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In general relativity coupled to Maxwell’s electromagnetism and charged matter, when the gravitational

potentialW2 and the electric potential field � obey a relation of the formW2 ¼ að���þ bÞ2 þ c, where

a, b, and c are arbitrary constants, and � ¼ �1 (the speed of light c and Newton’s constant G are put to

one), a class of very interesting electrically charged systems with pressure arises. We call the relation

above betweenW and�, the Weyl-Guilfoyle relation, and it generalizes the usual Weyl relation, for which

a ¼ 1. For both, Weyl and Weyl-Guilfoyle relations, the electrically charged fluid, if present, may have

nonzero pressure. Fluids obeying the Weyl-Guilfoyle relation are called Weyl-Guilfoyle fluids. These

fluids, under the assumption of spherical symmetry, exhibit solutions which can be matched to the

electrovacuum Reissner-Nordström spacetime to yield global asymptotically flat cold charged stars. We

show that a particular spherically symmetric class of stars found by Guilfoyle has a well-behaved limit

which corresponds to an extremal Reissner-Nordström quasiblack hole with pressure, i.e., in which the

fluid inside the quasihorizon has electric charge and pressure, and the geometry outside the quasihorizon is

given by the extremal Reissner-Nordström metric. The main physical properties of such charged stars and

quasiblack holes with pressure are analyzed. An important development provided by these stars and

quasiblack holes is that without pressure the solutions, Majumdar-Papapetrou solutions, are unstable to

kinetic perturbations. Solutions with pressure may avoid this instability. If stable, these cold quasiblack

holes with pressure, i.e., these compact relativistic charged spheres, are really frozen stars.

DOI: 10.1103/PhysRevD.81.124016 PACS numbers: 04.40.Nr, 04.20.Jb, 04.70.Bw

I. INTRODUCTION

Frozen star was a name advocated in the 1960s by
Zel’dovich [1] to give to an object which is now called,
after Wheeler’s suggestion in 1968, a black hole (see e.g.
[2]; see also [3] for the historical evolution of the concept).
As we will see, a frozen star is actually a quasiblack hole.

Quasiblack holes are objects on the verge of becoming
black holes but avoid it; their boundary approaches their
own gravitational radius as closely as one likes. They
appeared in Einstein-Maxwell systems with special matter,
as had been found not so explicitly in [4] (see also [5]) and
then thoroughly discussed in [6–9]. They also arise, and
indeed were first discussed as such, in the context of
Einstein–Yang-Mills–Higgs systems [10,11]. These ob-
jects have well-defined properties [12–16]; for instance,
in general, regular quasiblack holes are extremal. Rotating
quasiblack holes are also known; see [17] with hindsight
and [18,19] for the properties of such objects.

There are several ways of solving Einstein’s equations
when the gravitational field is coupled to matter. Since we

will focus on Einstein-Maxwell static systems with matter
we can perhaps distinguish two ways. One we can call
Weyl’s way; the other is the Tolman-Oppenheimer-Volkoff
(TOV) way.
Let us deal with Weyl’s way now. Weyl [20], while

studying stationary electric fields in vacuum Einstein-
Maxwell theory, perceived that it is interesting to consider
a functional relation between the metric potential gtt �
W2ðxiÞ and the electric potential �ðxiÞ (where xi represent
the spatial coordinates, i ¼ 1; 2; 3) given by the ansatz
W ¼ Wð�Þ. By assuming the system is vacuum and axi-
symmetric, Weyl found that such a relation must be qua-
dratic in �. One can go beyond vacuum solutions, and
consider fluids which obey the Weyl relation, obtaining
their properties. These fluid systems were explored later by
Majumdar and Papapetrou [21,22] who in going beyond
vacuum found equilibrium configurations for charged ex-
tremal matter where the electric repulsion is balanced by
the gravitational attraction, and moreover for this particular
case they showed there is a perfect square relationship
between W and �; see also [23] for the extension of these
results to d dimensions. An interesting development on
Weyl’s work was performed much later by Guilfoyle [24]
who considered charged fluid distributions with the hy-
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pothesis that the functional relation between the gravita-
tional and the electric potential, W ¼ Wð�Þ, is given by
W2 ¼ að���þ bÞ2 þ c, where a, b, and c are arbitrary
constants, and � ¼ �1 (the speed of light c and Newton’s
constant G are put to one). This relation generalizes the
usual Weyl relation, for which a ¼ 1, and it allows a
further beautiful relationship between the various field
and matter quantities [25], which in turn generalizes the
Gautreau and Hoffman results [26] for fluids obeying a
pure Weyl relation. For both, Weyl and Weyl-Guilfoyle
relations, the electrically charged fluid, if present, may
have nonzero pressure, and this turns out to be important
in our context. Fluids obeying the Weyl-Guilfoyle relation
are called Weyl-Guilfoyle fluids.

