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A variational principle is suggested within Riemannian geometry, in which an auxiliary metric and the

Levi Civita connection are varied independently. The auxiliary metric plays the role of a Lagrange

multiplier and introduces nonminimal coupling of matter to the curvature scalar. The field equations are

2nd order PDEs and easier to handle than those following from the so-called Palatini method. Moreover,

in contrast to the latter method, no gradients of the matter variables appear. In cosmological modeling, the

physics resulting from the alternative variational principle will differ from the modeling using the

standard Palatini method.
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I. INTRODUCTION

For the derivation of the field equation of Einstein’s
theory of gravitation and of alternative gravitational theo-
ries sometimes a method named, alternatively, ‘‘Palatini’s
principle,’’ ‘‘the Palatini method of variation’’ or
‘‘Palatini’s device’’ is used. Although the starting point is
Riemannian geometry and the metric is used as a varia-
tional variable, the Levi Civita connection formed from the
metric is replaced by an additional second variable, i.e., an
arbitrary connection � imagined to form the curvature
tensor. In the Lagrangian, both metric and connection
then are varied independently. An advantage of the method
is that it leads to 2nd order field equation for Lagrangians
of higher order in curvature while a variation of the metric
as the only variable results in 4th-order PDEs. On the other
hand, a main conceptual difficulty of the method is that it is
foreign to a variational principle within Riemannian ge-
ometry: the variational procedure mixes Riemannian and
metric-affine geometry. Authors either leave undetermined
the space-time geometry as a frame for the arbitrary
connection, or tacitly fix it mentally by introducing con-
straints (symmetric connection, no torsion etc.) which do
not show up in the formalism.

For many years, warnings have been voiced that the
method be working reliably only for the Hilbert-Einstein
Lagrangian (plus the matter part) L ¼ ffiffiffiffiffiffiffi�g

p ½RðgijÞ þ
2�Lmatðgij; uAÞ� with curvature scalar R ¼ glmRlmðgijÞ
and matter variables uA, but otherwise leads to under-
and undeterminacies [1–3].1 The method also has been
criticized from the point of view of topological gauge
theory [6]. Recently, Palatini’s method has been unearthed
in attempts to build cosmological models thought to ex-
plain the accelerated expansion of the universe with its
consequences for dark energy [7–11]. The method also has

been applied to loop quantum cosmology [12]. Often, the

starting point is a Lagrangian of the form L ¼ffiffiffiffiffiffiffi�g
p ½RðgijÞ þ ~fðRÞ� þ ffiffiffiffiffiffiffi�g

p
2�Lmatðgij; uAÞ with ~f an ar-

bitrary smooth function.2 In the following, we suggest a
variant of the Palatini variational principle leading to 2nd
order field equations and lacking the deficiencies of the
Palatini method. Its main physical motivation is the less
complicated nonminimal coupling of matter and curvature
as compared to the standard Palatini method. After its
introduction, it is applied to the class of fðRÞ-theories in
Sec. III and compared with the Palatini method in Sec. IV.
A recent particular choice for fðRÞ in the framework of
cosmological modeling then is used as an example for the
working of the alternative variational principle.

II. THE ALTERNATIVE VARIATIONAL
PRINCIPLE

As described above, in the standard Palatini method the
Levi Civita connection (represented by the Christoffel
symbol) is replaced by a general affine connection. Vice
versa, here we replace the (Lorentz-)metric gik by an
auxiliary metric �ab but keep the Levi Civita connection
formed from gik unchanged. The independent variables for
the variation now are �ab and the Levi Civita connection:

f k
ij
gg ¼ 1

2
gkl

�
@gil
@xj

þ @gjl
@xi

� @gij

@xl

�
: (1)

The equations following from the variation will give the
dynamics of the gravitational field and link �ab with gab.
We wish to emphasize that it is not a bi-metric theory
which is aimed at.3 The auxiliary metric may be seen as
playing the role of a Lagrange multiplier. This is analogous

1For incorrectly relating Palatini’s name with what is ascribed
to him cf. [4], footnote on p. 40 as well as the English translation
of Palatini’s paper in the same volume on pp. 477–488 (1980).
Cf. also [5].

