major step towards unify-
ing gravity and quantum theory.

Particularly puzzling is the fact that this thermal nature
is apparently not caused by some sort of equilibration
process, but by a dynamical quantum mechanism. In the
semiclassical description, the state of the quantum fields
propagating in the gravitational background is still a pure
state. The thermal nature of the Hawking radiation is
explained by the quantum correlations (across the horizon)
between the Hawking particles and their in-falling partners
[3].

For Hawking radiation itself, the origin of the created
particles and its robustness against modifications of the
microscopic structure have been studied in many publica-
tions—often inspired by the condensed-matter analogues
of black holes (‘‘dumb holes’’); see, e.g., [4–7]. In contrast,
the correlations across the horizon, their origin and depen-
dence on the microscopic structure have been studied in far
less detail [8–10].

II. TWO-POINT FUNCTION

Exploiting the fact that Hawking radiation is basically a
one-dimensional effect and applies to all fields, we study a
massless scalar field � in a 1þ 1 dimensional space-time
described by the Painlevé-Gullstrand-Lemaı̂tre coordinates
(@ ¼ c ¼ GN ¼ kB ¼ 1)

ds2 ¼ dt2 � ½dxþ vðxÞdt�2
¼ ½1� v2ðxÞ�dt2 � 2vðxÞdtdx� dx2; (1)

where vðxÞ can be visualized as the local velocity of freely
falling frames as measured from infinity. The

Schwarzschild metric is obtained by v ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2M=r

p
, but we

shall consider arbitrary profiles vðxÞ. In the standard man-
ner, we introduce light cone variables u and v via

ds2 ¼ ½1� v2ðxÞ�
�
dt� dx

1� vðxÞ
��

dtþ dx

1þ vðxÞ
�

¼ ½1� v2ðxÞ�dudv; (2)

with u diverging at the (future) event horizon v ¼ 1. The
past horizon with v ¼ �1 corresponds to v " 1. For future
convenience, we introduce the tortoise coordinate dx� ¼
dx=½1� vðxÞ� with u ¼ t� x�. After the standard trans-
formation to regular coordinates for v< 1 (i.e., outside the
horizon)

U ¼ � 1

�
e��u; V ¼ 1

�
e�v; (3)

where � ¼ ðdv=dxÞhorizon is the surface gravity, and ana-
lytic continuation beyond horizon v> 1, where U > 0, we
obtain the line element with a regular conformal factor

ds2 ¼ ℧2
regularðUVÞdUdV: (4)

Because of the conformal invariance of the massless scalar
field in 1þ 1 dimensions, we may directly read off the
two-point function(s) [11]. In the Boulware state [12],
which is the ground state of the Hamiltonian generating
the t-evolution (i.e., of all stationary observers), it behaves
as lnð�u�vÞ. However, this quantity is clearly divergent at
both horizons, u " 1 and v " 1. Black hole evaporation is
described by the Unruh state, which is regular across the
black hole (future) horizon at U ¼ 0 leading to the two-
point function / lnð�U�vÞ. In this case, the ingoing
v-modes are in their ground state. The Israel-Hartle-
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Hawking state [13] is regular across both horizons U ¼ 0
and V ¼ 0 and is thermal in both directions. Its two-point
function reads (up to an undetermined constant reflecting
the IR-divergence in 1þ 1 dimensions)

h�ðU;VÞ�ðU0; V 0Þi ¼ � 1

4�
lnð�U�VÞ; (5)

where �U ¼ U�U0 and �V ¼ V � V0. Since the in-
going (V, v) sector is decoupled from the outgoing (U,
u) sector (in this 1þ 1 dimensional setup), we focus on the
relevant �U part h. . .iU describing the Hawking radiation
and the in-falling partner particles in the following. If U
and U0 lie on different sides of the horizon UU0 < 0, we
obtain

h�ðU;VÞ�ðU0; V 0ÞiU ¼ � 1

4�
lnðe��u þ e��u0 Þ: (6)

In this form, correlations across the horizon do not become
particularly apparent, but if we calculate, for example, the
correlator

h _�ðt; xÞ _�ðt0; x0ÞiU ¼ � 1

4�
@t@t0 lnðe��u þ e��u0 Þ

¼ �2

16�

1

cosh2ð�½u� u0�=2Þ ; (7)

with u� u0 ¼ t� t0 � x� þ x0�, we see that it has a peak if
we regard the Hawking particle at (x�) at time t and its in-
falling partner is at (x0�) at time t0 [8].