Up to now we have only mentioned properties of the
fluid itself, be it a Weyl-Guilfoyle fluid or, in the particular
case of zero pressure, a Majumdar-Papapetrou fluid. But
matter solutions can be matched into vacuum asymptoti-
cally flat solutions, yielding star solutions which, besides
having the local properties associated to the fluid itself,
have global properties for the spacetime as a whole. Thus,
Majumdar-Papapetrou matter solutions, when joined to
vacuum solutions yield star solutions, the Bonnor stars
[4,5]. These Bonnor stars when sufficiently compact
show quasiblack hole behavior [6–9]. These stars and
quasiblack holes have no matter pressure, only electromag-
netic pressure. But now, Weyl-Guilfoyle fluids have, be-
sides electromagnetic pressure, matter pressure. Under the
assumption of spherical symmetry, Guilfoyle [24] exhib-
ited solutions which can be matched to the electrovacuum
Reissner-Nordström spacetime to yield global asymptoti-
cally flat stars, i.e., charged stars with pressure.

Here we explore one particular class of those spherically
symmetric cold charged fluid stars and show that these
stars display quasiblack hole behavior, i.e., the matter
boundary approaches its own gravitational radius (or hori-
zon) in a well-behaved manner. Although the cold charged
stars have a nonextremal outer metric, the quasiblack hole
regime is extremal always. We analyze in which cases the
energy conditions are obeyed, and also study a subclass for
which the speed of sound in the matter is less than the
speed of light. So a quasiblack hole with pressure obeying
the necessary physical requirements is presented here.
Quasiblack holes purely supported by electrical charge
have been known [6–8] (see also [4,5] with hindsight,
and [9] for further results and references). The presence
of pressure in quasiblack hole solutions is important, since
it tends to stabilize the system. Indeed, an important devel-
opment provided by these solutions is that without pressure
the matter, Majumdar-Papapetrou matter, is unstable to
kinetic perturbations. So the whole solution is unstable to
these perturbations. Charged solutions with pressure, and
along with them quasiblack holes with pressure, avoid this
instability. Thus, if indeed stable, these compact relativistic
charged spheres in the form of cold quasiblack holes with

pressure, are really frozen stars [1,2]. As a black hole, a
quasiblack hole freezes to observers outside, but unlike a
black hole, at the horizon limit, the star is still intact, it does
not collapse. In the quasiblack hole context, unlike in the
black hole case, the star is not irrelevant. Thus the name
frozen star is appropriate. From a well-motivated chain of
works, applying Weyl’s leading method of solving
Einstein’s equations we thus arrive at the concept of frozen
stars, solutions which exhibit the behavior of quasiblack
holes with pressure. Of course, quasiblack holes consid-
ered as frozen stars are more akin to the dark stars of
Michell and Laplace (see [3]) than black holes themselves.
The other way to solve Einstein’s equations with

charged matter with pressure is through the integration of
the TOV equation for the gradient of the pressure, in
conjunction with the other equations for the other fields.
There are many works that use this method, and we only
quote the most relevant to our work. In an important work,
de Felice and collaborators [27,28] found relativistic
charged sphere solutions with pressure by the TOV
method. Moreover, they took the limit to the black hole
regime, and through numerical integration still found in
this limit a solution. With hindsight this solution is an
extremal quasiblack hole with pressure solution. The equa-
tion of state for the fluid considered is one for an incom-
pressible fluid, with constant energy density, and in such a
case the speed of sound is infinite, which might be consid-
ered a drawback. Bonnor [5] took notice of this solution
and made comments and comparisons showing that his
previous solution [4] had indeed the same gravitational
overall properties. The search of quasiblack hole solutions
through the TOV method is nontrivial. In fact, charged star
solutions with pressure were explored in [29,30] without
finding the quasiblack hole regime. There are yet other
ways to solve Einstein’s equations. For instance in [10,11]
an improved method, analytical and numerical, was de-
vised to solve the Einstein–Yang-Mills–Higgs system of
equations. The quasiblack holes that arose from this system
are indeed also extremal quasiblack holes with pressure
since the Yang-Mills–Higgs system has an effective built-
in pressure on its own. The generic properties of all
types of extremal quasiblack holes with pressure are dis-
cussed in [16].
The existence or not of solutions for compact objects in

general relativity is connected with the Buchdahl limit.
Buchdahl [31] found for perfect fluids that if the radius
r0 and the mass m of the star is such that m � 4

9 r0, then

there is no equilibrium; see also [32] for more on this
limit. For instance the Schwarzschild interior solution
with constant energy density for the matter obeys this
inequality. If one adds electric charge to the system the
Buchdahl limit is changed, the mass to radius of the star
ratio m

r0
can certainly increase. Indeed the existence of

quasiblack holes shows that the radius of an electrically
charged star can approach its own gravitational radius,
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m ¼ r0. Buchdahl limits for charged stars have been
worked out in [33–36] and in particular [37] gives a sharp

limit,m � ð
ffiffi
r

p
0

3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
9 þ q2

3r0

q
Þ2, where q is the total charge of

the star. For q ¼ r0, this result admits the extremal case
m ¼ r0 which, as we shall see below, corresponds to the
quasiblack hole limit satisfied by the particular solutions
studied here. Incidentally, the a ! 1 limit of the solutions
we consider yield the Schwarzschild interior solutions.
These uncharged Schwarzschild interior solutions contain
no quasiblack hole, of course.

