
A compact codimension-two braneworld with precisely one brane

Nikolas Akerblom*

Nikhef Theory Group, Amsterdam, The Netherlands

Gunther Cornelissen†

Department of Mathematics, Utrecht University, The Netherlands
(Received 19 April 2010; published 9 June 2010)

Building on earlier work on football-shaped extra dimensions, we construct a compact codimension-

two braneworld with precisely one brane. The two extra dimensions topologically represent a 2-torus

which is stabilized by a bulk cosmological constant and magnetic flux. The torus has positive constant

curvature almost everywhere, except for a single conical singularity at the location of the brane. In

contradistinction to the football-shaped case, there is no fine-tuning required for the brane tension. We

also present some plausibility arguments why the model should not suffer from serious stability issues.
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I. INTRODUCTION

Ever since the Arkani-Hamed–Dimopoulos–Dvali
(ADD) proposal [1] (see [2] for the first stringy realization)
to explain the relative weakness of gravity, a great deal of
effort has been expended on the study of theories with large
extra dimensions. One particular approach is that of
codimension-two braneworlds [3,4]. In these models the
observed four-dimensional (4D) Universe is pictured to be
stuck on a stack of 3-branes embedded in a six-dimensional
spacetime with bulk cosmological constant and magnetic
flux in the two extra dimensions. Insofar as the extra
dimensions are warped, there is a certain similarity to the
Randall-Sundrum models [5,6].

To have flat branes, the magnetic flux has to be fine-
tuned so as to cancel the branewarping induced by the bulk
cosmological constant, and the extra dimensions topologi-
cally represent a sphere which is stabilized by the magnetic
flux. As already pointed out in [3], in addition to the fine-
tuning between the cosmological constant and the mag-
netic flux, there is at least one other source of fine-tuning in
this scenario: For mathematical reasons, it is necessary to
have at least two branes whose tensions then necessarily
are exactly equal. The resulting geometry in the extra
dimensions generically1 is that of an American-style
football.

In the literature there already have been attempts to
remove the necessary fine-tuning of the brane tensions by
replacing the extradimensional sphere with a noncompact
teardrop shaped space [7]. In this background geometry it
is possible to have precisely one brane and therefore no
issue of fine-tuning arises for its tension.

Generally speaking, ‘‘compactification’’ on a noncom-
pact space2 raises various stability questions. Even though
these questions may be settled for the teardrop, we felt it
worthwhile to construct a compact model with precisely
one brane. The purpose of this paper is to outline our
construction.3

Sketch of the model

A brief description of our model is as follows. Spacetime
is assumed to be six-dimensional and there is a bulk
cosmological constant �> 0. The two extra dimensions
are threaded by magnetic flux and form what we shall call
Olesen space.
Topologically speaking, Olesen space is just the 2-torus

T2. In particular, it is compact. The bulk cosmological
constant forces the space to have constant positive curva-
ture almost everywhere, except at a single conical singu-
larity. In accordance with the Gauss-Bonnet formula, we
may ascribe a negative infinity of curvature to this conical
singularity.
We now think of the Universe as a single space-filling 3-

brane in this background. The brane is pointlike in the extra
dimensions and sits at the conical singularity.4 By neces-
sity, the brane must have negative tension but this tension
can vary within a certain interval, so there is no fine-tuning
here.
Organization. In order to flesh out the description just

given, in the next section we first review the required

*nikolasa@nikhef.nl
†g.cornelissen@uu.nl
1Compare Sec. III A.

2There is an extensive literature on ‘‘noncompact compactifi-
cations,’’ a small sample of which is [8–14].

3Another approach was taken in [15], where the sigma model
leading to the teardrop was replaced so as to obtain a compact
space supporting precisely one brane.

4Physically speaking, this description is of course slightly
backward, as the brane itself is the reason for the conical
singularity.
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general codimension-two braneworld construction. In
Sec. III we then remark on certain sometimes overlooked
geometric features of the football-shaped extra dimensions
before proceeding to Olesen space. Finally, in Sec. IV we
summarize some salient points of our construction and
remark on directions for future work.