Because of u " 1 at the horizon, this correlator vanishes
where v ¼ 1. This reflects the critical slow-down (of the
u-modes) at the horizon in terms of the t-coordinate.
However, for other quantities such as the momentum den-
sity� ¼ ð@t � v@xÞ�, the correlator does not vanish when
approaching the horizon

h�ðt; xÞ�ðt0; x0ÞiU ¼ � 1

4�
@x@x0 lnðe��u þ e��u0 Þ

¼ �2½1� vðxÞ��1½1� vðx0Þ��1

16�cosh2ð�½u� u0�=2Þ ; (8)

in view of @xu ¼ �1=ð1� vÞ. We observe that the _�
correlator across the horizon is always positive whereas
the � correlator is negative. This can be explained by the
fact that the particles of the Hawking radiation and their in-
falling partners have the same conserved frequency !
measured with respect to the time t but their k-values
have the opposite sign. Note that ! and k should not be
confused with energy and momentum: The Hawking par-
ticle has positive energy and momentum whereas the in-
falling partner has negative energy but positive momen-
tum; see, e.g., [14].

III. INTEGRALS

Since the�-correlator is total derivative, we may easily
derive the total correlation integrated from the horizon at

x ¼ 0 up to spatial infinity

Z 1

0
dxh�ðt; xÞ�ðt0; x0 < 0ÞiU ¼ �

4�

1

1� vðx0Þ ; (9)

and we find that it is independent of t� t0. Consequently,
for each point x0 < 0 inside the horizon (at x ¼ 0), the
integral of the correlations across the horizon is conserved,
i.e., independent of the time slice. In the far future t " 1,
the Hawking particles carry the correlations to spatial
infinity—as one would expect. In the past t # �1, how-
ever, the correlations pile up near the horizon where u �
t� ��1 lnð�xÞ

h�ðt # �1; x # 0Þ�ðt0; x0 < 0ÞiU
� �

16�

1

cosh2ð�½u� u0�=2Þ
1

1� vðx0Þ
1

x
; (10)

i.e., they are concentrated in a small spatial volume and
have a large amplitude (in order to keep the integral
constant). As we shall see in the next section, these
piled-up correlations merge into the singularity of the
two-point function at the light cone (which approaches
the horizon) and become virtually indistinguishable from
the quantum vacuum fluctuations. For a modified disper-
sion relation, this picture changes drastically; see Sec. V.
Similarly, we may evaluate the time integral

Z þ1

�1
dth�ðt; xÞ�ðt0; x0ÞiU ¼ �

4�

1

1� vðxÞ
1

1� vðx0Þ :
(11)

In contrast to the x-integral above, this result will survive
for a modified dispersion relation (apart from some cor-
rections at short length scales; see Sec. V). Of course, we
may also derive the time integral for

Z þ1

�1
dth _�ðt; xÞ _�ðt0; x0ÞiU ¼ �

4�
: (12)

The difference between the two expressions (11) and (12)
can again be traced back to the fact that the Hawking
particles and their in-falling partners have the same !,
but different k depending on their positions x and x0
(gravitational red-shift ! ¼ ½1� v�k).

IV. ANALYTICALLY SOLVABLE EXAMPLE

It might be illustrative to apply the above formulas
(which are valid for arbitrary profiles v) to some simple
example which allows us to write down closed expressions.
To this end, let us choose the velocity profile

v ðxÞ ¼ 1� �

�
tanhð�xÞ; (13)

where � is some parameter and � the surface gravity. In
this case, the light cone coordinates read
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u ¼ t� 1

�
ln½sinhð�xÞ�VU ¼ � 1

�
e��t sinhð�xÞ; (14)

and the correlator for all x and x0 becomes

h _�ðt; xÞ _�ðt; x0ÞiU ¼ � �2

4�

sinhð�xÞ sinhð�x0Þ
½sinhð�xÞ � sinhð�x0Þ�2 : (15)

This function is positive on opposite sides of the horizon
xx0 < 0, negative when x and x0 lie on the same side xx0 >
0, and goes to zero if one of the two points approaches the
horizon at x ¼ 0 (critical slow-down). It reproduces the
usual 1=ðx� x0Þ2 singularity at x ¼ x0 and vanishes
asymptotically x ! �1 and x0 ! �1. The correlations
across the horizon manifest themselves in the global maxi-
mum at x ¼ �x0 with t ¼ t0.