Another related issue is concerned with regular black
holes. Regular black holes are black holes devoid of sin-
gularities. There are two types of regular black holes. In
one type there is a magnetic core with an event horizon
which joins into a magnetically charged vacuum solution
different from the Reissner-Nordström solution [38–40]
(see also [41] for electrically charged regular solutions in
nonminimal theories). In the other type, the bulk inside the
horizon is formed of a portion of the de Sitter space which
joins into a Schwarzschild vacuum solution [42–47].
Curiously, the a ! 1 limit of the solutions we consider
here yields a branch of solutions, other than the
Schwarzschild interior solutions, which are regular electri-
cally charged black holes.

The present paper is organized as follows. In Sec. II the
basic equations describing a charged fluid of Weyl-
Guilfoyle type are written. A particular spherically sym-
metric solution to the equations representing relativistic
charged stars, found by Guilfoyle, is shown in Sec. III.
Then, Sec. IV is devoted to the study of the main properties
of these stars. We first review the definition of a quasiblack
hole in Sec. IVA. Then we obtain analytically the quasi-
black hole limit of the solution in Sec. IVB. In passing we
take the a ! 1 limit and show that there are two branches
of solutions; one corresponds to the Schwarzschild interior
solutions, the other to regular charged black holes. In
Sec. IVC we plot, for three distinct cases, the relevant
curves for each one of the metric and electric potentials,
and for the fluid quantities. All three cases contain relativ-
istic star solutions and quasiblack hole (frozen star) solu-
tions. In Sec. V we conclude.

II. WEYL-GUILFOYLE CHARGED FLUIDS:
BASIC EQUATIONS

The cold charged fluids considered in the present work
are described by Einstein-Maxwell equations, which can
be written as

G�� ¼ 8�ðT�� þ E��Þ; (1)

r�F
�� ¼ 4�J�; (2)

where Greek indices �, �, etc., run from 0 to 3. G�� ¼
R�� � 1

2g��R is the Einstein tensor, with R�� being the

Ricci tensor, g�� the metric tensor, and R the Ricci scalar.

We have put both the speed of light c and the gravitational
constant G equal to unity throughout. E�� is the electro-

magnetic energy-momentum tensor, which can be written
in the form

4�E�� ¼ F�
�F�� � 1

4
g��F��F

��; (3)

where the Maxwell tensor is

F�� ¼ r�A� �r�A�; (4)

r� representing the covariant derivative, and A� the

electromagnetic gauge field. In addition,

J� ¼ �eU� (5)

is the current density, �e is the electric charge density, and
U� is the fluid velocity. T�� is the material energy-

momentum tensor given by

T�� ¼ ð�m þ pÞU�U� þ pg��; (6)

where �m is the fluid matter-energy density, and p is the
fluid pressure.
We assume the spacetime is static and the metric

ds2 ¼ g��dx
�dx� (7)

can be written in the form

ds2 ¼ �W2dt2 þ hijdx
idxj; i; j ¼ 1; 2; 3: (8)

The gauge field A� and four-velocity U� are then given

by

A � ¼ ���0
�; (9)

U� ¼ �W�0
�: (10)

The spatial metric tensor hij, the metric potentialB, and the

electrostatic potential � are functions of the spatial coor-
dinates xi alone.
The particular relativistic cold charged stars we are

going to study here belong to a special class of systems
in which the metric potentialW and the electric potential�
are functionally related through a Weyl-Guilfoyle relation
(see Guilfoyle [24]; see also Lemos and Zanchin [25])

W2 ¼ að���þ bÞ2 þ c; (11)

with a, b, and c being arbitrary constants and � ¼ �1, the
parameter a being called the Guilfoyle parameter. Then,
the charged pressure fluid quantities �m, p, and �e satisfy
the constraint [25]

ab�e ¼ �½�m þ 3pþ ð1� aÞ�em�W þ �a�e�; (12)

or

a�eð���þ bÞ ¼ �½�m þ 3pþ �ð1� aÞ�em�W; (13)

with �em standing for the electromagnetic energy density
defined by
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�em ¼ 1

8�

ðri�Þ2
W2

: (14)

Such matter systems we call Weyl-Guilfoyle fluids.