II. REVIEW OF GENERAL CONSTRUCTION

We review here the general construction for
codimension-two braneworlds à la [3,4] (cf. also [16]).
In these models, spacetime has the form

4D Minkowski space�M2; (1)

where M2 is some compact space of finite volume with
coordinates u, v.

The metric is

ds2 ¼ ���dx
�dx� þ e2�ðu;vÞðdu2 þ dv2Þ; (2)

or in matrix notation

gMN ¼ ��� 0
0 e2��uv

� �
; (3)

where M;N ¼ 0; 1; 2; 3, u, v.
In writing the part of the metric for M2,

e2�ðu;vÞðdu2 þ dv2Þ; (4)

we have made use of the fact that 2-space is conformally
flat.

As to the ‘‘physical’’ ingredients, we have a (bulk)
cosmological constant

�> 0; (5)

and M2 is threaded by a constant magnetic flux with field
strength5

F ¼ ffiffiffi
2

p
B0e

2�du ^ dv: (6)

In addition, there is a stack of space-filling 3-branes; see
Table I.

At the level of detail we are working here, that is, just
getting the basic construction right and not worrying about
phenomenology on the branes, the only equation to satisfy
is the Einstein equation (we put M4

6 ¼ 1)

RMN � 1

2
RgMN ¼ TMN: (7)

The energy-momentum tensor consists of three parts,

TMN ¼ T�
MN þ TF

MN þ Tbranes
MN ; (8)

where

T�
MN ¼ ��

��� 0
0 e2��uv

� �
; (9)

TF
MN ¼ �B2

0

��� 0
0 �e2��uv

� �
; (10)

Tbranes
MN ¼ �e�2� ��� 0

0 0

� � XN
n¼1

�n�
2ðun; vnÞ: (11)

The delta-functions in the brane energy-momentum tensor
correspond to the location of the various branes in the
extradimensional space M2 and �n is the tension of brane
n.
Working out the components of the Einstein equation,

we find

e�2������ ¼ ð��� B2
0Þ���

� e�2����

XN
n¼1

�n�
2ðun; vnÞ; (12)

0 ¼ ��e2��uv þ B2
0e

2��uv; (13)

where

� ¼ @2u þ @2v (14)

is the Laplacian.
Equation (13) is equivalent to

� ¼ B2
0: (15)

This equation is an expression of the fine-tuning between
the bulk cosmological constant and the magnetic flux
generically present in codimension-two braneworlds. We
assume it to be satisfied. Thus, substituting � for B2

0 in

Eq. (12) and rearranging, we arrive at

�� ¼ �2�e2� � XN
n¼1

�n�
2ðun; vnÞ; (16)

which we recognize as the famous Liouville equation.
With z ¼ uþ iv, its general solution for�> 0 is given by

e2� ¼ 2

�

jf0ðzÞj2
ð1þ jfðzÞj2Þ2 ; (17)

with fðzÞ some (in general multivalued) complex function.
Now, typically the data in the Liouville equation—total
number of branes N , location of the branes ðun; vnÞ,
tensions �n—are not entirely free, but depending on the
topology ofM2 are constrained. For instance, forM2 ¼ S2

TABLE I. Branes. � indicates a ‘‘filled’’ dimension, � indi-
cates that the branes are ‘‘pointlike’’ there.

M;N ¼ 0 1 2 3 u v

� � � � � �

5It is easy to see that this is a solution of the vacuum Maxwell
equations. Note that for purely cosmetic reasons we have re-
scaled B0 by a factor of

ffiffiffi
2

p
relative to [3].
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the total number of branes N necessarily is � 2. We will
come back to this below.

Because of the well-known geometric meaning of the
Liouville equation, we immediately read off from (16) that
M2, outside of the delta-function singularities, has constant
curvature

K ¼ 2�: (18)

The Gauss-Bonnet formula for a compact surface M2

with conical singularities with ‘‘weights’’ �n >�1 and
Euler characteristic �ðM2Þ reads [17]

1

2	

Z
M2

KdA ¼ �ðM2Þ þX
�n: (19)

Applied to our braneworld case, we find

�

	

Z
e2�dudv ¼ �ðM2Þ � 1

2	

X
�n; (20)

whence it follows that a brane of tension �n locally gives
rise to some kind of cone geometry with angle 
n, such that

�n ¼ 2	� 
n; (21)

that is, �n represents the angular defect (for �n > 0) or
excess (for �n < 0) of the local cone geometry. We also
remark here that the volume of M2 is given byZ

e2�dudv; (22)

and from (20) we see that this is entirely determined by �,
�ðM2Þ, and P

�n. For fixed cosmological constant � and
Euler characteristic �ðM2Þ, the question whether a model
can decompactify and hence is stable or unstable, as it
were, is entirely determined by the brane tensions �n.