2Recently, Lagrangians with two curvature invariants, i.e.,
fðR;RabRlmg

algbmÞ have been considered .
3In bi-metric theories, one metric usually is fixed to be the flat

Minkowskian metric and not varied. A formal variation of the
second metric often is restricted to an infinitesimal coordinate
change in order to derive conservation laws. Cf. [14].
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to the case of scalar-tensor theories replacing fðRÞ-theories
of gravitation (cf. [15,16]). The alternative variational
principle for Einstein gravity starts from4:

L ¼ ffiffiffiffiffiffiffiffi��
p �

�abRab

�
f k
ij
gg
�
þ 2�Lmatð�lm; u

AÞ
�
: (2)

Variation with respect to �ab leads to

��L ¼ ffiffiffiffiffiffiffiffi��
p �

Rab

�
f k
ij
gg
�
� 1

2
�abR�

þ 2�Tabð�lm; u
AÞ
�
��ab; (3)

where

R� :¼ �lmRlmðf kij ggÞ

and Tab :¼ 2ffiffiffiffiffiffi��
p �Lmat

��ab . Variation with respect to

f k
ij
gg

gives:

�
f k
ij

gg
L ¼ ½�ð ffiffiffiffiffiffiffiffi��

p
�bðiÞ;b�jÞ

k þ ð ffiffiffiffiffiffiffiffi��
p

�ijÞ;k��
�
f k
ij
gg
�

(4)

up to divergence terms.5 From

�
f k
ij

gg
L ¼ 0;

after a brief calculation using the trace of (4),

ð ffiffiffiffiffiffiffiffi��
p

�ijÞ;k ¼ 0 (5)

follows, where the covariant derivative is formed with the
Levi Civita connection. Thus, �ab ¼ const � gab follows.
��L ¼ 0 from (3) reduces to Einstein’s field equations.

The method is particularly well suited to a calculus with
differential forms. Here, the usual basic 1-forms �i ¼
eirdx

r and the curvature 2-form �ij ¼ 1
2RijklðglmÞ�k ^ �l

are taken as the independent variables. In place of the
auxiliary metric �ij, now an auxiliary 1-form is introduced

and denoted by ��i ¼ �eirdx
r where

�e i
r �e

j
s�

ij ¼ �rs; eire
j
s�

ij ¼ grs: (6)

The Einstein-Hilbert Lagrangian is LE ¼ �ab ^ �ð ��a ^
��bÞ with the Hodge-star operation: �ð ��a ^ ��bÞ :¼ ��ab and
��ab :¼ 1

2! �ablm
��l ^ ��m.6 Variation with regard to the fun-

damental 1-forms and curvature form leads to the field
equations:

D

�
@LE

@�ij

�
¼ 0;

@LE

@ ��i
¼ 0 (7)

with the covariant external derivative D using the Levi

Civita connection (1-form). Because of @LE

@�ij
¼ �ð ��i ^ ��jÞ

and of @LE

@ ��i
¼ �lm ^ ��ilm, the field equations are

D ��ij ¼ 0; �lm ^ ��ilm ¼ 0; (8)

where ��ilm :¼ �ilmp�p is a 1-form; ��ilm is dual to ��i ^ ��l ^
��m. Standard manipulations with the forms show that the
1st Eq. (8) is satisfied identically due to the absence of
torsion, i.e, D ��m ¼ 0; and that the 2nd becomes:
2Gc

aðgÞ ��c ¼ 0 with the Einstein tensor Gc
aðgÞ and the

3-form ��i :¼ 1
3! �iklm

��k ^ ��l ^ ��m. An advantage of this

formalism is that it may be adapted easily to gauge theories
of gravitation or to classical unified field theories.