III. SPHERICAL SOLUTIONS:
GENERAL ANALYSIS

We repeat in this section one class of the spherically
symmetric solutions found by Guilfoyle [24] in order to
study its properties. The metric (7) instead of being generi-
cally written as (8), is more conveniently written in a
spherically symmetric form, namely,

ds2 ¼ �BðrÞdt2 þ AðrÞdr2 þ r2d�; (15)

where r is the radial coordinate, A and B are functions of r
only, and d� is the metric of the unit sphere S2. The gauge
field A� and the four-velocity U� are now

A � ¼ ��ðrÞ�0
�; (16)

U� ¼ �
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
�0
�: (17)

The cold charged pressure fluid is bounded by a spherical
surface of radius r ¼ r0, and in the electrovacuum region,
for r > r0, the metric and the electric potentials are given
by the Reissner-Nordström solution

BðrÞ ¼ 1

AðrÞ ¼ 1� 2m

r
þ q2

r2
; (18)

�ðrÞ ¼ q

r
þ�0; (19)

�0 being an arbitrary constant which defines the zero of the
electric potential, and that, in asymptotically Reissner-
Nordström spacetimes as we consider here, can be set to
zero.

Now we review the general properties of the spherically
symmetric solutions with the boundary condition given
above. The first integral of the only nonzero component
of Maxwell’s equations (2) furnishes

QðrÞ ¼ r2
�0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞAðrÞp ; (20)

where the prime denotes the derivative with respect to the
radial coordinate r and an integration constant was set to
zero. QðrÞ is the total electric charge inside the surface of
radius r. The class of solutions we are interested in here has
c ¼ 0 in Eq. (11), and is classified as class Ia in [24], and so
we can write �ðrÞ in terms of BðrÞ as

��ðrÞ ¼ b�
ffiffiffiffiffiffiffiffiffi
BðrÞ
a

s
: (21)

With this result the amount of electric charge inside a
spherical surface of radius r, cf. Equation (20), is now
given by

QðrÞ ¼ ��r2B0ðrÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
aAðrÞp

BðrÞ
: (22)

The continuity of the metric functions on the surface r ¼
r0 yields Bðr0Þ ¼ 1=Aðr0Þ ¼ 1� 2m

r0
þ q2

r2
0

. Using such a

boundary condition and Eq. (22) we get

q

m
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

2ða� 1Þm
s �

2ða� 1Þ � r0
m

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aða� 1Þ

�
1� r0

m

�
þ a2

r20
m2

s �
1=2

; (23)

or inverting,

m

q
¼ ð1� aÞ q

r0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

�
1þ ða� 1Þq

2

r20

�s
; (24)

where the fact that Qðr ¼ r0Þ ¼ q was taken into account.
The equivalent constraints (23) or (24) hold for all spheri-
cally symmetric charged pressure fluid distributions whose
boundaries are given by a spherical surface of radius r ¼
r0, and whose potentials are related as in Eq. (21). The
extremal relation q ¼ m holds when a ¼ 1, in which case
the relation among B and � is always a perfect square and
the r0 ¼ m limit represents a quasiblack hole. (In four
dimensions, these Majumdar-Papapetrou charged fluids
were studied in [21,22]and their corresponding Bonnor
stars and quasiblack holes in [4–8] as well as in [12–15],
and in d > 4 dimensions these fluids were studied in [23]
and their corresponding Bonnor stars and quasi black holes
in [9]. Now, for a � 1, we are still considering B ¼ Bð�Þ
as a perfect square [because c ¼ 0, see Eq. (11)] but,
unlike a Bonnor star, the relation q ¼ m does not hold in
general. However, from Eq. (23) or (24) one sees that, for
a � 1, there is also the possibility in which the equality
mr0 ¼ q2 holds, which may yield back, eventually, the
relation q ¼ m. As we will see below, this is the quasiblack
hole limit. Since the inequality a � 1 holds in this case, it
means the corresponding quasiblack hole is made of a fluid
with nonzero pressure
Guilfoyle’s solutions are found under the assumptions

that the effective energy density �effðrÞ ¼ �mðrÞ þ
�emðrÞ ¼ �mðrÞ þ Q2ðrÞ

8�r4
is a constant, and that the metric

potential AðrÞ is a particularly simple function of the radial
coordinate. Namely [24],

8��mðrÞ þQ2ðrÞ
r4

¼ 3

R2
; (25)

AðrÞ ¼
�
1� r2

R2

��1
; (26)

where R is a constant to be determined by the junction
conditions of the metric at the surface r ¼ r0. In fact, by
joining the function AðrÞ in Eq. (26) with the grr coefficient

JOSÉ P. S. LEMOS AND VILSON T. ZANCHIN PHYSICAL REVIEW D 81, 124016 (2010)

124016-4



of the exterior metric (18), the constant R in Eq. (25) is
found in terms of the parameters r0, m, and q, through the
equation

1

R2
¼ 1

r30

�
2m� q2

r0

�
: (27)