From (20) it follows that necessarily6

X
�n < 0 for M2 � S2; (23)

as then the Euler characteristic �ðM2Þ � 0 and the left-
hand side of (20) is positive.

The upshot of this section can be briefly summarized
thus: To construct a codimension-two braneworld, all we
need to do is solve the Liouville equation (16). The general
solution is given by (17) but one still has to do a little extra
work to select an acceptable fðzÞ in order to satisfy the
Liouville equation with given (compatible) data.
Nevertheless, very many solutions can be written down
explicitly, for instance

M2 ¼ S2: fðzÞ ¼ a rational function (24)

and

M2 ¼ T2: fðzÞ ¼ an �-quasielliptic function (25)

give for our purposes acceptable solutions of the Liouville
equation [18,19]. Let us hasten to add that these are not the

most general solutions in the present context, as the fðzÞ in
both cases are single-valued in the plane, but, for example,
fðzÞ ¼ zk ð0< k< 1Þ also leads to a viable solution.7

Also, most of these solutions are appropriate only for a
large number of branes in the construction.
On the sphere S2 it is known8 [17] that the minimal

number of branes allowed is two and this is the model
proposed in [3,4]. A long time ago, Olesen [20,21] found a
solution of the Liouville equation on the square torus with
precisely one singularity,9 corresponding to precisely one
brane in our braneworld. This solution is a bit subtle, since
here the function f itself is not single-valued on T2 (it is not
an elliptic function with respect to T2).
We now turn to the discussion of these minimal cases.

III. MINIMAL SOLUTIONS

A. The football and related geometries

In the case where the extradimensional space M2 is
homeomorphic to the sphere S2, all axisymmetric solutions
with two branes were given in [3]. In the notation set up in
the previous section, these solutions are generated by10

fðzÞ ¼ zk ðk > 0; k � 1Þ; (26)

viz.

e2� ¼ 2

�

k2jzj2k�2

ð1þ jzj2kÞ2 : (27)

We exclude the case k ¼ 1, which corresponds to the usual
round metric on the sphere without point sources (indeed,
�1 ¼ �2 ¼ 0 for k ¼ 1; see below).
It is not difficult to check that, with this geometry, there

is one brane sitting at z ¼ 0 and one brane sitting at z ¼ 1,
and that both branes have the same tension,

�1 ¼ �2 ¼ � ¼ 2	ð1� kÞ: (28)

In fact, it is a rephrasing of a theorem of differential
geometry [22] to say that for all solutions on the sphere
S2 with precisely two branes, the branes must have exactly
the same tension.
One surprising fact, which is not so often stressed, is that

even though generically the branes are antipodal on S2,
whenever

6We restrict ourselves to orientable M2.

7In Refs. [18,19], the Liouville equation was studied in con-
nection with the Jackiw-Pi model. There, because of its relation
to the gauge field, f had to be single-valued in the plane but that
is not the case in the current theory.

8To the physicist this is quite obvious from the following
argument. Suppose we look for a single-brane solution of the
Liouville equation on the sphere. We expect this solution to be
radially symmetric and thus make the ansatz fðzÞ ¼ zk in
Eq. (17). It is then easy to check that the resulting metric has
a singularity at z ¼ 0 and z ¼ 1.

9In [19] this was generalized to tori of arbitrary shape.
10Strictly speaking, only the solutions with 0< k< 1 were
discussed in [3]. They correspond to positive tension branes.
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�1 ¼ �2 ¼ �2	;�3	;�4	; . . . ; (29)

there also exist solutions where the branes are not antipodal
[22]. Indeed, for tension �1 ¼ �2 ¼ 2	ð1� kÞ with k an
integer >1, these solutions arise as pullbacks of the stan-
dard metric on the sphere by a ramified covering f: S2 !
S2 of degree k, totally ramified over exactly two points. If

we view S2 as the Riemann sphere Ĉ and choose a complex

coordinate f: Ĉw ! Ĉz such that z ¼ 1 corresponds to
one of the ramification points, then the map f is described
algebraically by an equation of the form wk ¼ z� p;
where p is the z-coordinate of the second ramification
point.