III. EXTENSION TO fðRÞ-THEORIES

The alternative variational principle easily applies to the
Lagrangian

L ¼ ffiffiffiffiffiffiffiffi��
p �

f

�
�lmRlm

�
f k
ij
gg
��

þ 2�Lmatð�ij; u
AÞ
�
:

(9)

The variations lead to

��L ¼ ffiffiffiffiffiffiffiffi��
p �

f0ðR�ÞRab

�
f k
ij
gg
�
� 1

2
�abfðR�Þ

þ 2�Tabð�lm; u
A; @uAÞ

�
��ab; (10)

whith f0 :¼ df
dR and to

�fkijggL ¼ ½�ð ffiffiffiffiffiffiffiffi��
p

f0ðR�Þ�bðiÞ;b�jÞ
k

þ ð ffiffiffiffiffiffiffiffi��
p

f0ðR�Þ�ijÞ;k��
�
f k
ij
gg
�

(11)

up to divergence terms. As in Sec. II, from (11)

4Latin indices a; b; i; j; . . . run from 0 to 3; the summation
convention is implied.

5The semicolon denotes covariant differentiation with respect
to the Levi Civita connection. The surface contribution
ð ffiffiffiffiffiffiffiffi��
p

AkÞ;k always can be written as
ffiffiffiffiffiffiffi�g

p ð
ffiffiffi
�
g

q
AkÞ;k and thus as

ð ffiffiffiffiffiffiffiffi��
p

AkÞ;k. Here,

Ak :¼ �ab�f k
ij
gg � �ka�f b

ab
gg:

Thus, with the same assumption as in Einstein’s theory, i.e.,
�gab ¼ 0, �ðgab;cÞ ¼ 0 on the boundary, the divergence terms
may be omitted.

6Notation here is somewhat ambiguous: e.g., the curvature
form depends on both the Levi Civita connection and the
auxiliary tetrad:

�ij ¼ 1

2
Rijklðf kij ggÞ ��

k ^ ��l:

Nevertheless, no bar will be put on �. The notation �ijðg; ��Þ
would be inconvenient.
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ð ffiffiffiffiffiffiffiffi��
p

f0ðR�Þ�ijÞ;k ¼ 0; (12)

but from which now follows:

�ab ¼ f0ðR�Þgab; �ab ¼ ðf0ðR�ÞÞ�1gab: (13)

From (13), R� ¼ f0ðR�ÞRg with

Rg :¼ glmRlmðf kij ggÞ;

i.e., the curvature scalar in (pseudo-)Riemannian space-
time. Writing

Rg ¼ R�

f0ðR�Þ
:¼ hðR�Þ; (14)

the relation R� ¼ h�1ðRgÞ can be used to remove all en-

tries of �ab via the curvature scalar in the field equations
following from (10). Expressed by gab, they read as

f0ðh�1ðRgÞÞRab

�
f k
ij
gg
�
� 1

2
gab

fðh�1ðRgÞÞ
f0ðh�1ðRgÞÞ

þ 2�Tabððf0Þ�1ðh�1ðRgÞÞglm; uAÞ ¼ 0: (15)

Equation (15) shows that, in contrast to fðRÞ-theories
leading to 4th-order differential equations when derived
by variation of only the metric gab, the new field equations
are of 2nd order in the derivatives of gab. The auxiliary
metric is fully determined: �ab ¼ f0ðh�1ðRgÞÞgab; it is not
an absolute object. Beyond acting as a Lagrange multiplier
its main function is its appearance in the matter tensor
causing nonminimal coupling to the curvature scalar. No
further role in the description of the gravitational field is

played.7 For a Lagrangian of the form
ffiffiffiffiffiffiffi�g

p ½RðgijÞ þ
~fðRÞ�, in the formalism given above f is to be replaced

by Rþ ~fðRÞ, f0 by 1þ ~f0 while f00 ¼ ~f00, f000 ¼ ~f000.
A. First, a nonvanishing trace (with respect to the aux-

iliary metric �) of the matter tensor will be assumed T� :¼
�lmTlmð�rs; u

AÞ � 0. In this case, the curvature scalar is
seen to be a functional of the trace of the matter tensor.
Because of