With these simplifying hypotheses, Guilfoyle [24] was
able to write some interesting exact solutions. We shall
show that the class Ia of such solutions admits an extremal
case such that q ¼ m ¼ r0, which represents a quasiblack
hole. Let us then write here this Ia class of solutions:

BðrÞ ¼
�
2� a

a1þ1=a
FðrÞ

�
2a=ða�2Þ

; (28)

8��mðrÞ ¼ 3

R2
� a

ð2� aÞ2
k20r

2

F2ðrÞ ; (29)

QðrÞ ¼ �
ffiffiffi
a

p
2� a

k0r
3

FðrÞ ; (30)

8�pðrÞ ¼ � 1

R2
þ a

ð2� aÞ2
k20r

2

F2ðrÞ þ
2k0a

2� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2=R2

p
FðrÞ ;

(31)

where k0 is an integration constant, and FðrÞ and QðrÞ are
defined, respectively, by

FðrÞ ¼ k0R
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

s
� k1; (32)

QðrÞ ¼ 4�
Z r

0
�eðrÞ r2drffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2

R2

q ¼ r2ffiffiffiffiffiffiffiffiffi
BðrÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

s
d�ðrÞ
dr

;

(33)

with k1 being another integration constant. The integration
constants k0 and k1 are determined by using the continuity
of the metric potentials AðrÞ and BðrÞ and the first deriva-
tive of BðrÞ with respect to r at the boundary r ¼ r0. The
result is

k0 ¼ jqja2=a
r30

�
m

q
� q

r0

�
1�2=a

; (34)

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r20

R2

s �
k0R

2 � a1þ1=a

2� a

�
1� r20

R2

��1=a
�
: (35)

From Eqs. (30) and (33) we get both the electric charge
density �e and the electromagnetic energy density �em,

8��eðrÞ ¼ �
ffiffiffi
a

p
2� a

k20r
2

F2ðrÞ
�
3FðrÞ
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2

s
� 1

�
; (36)

8��emðrÞ ¼ a

ð2� aÞ2
k20r

2

F2ðrÞ : (37)

Since c ¼ 0 in the solutions we are considering [see

Eq. (11)], Eq. (12) with Eq. (11) turns intoffiffiffi
a

p
�e ¼ �½�m þ 3pþ ð1� aÞ�em�; (38)

which can be interpreted as an equation of state which, as
one can check, is obeyed by the charged fluid represented
by the solution presented above. Furthermore, the above
solution is valid for all a > 0, the case a ¼ 1 yielding the
uncharged (q ¼ 0) Schwarzschild interior solution.
Another important quantity to determine is the speed of

sound within the fluid. We take the usual definition for the
speed of sound cs,

c2s ¼ �p

��m

; (39)

and consider variations of the pressure p and of the energy
density �m in terms of the radial coordinate r, i.e., �p ¼
p0ðrÞ�r, etc., where the prime denotes derivative with

respect to r. Hence, we may write c2s ¼ p0
�0
m
. The result is

the speed of sound as a function of the radial coordinate,

c2s ¼ j2� aj k
2
2 � k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2=R2

p
1� k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2=R2

p � 1; (40)

where we have defined k2 ¼ k1
k0R

2 .

In the following we analyze in some detail the physical
properties of this charged solution, exploiting, in particu-
lar, the dependence of the metric and electric potentials,
and of the fluid quantities on the free Guilfoyle parameter
a.

IV. RELATIVISTIC CHARGED STARS AND
QUASIBLACK HOLES WITH PRESSURE (OR

FROZEN STARS)

A. Definition of generic relativistic charged stars and
definition of quasiblack holes with pressure

(or frozen stars)

A generic relativistic cold charged star, or sphere, is here
defined as a smooth ball in which the gravitational, elec-
tromagnetic, and matter fields have nonsingular behavior
throughout the matter, which in turn is matched smoothly
to the Reissner-Nordström exterior solution.
A quasiblack hole or frozen star can also be properly

defined. For such a task we follow Ref. [12] and consider
the metric in the form (15) with solution given in Eqs. (26)
and (28) for the interior which matches continuously to the
exterior metric in the form (18). Then, consider the follow-
ing properties: (a) the function 1=AðrÞ attains a minimum
at some r� � 0, such that 1=Aðr�Þ ¼ ", with " � 1, this
minimum being achieved either from both sides of r� or
from r > r� alone; (b) for such a small but nonzero " the
configuration is regular everywhere with a nonvanishing
metric potential BðrÞ; and (c) in the limit " ! 0 the poten-
tial BðrÞ ! 0 for all r � r�. These three features define a
quasiblack hole and, in turn, entail some nontrivial con-
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sequences: (i) there are 3-volume regions, rather than 2-
surface regions (as in the black hole case), for which the
redshift is infinite; (ii) when " ! 0, a free-falling observer
finds in his own frame infinitely large tidal forces in the
whole inner region, although the spacetime curvature in-
variants remain perfectly regular everywhere; (iii) in the
limit, outer and inner regions become mutually impene-
trable and disjoint; and one can also show that (iv) for
external far away observers the spacetime is virtually in-
distinguishable from that of an extremal black hole. In
addition, well-behaved (with no infinite surface stresses)
quasiblack holes must be extremal. The quasiblack hole is
on the verge of forming an event horizon, but it never forms
one; instead, a quasihorizon appears. For a quasiblack hole
the metric is well defined and everywhere regular.
Nonetheless, the properties that arise when " ¼ 0 have to
be examined with care for each model in question.