Although one gets the same 1=ðx� x0Þ2 singularity at
x ¼ x0 and the same asymptotic behavior for x ! �1 and
x0 ! �1, the situation is a bit different for the canonical

momentum density � ¼ _�� v�0

h�ðt; xÞ�ðt; x0ÞiU ¼ � �2

4�

coshð�xÞ coshð�x0Þ
½sinhð�xÞ � sinhð�x0Þ�2 :

(16)

First, this correlator is negative everywhere and does not
vanish at the horizon. Second, we get a local minimum at
x ¼ �x0 only if jxj> xmin � 1:8=�, i.e., far enough away
from the horizon. Close to the horizon, the local minimum
merges into the light cone singularity and disappears; see
Fig. 1. This absence of structure near the horizon can be
interpreted as further confirmation of the picture that the
Hawking radiation is not created very close to the horizon
but rather in a region of finite spatial extent Oð1=�Þ. Note
that this length scale 1=� could in principle be quite differ-
ent from the scale set by the Hawking temperature, i.e., the
surface gravity �.

It should also be mentioned that the _�-correlator does
have a maximum arbitrarily close to the horizon, but the
maximum value becomes very small. Consistent with this
observation, the correlation conservation law (9) applies to

the�-correlator—for the _�-correlator, one would need an
additional integrating factor 1=½1� vðxÞ�.

V. MODIFIED DISPERSION

In the previous sections, we found the infinite pile-up of
correlation close to the horizon in the past, such that the
correlations constantly emerge out of the singularity at the
light cone (which approaches the null surface of the hori-
zon in the past). However, modifying the dispersion rela-
tion at large k (e.g., motivated by the condensed-matter
analogues of black holes [4,6,7]), we expect this behavior
to change: First, a modified dispersion relation smears out
the light cone such that the two-point function typically
becomes regular everywhere except at the space-time co-
incidence point x ¼ x0 and t ¼ t0. Second, tracing the
particles of the Hawking radiation back in time, they do
not originate from an small vicinity of the horizon in the
presence of a modified dispersion relation [6,7].
In order to deal with a solvable example, let us switch to

the Eddington-Finkelstein coordinates (v, r)

ds2 ¼
�
1� 2M

r

�
dv2 � 2dvdr; (17)

and modify the dispersion relation by inserting a general
function fð@2rÞ containing higher-order spatial derivatives
into the corresponding action for a scalar field �

L ¼ �ð@v�Þ@r�� ð@r�Þ
2

�
1� 2M

r
þ fð@2rÞ

�
@r�:

(18)

This action allows us to define a conserved inner product

ð�1j�2Þ ¼ i
Z

d����
1@
$
��2 ¼ i

Z
dr��

1@
$
r�2; (19)

where ��
1@
$
r�2 ¼ ��

1@r�2 ��2@r�
�
1. The momentum

density � ¼ �@r� satisfies the wave equation

x’=0.11
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FIG. 1. Plot of the correlator (16) as a function of position x
outside the horizon for various values of the partner position x0
inside the horizon (both in units of �). For large values of x0 (i.e.,
far from the horizon) the correlation as a function of x is simply a
bump of width about 2 and constant height which is located at
x ¼ jx0j. For small x0 it merges into the general vacuum fluctua-
tions near the horizon, i.e., the 1=ðx� x0Þ2 singularity. I.e., the
correlation of the ‘‘Hawking’’ particles with their in-falling
partners becomes visible only if the two points are well separated
from the horizon, even though the integral (9) of the correlation
over x is a constant.