One can summarize the situation as follows: If one has
two (and only two) branes of varying (equal) tension, they

are forced to remain at a fixed distance 	=
ffiffiffiffiffiffiffi
2�

p
on the

sphere, but for certain ‘‘instantaneous’’ values of the ten-
sion, the branes can start to wander around freely on the
sphere. We do not know of a simple physical reason for this
phenomenon.

B. Olesen space

We have seen that in the case where M2 is homeomor-
phic to the sphere S2, the minimal number of branes is two
and that then the brane tensions have to be infinitely fine-
tuned to be exactly equal. We are not going to debate
whether this is natural or not but we nevertheless think it
is interesting to point out that in the case where M2 is
homeomorphic to the torus T2, we can write down an
explicit model with precisely one brane. It follows from
(23) that the price we have to pay is the admission of
negative tension branes into the theory. This is not terribly
problematic, as negative tension branes are a crucial in-
gredient of the Randall-Sundrum models [5,6] and are also
quite common in string theories (O-planes). In addition, in
[23] it was found that stability of axisymmetric six-
dimensional supergravity braneworlds with M2 homeo-
morphic to S2 is actually easier to obtain once one admits
negative tension branes.

Two tori in conformal coordinates (4) can still differ in
shape (be skinny or fat) or, what amounts to the same,
differ in their complex structure �.

Thus, we may assume that

T2 ¼ C=ðZþ �ZÞ; (30)

where � is a nonreal complex number (which can be
chosen in the fundamental region of the modular group).

The coordinates ðu; vÞ in (4) now range over the paral-
lelogram F � R2 � C spanned by 1 and �, that is

ðu; vÞ 2 F ¼ fsþ t�j0 � s; t � 1g; (31)

where parallel edges are identified in the usual way.
We want to write down an explicit solution to the

Liouville equation (16) corresponding to a single brane
on the torus and the formulas are least messy when we

assume � ¼ i. Thus, for now, assume

� ¼ i: (32)

Put z ¼ uþ iv,

}ðzÞ � }2;2iðzÞ; (33)

(the Weierstrass p-function associated with the doubled
lattice 2Zþ 2iZ), and e1 ¼ }ð1Þ.
Then

expð2�Oðu; vÞÞ ¼ 2

�

j}0j2je1j2
ðje1j2 þ j}j2Þ2 (34)

is a solution to the Liouville equation (16) on T2 with
� ¼ i.11

As this solution was obtained by Olesen [20,21] (albeit
in a different context), we shall refer to T2 equipped with
the metric

expð2�Oðu; vÞÞðdu2 þ dv2Þ (35)

as Olesen space. For the general � � i case, one can adapt
the results of [19] but we choose not to do so here. Note
however that unless we state the contrary, all statements
below hold for the � � i case as well.
Obviously, Olesen space has positive constant curvature

K ¼ 2� almost everywhere, and it is not hard to verify that
it has a single conical singularity at ðu; vÞ ¼ ð0; 0Þ, corre-
sponding to a brane of tension

� ¼ �2	: (36)

Figure 1 attempts a visual representation of Olesen
space.
From results in differential geometry [17], it follows that

there exists a continuum of solutions with a single brane of
tension � with12

� 4	<�< 0: (37)

We do not know whether these can be expressed in
‘‘closed form,’’ even though it should not be too difficult
to obtain approximate solutions by perturbing around the
Olesen solution. In any case, it is very difficult to obtain
results for the ‘‘critical’’ (� ¼ �4	) or the ‘‘supercritical’’
(�<�4	) case.
We add a remark about the algebraic geometry of such

solutions. It is known that a conformal metric of constant
curvature outside a divisor gives rise to a so-called projec-
tive connection. In the case of a torus with one brane of
tension �, any two such projective connections differ by a
quadratic differential with at most a pole at the singular
point p of the metric [22], viz., an element of

H0ðT2;��2
T2 ðpÞÞ ¼ H0ðT2;OT2ðpÞÞ ¼ C; (38)

11Note that (34) is of the form (17) with fðzÞ ¼ }ðzÞ=e1.
12The ‘‘Trudinger constant’’ of [17] equals 2 in the case at
hand.
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since the only functions on a torus with at most one pole
are constant. In our case, this says that if there is a solution
to the Liouville equation, then its associated projective
connection is unique up to scaling.