B. Analytical study of quasiblack holes with pressure
(or frozen stars)

An interesting property of the solution presented in
Sec. III [cf. Eqs. (26)–(31)] is that all the physical quanti-
ties are well behaved even in the quasiblack hole limit. In
what follows we first verify that the quasiblack hole limit
can be attained, and then we check that in such a limit the
physical quantities related to the charged fluid are well-
defined.

1. The metric potentials and the electric potential

Let us show here that the quasiblack hole really exists as
a special limit of the relativistic charged star solution
presented above. According to the definition of the preced-
ing section, the quasiblack hole should be extremal, so that
the massm approaches the charge from above,m ! qþ. In
such a limit, the exterior metric (18) tends to the quasiex-
tremal Reissner-Nordström metric, for which the two hori-

zons r� ¼ m� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � q2

p
are very close to each other,

rþ 	m	 r�. Moreover, there must be a quasihorizon r�,
and then the radius of the star r0 must coincide with r�.
Hence, the quasiblack hole limit of the star corresponds to
the limit r0 ! rþ from above. We can then assume a
relation of the form q	 ð1� ffiffiffi

"
p Þr0, for a small non-

negative ". This means that the quasiblack hole limit
corresponds to the most compact charged star we can
have, with r0=m close to unity. In the present case, the
mass m and the charge q are related by Eq. (24), which
implies in m=q	 1þ ða� 1Þ"=2a, and then m=r0 	 1�ffiffiffi
"

p
. From these results we may obtain the quasiblack hole

limit for all other quantities. For instance, the difference
m=q� q=r0 which appears in the constants k0, k1, etc., is
of the order of

ffiffiffi
"

p
. Taking these considerations into the

corresponding equations we find, for instance, R�2 	
ð1� 2

ffiffiffi
"

p Þ=r20, k0 	 a2=a"ða�2Þ=2a=r20, Bðr0Þ 	 ", k1 	
aðaþ4Þ=2a"ða�2Þ=2a=ð2� aÞ. The function FðrÞ goes as k1

for all r inside the star, and then Eq. (28) implies that BðrÞ
is of the order of " for all r in the interval 0 � r � r0.
Moreover, we find 1=Aðr0Þ 	 ", satisfying the properties of
a quasiblack hole as defined in Sec. IVA. In the quasiblack
hole limit, the metric potentials become

BðrÞ ¼
8><
>:
�
1þ 2�affiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

r20

r �
2a=ða�2Þ

"
a ; r � r0;

ð1� r0
r ½1�

ffiffi
"

pffiffi
a

p �Þ2; r � r0;
(41)

AðrÞ�1 ¼
8<
: ð1� r2

r20
½1� "

a�Þ; r � r0;

ð1� r0
r ½1�

ffiffi
"

pffiffi
a

p �Þ2; r � r0;
(42)

where we have used the fact that jqj ’ m ¼ ð1� ffiffiffi
"

p Þr0
and have written jqj=r30 ¼ 1=r20. The electric potential�ðrÞ
at the quasiblack hole limit is obtained from the above
result for BðrÞ and from Eq. (21).

2. The fluid quantities

The study of the physical properties satisfied by the
energy density and by the pressure for the present solution
was in part done in Ref. [24]. There are, however, further
interesting aspects that should be considered.
We can for instance obtain the analytical expressions at

the quasiblack hole limit for the fluid quantities like mass
density, charge, and pressure,

8��mðrÞ ¼ 3jqj
r30

� q2r2

r60

�
1þ 2� affiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

r20

s ��2
; (43)

QðrÞ ¼ qr3

r30

�
1þ 2� affiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

r20

s ��1
; (44)

8�pðrÞ ¼ � jqj
r30

þ q2r2

r60

�
1þ 2� affiffiffi

a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

r20

s ��2

þ 2ajqj
r30

�
2� aþ ffiffiffi

a
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2

r20

s ��1
: (45)