QUANTUM CORRELATIONS ACROSS THE BLACK HOLE . . . PHYSICAL REVIEW D 81, 124033 (2010)

124033-3



�
2@v þ @r

�
1� 2M

r
þ fð@2rÞ

��
� ¼ 0; (20)

which is of first order in @v and hence automatically selects
the outgoing u-sector only. In a stationary state, the two-
point function can be Fourier expanded via

h�ðv; rÞ�ðv0; r0Þi ¼
Z

d!e�i!ðv�v0Þg!ðr; r0Þ; (21)

where g!ðr; r0Þ solves the ordinary differential equation�
�2i!þ @r

�
1� 2M

r
þ fð@2rÞ

��
g!ðr; r0Þ ¼ 0 (22)

for r and the same for r0 with þ2i!. Assuming that this
differential equation together with the asymptotic condi-
tions (freely falling ground state for large k at all positions
r) uniquely determines the r-dependence of g!ðr; r0Þ (and
thus the same for r0), we find that g!ðr; r0Þ factorizes

g!ðr; r0Þ ¼ h!ðrÞh�!ðr0Þ: (23)

Here, we are interested in the region near the horizon
(where the pile-up of correlation occurred) and thus we
employ the near-horizon approximation

1� 2M

r
¼ 2�xþOð�2x2Þ; (24)

resulting in the (approximate) differential equation which
can be solved via a Fourier-Laplace transformation

ð�2i!þ @x½2�xþ fð@2xÞ�Þh!ðxÞ ¼ 0;

ð�2i!þ ik½2�i@k þ fð�k2Þ�Þ~h!ðkÞ ¼ 0: (25)

This is now a first-order ordinary differential equation in k
and its general solution can be written as

h!ðxÞ ¼
Z
C
dkk�i!=� exp

�
ikx� i

�
Fðk2Þ

�
; (26)

where C is an appropriate contour in the complex plane

and dF=dk ¼ fð�k2Þ=2 accounts for the modified disper-
sion relation. In order to determine the correct integration
contour in the complex plane, we have to study different

choices for the branch cut from k�i!=�. If the branch cut
lies in the upper complex half-plane =ðkÞ> 0, the solution
connects the final Hawking mode to the initial positive/
negative (pseudo) norm modes [7]

�!�
kþ
! ðxÞ þ �!�

k�
! ðxÞ ! �

Hawking
! ðx > 0Þ; (27)

where �kþ
! ðxÞ has positive (pseudo) norm (19) and �k�

! ðxÞ
negative (pseudo) norm. On the other hand, the branch cut
in the lower complex half-plane =ðkÞ< 0 connects the
final mode of the in-falling partners to the initial positive/
negative (pseudo) norm modes

~�!�
k�
! ðxÞ þ ~�!�

kþ
! ðxÞ ! �

partner
! ðx < 0Þ: (28)

Assuming that the quantum state we have corresponds to
the freely falling ground state for large k, the asymptotic
condition for h!ðxÞ implies that it has no contribution from
�k�

! ðxÞ. Thus, we take a suitable linear combination of the
two solutions (27) and (28) with the branch cut in the upper
and lower complex half-plane, respectively, which yields

h!ðxÞ ¼ N !

Z 1

0
dkk�i!=� exp

�
ikx� i

�
FðkÞ

�
; (29)

where N ! is a normalization factor. This expression is
quite natural since the boundary condition (freely falling
ground state for large k) implies that h!ðxÞ only contains
positive k-values with a positive (pseudo) norm (19).
Coarse-graining over large length scales, we do not see

the impact of FðkÞ and this function behaves as hðxÞ �
jxji!=��1, but on short distances, it also contains the rapidly

oscillating in-mode �kþ
! ðxÞ.

Now we are in the position to study the full correlator.
Inserting (29) into (21) and (23), the total expression reads

h�ðv; xÞ�ðv0; x0Þi ¼
Z þ1

�1
d!e�i!ðv�v0ÞjN 2

!j
Z 1

0
dk

Z 1

0
dk0 exp

�
i
!