T� ¼ f0ðR�ÞglmTlmðf0ðh�1ðRgÞÞgrs; uAÞ
¼ f0ðh�1ðRgÞÞTgðf0ðh�1ðRgÞÞgrs; uAÞ; (16)

with ~Tg :¼ glmTlmð�rs; u
AÞ from the g-trace of (15) fol-

lows:

f02Rg � 2fþ 2�f0 ~Tg ¼ 0; (17)

or, precisely,

ðf0ðh�1ðRgÞÞ2Rg � 2fðh�1ðRgÞÞ
þ 2�f0ðh�1ðRgÞÞ ~Tgððf0ðRgÞÞ�1glmu

AÞ ¼ 0: (18)

With a newly defined function !, this can be written as

Rg ¼ !ð2�TgÞ; (19)

where now Tg :¼ glmTlmðgrs; uAÞ. From (18) we conclude

that (15) can be cast into the form of Einstein’s equations
with an effective matter tensor. The curvature scalar is
coupled directly to the matter variables showing up in its
trace; no derivatives are involved. In fact:

Rab

�
f k
ij
gg
�
� 1

2
gabðRgÞ ¼ � 2�

f0

�
Tab

�
1

f0
glm; u

A

�

� 1

2
Tgab

�
� 1

2
gab

f

ðf0Þ2 :
(20)

In the case of perfect fluid matter with energy density �
and pressure p

Tabð�rs; u
AÞ ¼ ð�þ pÞ�al�bm �ul �um � p�ab (21)

with �ul :¼ dxl

d�s and d�s2 ¼ �lmdx
ldxm. Hence, �ul ¼

ðf0Þ1=2ul, ul ¼ dxl

ds and

Tabð�rs; u
AÞ ¼ ðf0Þ�1ðRgÞTlmðgrs; uAÞ: (22)

In this case, from (16) a simple relationship for the �- and
g-traces of the matter tensor follows:

T�ð�rs; u
AÞ ¼ Tgðgrs; uAÞ ¼ �� 3p: (23)

In place of Tab
;b ¼ 0 for the Einstein-Hilbert Lagrangian,

in this theory a more general relationship with Tab
;b � 0

follows from general covariance. This is also seen by
forming the divergence of the Einstein tensor in (20).
B. For vanishing trace of the matter tensor T� ¼ 0, (18)

reduces to

f0ðR�ÞR� � 2fðR�Þ ¼ 0: (24)

This implies two cases: i) f ¼ ðf0R�Þ2, and

ii) f � ðf0R�Þ2. The exceptional case i) is characterized

by an additional scale invariance implying zero trace for
the matter tensor. The field equations (15) become

2ðf0Þ2ðR�Þ
�
RabðgÞ�1

4
Rggab

�
þ2�Tab

�
1

2f20R�

glm;u
A

�
¼0;

Rg¼ 1

2ðf0Þ2
; T�¼Tg¼0: (25)

If we take a sourceless Maxwell field Fik as matter, then

Tabð�lm; FlmÞ ¼ �lmFalFbm � 1
4�ab�

il�jmFilFjm

¼ f0ðR�ÞTabðglm; FlmÞ: (26)

R� drops out and the field equations are

7In particular, �ab does not enter the Levi Civita connection,
but only the matter tensor. As a metric �ab is incompatible with
the Levi Civita connection; its nonmetricity tensor does not
vanish.
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RabðgÞ � 1

4
Rggab þ �Tabðglm; uAÞ ¼ 0;

Rg ¼ c1
f0ðc1Þ ; T� ¼ Tg ¼ 0:

(27)

In case (ii), from (24), R� ¼ c1 ¼ const and we may

proceed only if one real solution of f0ðc1Þc1 � 2fðc1Þ ¼ 0
does exist and if fðc1Þ, f0ðc1Þ remain finite. The field
equations then are

f0ðc1ÞRabðgÞ � c1
4
gab þ 2�Tab

�
1

f0ðc1Þglm; u
A

�
¼ 0;

T� ¼ Tg ¼ 0: (28)

In Einstein’s theory, R ¼ 0 follows if the trace of the
matter tensor is vanishing. Here, the larger set of solutions
R ¼ const is obtained.