The quasiblack hole limit of the other fluid quantities,
namely, of the charged density �e and of the electromag-
netic density �em are easily obtained, respectively, from
Eq. (38) and from the identity �em ¼ Q2ðrÞ=8�r4, and
then we do not write them here.
Let us now analyze the speed of sound cs within these

relativistic charged stars in the quasiblack hole limit. For
that we use Eq. (40) and get the limiting values of the
constants R2, k0, and k1, as done in Sec. IVB 1. Then we
find

c2s ðrÞ ¼
aþ ð2� aÞ ffiffiffi

a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2=r20

q
2� aþ ffiffiffi

a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2=r20

q � 1: (46)
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As expected the speed of sound of the quasiblack hole is
zero if a ¼ 1. At the surface, c2s tends to �1þ a=ð2� aÞ
which reaches unity for a ¼ 4=3. The function c2s ðrÞ at the
center (r ¼ 0) of the quasiblack hole is such that c2s ð0Þ is
bounded to �1 from above as a tends to zero. In fact we
see that c2s ð0Þ is zero for a ¼ 1, and tends monotonically to
�1 as a goes to zero. Hence, cs is undefined for all a < 1.
One can further impose that the speed of sound is smaller
than the speed of light to yield a further interesting class of
solutions.

3. The mass to radius relation and the a ! 1 limit (the
Schwarzschild interior and the regular black hole

branches)

The mass m, the charge q, and the radius r0 of the
relativistic stars analyzed here are related by Eq. (23), or
equivalently, by Eq. (24). Hence, besides the parameter a,
out of the three quantitiesm, q, and r0, we are left with two
more free parameters. One can consider various possibil-
ities. One possibility is to normalize the quantities in terms
of the mass m. This choice is interesting, since the un-
charged limit (the Schwarzschild interior solution) is easily
obtained by taking the limit a ! 1. Therefore, in order to
observe this limit to the (uncharged) Schwarzschild stars,
we will in general normalize the quantities in terms of the
mass m of the star. Another possibility is to normalize the
quantities in terms of the charge q. This choice is also
interesting since from it one can read directly the star’s
mass to radius relation, m
 r0. Of course, other possibil-
ities could be considered.

In order to see the difference between the two normal-
izations just mentioned we plot Fig. 1. The plot on the left-
hand side of Fig. 1 shows the behavior of q=m as a function
of r0=m. From the curves, obtained from Eq. (23), we read
that, for a fixed mass, the electric charge of the star
decreases with its radius, the maximum value being
q=m ¼ 1 for r0=m ¼ 1, the quasiblack hole limit. The

plot on the right-hand side of Fig. 1 gives the mass to
charge ratio m=q for a few values of the parameter a as a
function of the normalized radius of the star r0=q, whose
curves are obtained from Eq. (24). It shows that, for a fixed
charge, the radius of the star decreases as the mass de-
creases. This mass to radius relation behavior is analogous
to the behavior of the mass to radius relation in main
sequence stars, and contrary to the mass to radius relation
in white dwarfs.
Another point to be noted is that these kind of stars bear

a relatively large charge to mass ratio. The ratio m=q runs
from unity, the minimum value, at the quasiblack hole
limit, to

ffiffiffi
a

p
for an extremely sparse star, with r0 ! 1. In

fact, we see from Eq. (24) that, for fixed a, the maximum
value of m=q is found in the limit r0 ! 1, and it is given
by m

q jmax ¼
ffiffiffi
a

p
.

Now we show that in the limit of a ! 1 one recovers
the Schwarzschild interior solution q ¼ 0 and �m ¼ const,
and also picks up another branch. Indeed, taking a ! 1 in
Eq. (23) we find

lim
a!1

q2

m2
¼ 1

2

�
2þ j r0

m
� 2j � r0

m

�
r0
m
: (47)

Because of the absolute value jr0=m� 2j one concludes,
remarkably, there are two branches, r0=m > 2 and
r0=m < 2.
For r0=m > 2 one finds

lim
a!1

q2

m2
¼ 0; (48)

which gives the uncharged Schwarzschild interior solution.
For r0=m < 2 one finds

lim
a!1

q2

m2
¼

�
2� r0

m

�
r0
m
: (49)

This solution is weird in this context. Equation (49) is

FIG. 1. Left: the charge of the star (normalized to the mass) as a function of the radius of the star (normalized to the mass) for a few
values of a in the interval of interest, 1 � a � 4. Right: the mass of the star (normalized to the charge) as a function of the radius of the
star (normalized to the charge) for a few values of a in the interval of interest, 1 � a � 4.
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equivalent to

1� 2m

r0
þ q2

r20
¼ 0; (50)

which shows that, for this branch, when a ! 1 for givenm
and q there are charged solutions in which the radius of the
star r0 is the horizon radius. For 1< r0=m < 2 these are
nonextremal solutions which represent nonextremal regu-
lar black holes with tension matter. For r0=m ¼ 1 these are
extremal solutions which represent extremal regular black
holes with tension matter. Note that these extremal solu-
tions can be obtained from Eq. (41) when one takes the
limit a ! 1 and absorbs the " term into the time coordi-
nate so that BðrÞ is continuous at r0. This a ! 1 branch,
representing regular black holes rather than quasiblack
holes, should be carefully handled and we do not explore
it further here. Regular black holes either with a charged
core [38–41] or with a de Sitter core [42–47] are known,
but with charge and a de Sitter core together, as found here,
seem to have not been explored.