�
ln
k0

k
þ ikx� ik0x0 � i

�
FðkÞ þ i

�
Fðk0Þ

�
: (30)

The !-integral yields the Fourier transform of jN 2
!j, which we denote by ~N . Finally, introducing the new variable � ¼

e��ðv�v0Þk=k0, the integrated correlation across the horizon in analogy to (9) yieldsZ 1

0
dxh�ðv; xÞ�ðv0; x0 < 0Þi ¼

Z 1

0
dk0 exp

�
�ik0x0 þ i

�
Fðk0Þ

�
�

Z 1

0

d�

�
~N ðln�Þ exp

�
� i

�
Fð�k0e��ðv�v0ÞÞ

�
: (31)

For a given point x0 < 0 inside the horizon, Eq. (31)
yields the total correlation between that point x0 < 0 and all
positions x outside the horizon up to spatial infinity. Setting
F ¼ 0, we rederive the result (9) for vðxÞ ¼ �x. In the far

future ðv� v0Þ " 1, the exponential prefactor e��ðv�v0Þ in
Eq. (31) vanishes and thus the �-integral becomes inde-
pendent of k0. The remaining k0-integral then just yields
h�!¼0ðx0Þ. After coarse-graining over large length scales,

this scales as 1=x0. As a result, we get basically the same

conservation law as in (9). This is quite natural since it just
reflects that fact that the Hawking particles carry the
correlation away to spatial infinity.
In the far past ðv� v0Þ # �1, on the other hand, the

exponential prefactor e��ðv�v0Þ diverges and thus the
k0-integral in Eq. (31) is exponentially suppressed due to

the rapidly oscillating phase Fð�k0e��ðv�v0ÞÞ. This can
most easily be seen by changing the integration variable

to k00 ¼ k0e��ðv�v0Þ. In the resulting double integral over k00
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and �, the first exponent in Eq. (31) can be neglected and

the integral scales as e�ðv�v0Þ. Consequently, in contrast to
the perfectly covariant case (which implies an unbounded
red-shift near the horizon), the total correlation is not
conserved in this case (i.e., it does not pile up at the
horizon) but created at finite times.

Note that the integral over the full x-interval (i.e, from
�1 toþ1) vanishes, since� is a spatial derivative. Even
with a modified dispersion relation, the time integral fac-
torizes exactly

Z þ1

�1
dvh�ðv; xÞ�ðv0; x0Þi ¼ 2�h!¼0ðxÞh�!¼0ðx0Þ; (32)

and, after coarse-graining over large length scales, it be-
haves as 1=jxx0j.

VI. CONCLUSIONS

We have studied the evolution of the quantum correla-
tions across the black hole horizon. Since the quantum
state under consideration is a pure state, all correlations
imply entanglement and thus entanglement entropy, etc.

Both, the _� and the� correlator across the horizon (7) and
(8), possess a peak at u ¼ u0 if we are far enough away
from the horizon. For black hole analogues (‘‘dumb
holes’’) in Bose-Einstein condensates, the scalar field �
reflects the phase fluctuations while the momentum density
� corresponds to the density fluctuations 	%, cf. [8].

For the� correlator, we found a conservation law (9) for
the total correlation across horizon in a perfectly covariant
theory (up to arbitrarily small length scales). This means
that the correlation to be carried away by the Hawking
particles in the future must pile up arbitrarily close to the
horizon in the past. However, below a minimum length
scale � set by the geometry (not necessarily the surface

gravity �), this piled-up correlation becomes virtually in-
distinguishable from the vacuum singularity of the two-
point function at the light cone; see Fig. 1 and Eqs. (13) and
(16).
After modifying the microscopic structure via introduc-

ing a nonlinear dispersion relation at short distances, this
picture changes drastically: In this case, the correlation
carried away by Hawking radiation in the future cannot
be traced back to arbitrarily early times and a small vicinity
of the horizon. As a result, the entanglement is not con-
served but actually created dynamically at a finite time.
This complies with the intuitive picture for the origin of
Hawking radiation in these systems: The initial wave
packet with large k in its ground state approaches the
horizon and is ripped apart by the gravitational red-shift
into two parts—the outgoing Hawking radiation and the in-
falling partner particles. Initially, there is no entanglement
(ground state), whereas the two final wave packets are in a
squeezed state, i.e., entangled.
As a consequence, the total entanglement entropy grows

with time due to the Hawking radiation emitted in the past
(and hence would diverge for an eternal black hole;
cf. [15]) whereas the radiation to be emitted in the future
does not contribute (yet). These findings further support
the view that Hawking radiation is not created at arbitrarily
small length scales but at finite distances and could be
relevant for the black hole information ‘‘paradox’’, etc.
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