Above, it has been assumed that the matter tensor does
not contain covariant derivatives; this covers most cases of
physical interest. Otherwise, formidable complications re-
sult even when the Einstein-Hilbert Lagrangian is taken.
E.g., if the additional term in the matter Lagrangian is
� ffiffiffiffiffiffiffiffi��
p

�il�kmui;kul;m (5) must be replaced by

ð ffiffiffiffiffiffiffiffi��
p

�ijÞ;k ¼ fijk ð�lm; uA; @uAÞ with a particular func-

tional fijk . Hence, the elimination of the Lagrangian multi-

plier will require quite an effort.

IV. COMPARISON WITH THE STANDARD
PALATINI METHOD

For the Palatini method of variation with variables gij
and �k

ij, the field equations of the fðRÞ-theory are

f0ðRÞRikð�Þ � 1
2fðRÞgik ¼ �2�Tik; (29)

ð ffiffiffiffiffiffiffi�g
p

f0ðRÞgilÞkl ¼ 0; (30)

where the covariant derivative is formed with the connec-
tion � and R ¼ gikRikð�Þ. From (30) we obtain a metric �gij
compatible with the connection �:

�g ij ¼ f0ðRÞgij; �gij ¼ ðf0Þ�1ðRÞgij; (31)

and the relation between � and the Levi Civita connection
is

�k
ij � f k

ij
g �g

¼ f k
ij
gg þ 1

2

d

dR
ðlnf0ðRÞÞ½2�k

ðiR;jÞ � gijg
klR;l�: (32)

A comparison of (13) and (31) shows the difference be-
tween �ij and �gij. With the help of (32) and (31) we can
rewrite the tracefree part of (29) in terms of the confor-
mally related metric �gij

�Rabð �gÞ � 1

4
�Rð �gÞ �gab ¼ RabðgÞ � 1

4
RðgÞgab � f00

f0

�
R;i;j

� 1

4
gijhR

�
�

�
f00

f0
� 3

2

�
f00

f0

�
2
�

�
�
R;iR;j � 1

4
gijR;lR;mg

lm

�
: (33)

When bringing the field equations into the form of
Einstein’s equations, the result is:

RabðgÞ � 1

2
RðgÞgab ¼ �2�TabðgÞ � f00

f0
½R;i;j � gijhR�

�
�
f000

f0
� 3

2

�
f00

f0

�
2
�
R;iR;j

þ
�
f000

f0
� 3

4

�
f00

f0

�
2
�
gijR;lR;mg

lm:

(34)

Again, the trace equation of (29), i.e.,

f0ðRÞR� 2fðRÞ ¼ �2�Tg; (35)

is used to eliminate the curvature scalar in favor of the trace
of the matter tensor. This means that the nonminimal
coupling to the curvature scalar and its derivatives will
be replaced by a coupling to the gradients of the matter
variables contained in gikTik.
The remark at the end of Sec. III for the case of covariant

derivatives in the matter tensor applies here as well.