General � and stability. Recent advances in the mathe-
matical literature (cf. [24] and references therein13) indi-
cate that the solvability of the Liouville equation depends
in a very subtle way on the complex modulus � of the torus.
Most results concern the ‘‘mean field equation,’’ which is
the case where there is a further relation between the
cosmological constant and the brane tension, namely

� ¼ ��=2: (39)

In this case, it is known from degree theory that a solution
always exists if � is not of the form � ¼ �4	k for a
positive integer k � 1. In the first exceptional case, � ¼
�4	, it is known that there is at most one solution.
However, the amazing result is that the existence of such
a solution for � ¼ �4	 depends on the complex parame-
ter �; more precisely, it exists only if the Green’s function
of the torus has more than three critical points. For ex-
ample, it is known that there is no solution for � ¼ �4	
on the square torus � ¼ i, but there is a solution on the

rhombic torus � ¼ e	i=3.
We can now use these results to argue for the stability of

our model in a particular instance. Suppose we fix � ¼ i
and � ¼ 2	. Further, assume that we start with a brane of
tension, say,� ¼ �2	. The torus thus initially has volume
��=2� ¼ 1=2 [cf. the discussion around (22)]. The de-
compactification limit of our model corresponds to � !
�1. But because of the ‘‘gap’’ at � ¼ �4	, this limit

cannot be taken in a smooth way! In other words, the model
appears stable against decompactification in the described
circumstances.
It would be a very interesting problem to study the

existence of gaps like the one just described throughout
the (super)critical region for general � and �, both for
fixed complex structure � and for varying �.

IV. DISCUSSION

In the context of [3,4] we have constructed a compact
codimension-two braneworld with precisely one brane.
Spacetime is six-dimensional with two dimensions com-
pact. The compact space, dubbed Olesen space, topologi-
cally is the 2-torus, threaded by magnetic flux. Olesen
space has constant curvature 2� (where �> 0 is the
bulk cosmological constant) except for a single conical
singularity, representing the position of the brane in the
extra dimensions.
In the case where the extra dimensions topologically

represent a sphere, the minimum number of branes is two
and their tensions have to be infinitely fine-tuned to be
exactly equal. This possibly unwanted feature is absent in
our model. In fact, the brane tension can assume any value
within a certain interval.
We briefly discuss the stability of our model. We found

that this is intimately linked to the existence of gaps in the
so-called (super)critical region � � �4	 of the Liouville
equation. Using recent results in mathematics, we argued
for the absence of a smooth decompactification limit in a
particular instance.
In the general case, we do not know whether or not

solutions to the Liouville equation exist for all negative
values of the tension, where in the case of existence, one
possibly would have to deal with more subtle stability
problems.
Quite apart from these basic issues, there is the task of

building a viable phenomenology on top of the geometric
background given here. For instance, in [26] the authors
reach the conclusion that ‘‘a six-dimensional universe with
two branes in the ‘‘football-shaped’’ geometry leads to an
almost realistic cosmology.’’ It would certainly be interest-
ing to know whether this is also true for the Olesen space
model.14
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FIG. 1 (color online). Olesen space. The underlying topologi-
cal space is just the 2-torus, which in (a) is obtained by
identification on the sides of a square. (b) shows a (nonisomet-
ric!) embedding in 3-space. The curvature K is everywhere
constant positive and equal to 2�, except at a single conical
singularity � to which, in accordance with the Gauss-Bonnet
formula, we may ascribe the curvature �1. This conical singu-
larity is also the position of our single 3-brane in the extra
dimensions.

13Also compare [25].

14Note that the changed topology of the internal space clearly
has some import for, say, the spectrum of Kaluza-Klein states.
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