V. AN EXAMPLE: EXPONENTIAL GRAVITY

A. Alternative variational principle

As an example, we now take a recent model for
fðRÞ-gravity [17] with

fðRÞ ¼ �crð1� e�ðR=rÞÞ; f0 ¼ �ce�ðR=rÞ; (36)

where r of dimension ðlengthÞ2 and c, dimensionless, are

constants. From (14) Rg ¼ � 1
c R�e

R�=r. Thus, the inverse

R� ¼ h�1ðRgÞ can be obtained only numerically. A series

expansion for
R�

r � 1 leads to

R� ¼ �cRg � c2

r
R2
g � 3

2

c3

r2
R3
g 	 � � � ; (37)

and

Rg ¼
2�Tg

c2

�
1� 2�Tg

rc
þ 2

3

�
2�Tg

rc

�
2 	 � � �

�
(38)

If the further calculations are restricted to the lowest order
in the expansion (37), with the Einstein tensor Gab ¼
Rab � 1

2Rggab the field equations (20) become

Gab

�
f k
ij
gg
�
¼�2�

c2

�
1�4

�Tg

rc

�
Tab�

�Tg

c2
�Tg

rc
gab: (39)

For a perfect fluid with pressure p ¼ 0, from (21) to lowest
order the equations replacing Einstein’s are:
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Rab

�
f k
ij
gg
�
� 1

2
Rggab ¼ � 2�

c2

�
1� 4

��

rc

�
�uaub

� �2�2

rc3
gab: (40)

The result is a variable coupling ‘‘constant’’ in the effective
matter tensor and a variable cosmological term both de-
pending on the energy density of matter.

For a homogeneous and isotropic cosmological model
with scale factor aðtÞ and flat space sections, (40) leads to
altered Friemann equations:�

_a

a

�
2 ¼ 2��

3c

�
1� 7

2

��

cr

�
; (41)

2
€a

a
þ

�
_a

a

�
2 ¼ �2�2

rc3
: (42)

Keep in mind that r, c are free constants of the model; the
velocity of light has been put equal to 1 in (42). As
numerical calculations would have to be done, and the
main aim of this paper is the introduction of an alternative
variational principle, we will not comment on this particu-
lar model (exponential gravity) and the physics following
from it.

B. Standard Palatini method

For exponential gravity as given by (36) and for pressur-
eless fluid matter, the field equations according to the first
equation of (29) turn out to be

Rikð�Þ ¼ 2�

c
Tikðg; uAÞ þ gikrð1� e�ðR=rÞÞ: (43)

This does not look complicated; however, the connection �
first must be expressed by the conformally related metric
�gab. To the same order of approximation, the final field
equation then can be written as

RabðgÞ � 1

2
RðgÞgab ¼ �2��uaub � 2�

rc
½�;i;j � gijh��

� 2�2

r4c2
�;i�;j þ �2

r4c2
gij�;l�;mg

lm:

(44)

The effective matter tensor in (44) depends on 1st and 2nd
gradients of the energy density of matter. This shows that
the physics resulting from the two variational principles
may be quite different. The same can be said with regard to
the Einstein-Hilbert metric variation used in [17] and e.g.,
in [18,19] and the alternative variational principle.

VI. CONCLUDING REMARKS

For physics, a significant difference between the alter-
native variational method presented here and the standard
Palatini method is that nonminimal coupling of matter and
the curvature scalar R occurs by multiplication with func-
tions of R or the trace of the matter tensor. In the standard
Palatini method, nonminimal coupling happens via the
gradients of the scalar curvature (trace of the matter ten-
sor). A conceptual advantage of the alternative method is
that it works within (pseudo)-Riemannian geometry;
metric-affine geometry never does appear.8 When dealing
with Rþ fðRÞ-Lagrangians, in both approaches a new
dimensionful constant is needed whose physical meaning
must be defined. Application to fðR; RabR

abÞ is unproble-
matic; here, two new parameters will occur. In general, via
the field equations both curvature invariants can be ex-
pressed as functionals of invariants of the matter tensor.
The Einstein-Hilbert Lagrangian seems to be very robust:
now there are at least three different methods for a deriva-
tion of the Einstein field equations. As the example treated
shows, for more general Lagrangians the variation will lead
to different physical theories. Whether the alternative var-
iational principle introduced here, if applied to cosmologi-
cal models, produces convincing physics will have to be
shown by further studies.
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