C. Numerical study of relativistic charged stars and
quasiblack holes (or frozen stars): Three typical cases

1. Intervals of a

Although valid for all a > 0, there are some special
intervals in the domain of the parameter a for which the
solutions can be considered more physical. It is known that
the Schwarzschild interior solution, a ¼ 1, having an
incompressible fluid as matter source, yields violation of
the dominant energy condition as well as an infinite speed
of sound cs, i.e., a speed greater than the speed of light,
bringing into question causality issues. Thus, when discus-
sing the interesting intervals of the Guilfoyle parameter a,
which yield what might be considered physical solutions, it
is important to take into account the energy conditions and
the behavior of the speed of sound. It is a straightforward
task verifying that, within a certain range of parameters,
the fluid quantities satisfy the energy conditions for the
whole star, even in the quasiblack hole limit. Let us then
find such a interval.

First we note that the most restrictive conditions arise in
the quasiblack hole limit, and then we study the energy
conditions for this kind of frozen stars. In a charged static
fluid, besides the fluid energy density and pressure, there
are the electromagnetic energy density �em, the radial
electric pressure��em, and the tangential electromagnetic
pressures �em. It is then useful to define the effective
energy density and pressures of the charged fluid by

�effðrÞ � �mðrÞ þ �emðrÞ ¼ �mðrÞ þQðrÞ2
8�r4

; (51)

pr
effðrÞ � pðrÞ � �emðrÞ ¼ pðrÞ �QðrÞ2

8�r4
; (52)

pt
effðrÞ � pðrÞ þ �emðrÞ ¼ pðrÞ þQðrÞ2

8�r4
; (53)

where ‘‘r’’ and ‘‘t’’ in the above definitions stand for radial
and tangential pressures, respectively. Therefore, testing
the energy conditions in the present case leads us to check
inequalities such as
(a) �effðrÞ � 0,
(b) �effðrÞ þ pr

effðrÞ � 0, or equivalently, �mðrÞ þ
pðrÞ � 0,

(c) �effðrÞ þ pt
effðrÞ � 0,

(d) �effðrÞ þ pr
effðrÞ þ 2pt

effðrÞ � 0,
(e) �effðrÞ � jpr

effðrÞj,
(f) �effðrÞ � jpt

effðrÞj, or equivalently, �mðrÞ � jpðrÞj.

These are requirements for the weak energy condition
(WEC) [(a), (b), and (c)], null energy condition (NEC)
[(b) and (c)], strong energy condition (SEC) [(b), (c), and
(d)], and dominant energy condition (DEC) [(e) and (f)].
Condition (a) is promptly verified after Eq. (25).

Condition (b) in the form �mðrÞ þ pðrÞ � 0 implies the
charged fluid satisfies the inequality conditions (c) and (d).
In addition, when the charged fluid satisfies the second
inequality of (f) it also satisfies (e). Therefore, it is conve-
nient to check first the conditions on the matter quantities
�mðrÞ and pðrÞ and some relations between them.
Starting with the matter-energy density �mðrÞ, a numeri-

cal analysis shows that in the case r0=m ¼ 1:000 01 (the
quasiblack hole limit) one has �mðrÞ> 0 for all r if a is in
the interval 0< a & 3:535 23. For 3:535 23 & a � 4,
�mðrÞ is negative in some intervals of r inside the star,
the corresponding (negative) minimum of �mðrÞ moves
toward the center of the star while a increases. For a ¼
4, the minimum value of �mðrÞ shifts to r ’ 0:017 and
becomes very large (negative) but finite. For a > 4, at the
quasiblack hole limit �mðrÞ behaves wildly with r. The
extremal negative value of �mðrÞ becomes arbitrarily large,
moves toward the surface r ¼ r0 as a grows, and eventu-
ally disappears for very large a.
Now we turn to the behavior of the matter pressure pðrÞ

at the quasiblack hole limit r0=m ¼ 1:000 01. It is negative
for all a belonging to the interval 0< a< 1, vanishing for
a ¼ 1 in which case the matter is composed of charged
dust. The pressure pðrÞ is positive in the interval 1< a �
4, reaching a very large finite positive value at a ¼ 4. In the
interval 4< a<1, the behavior of the pressure is as wild
as the energy density �mðrÞ, the difference being that pðrÞ
reaches arbitrarily large positive values at points where the
energy density gets arbitrarily large negative values.
It is also useful to compare �mðrÞ with pðrÞ. For small a

the absolute value of pðrÞ is smaller than �mðrÞ. In par-
ticular, the central pressure is smaller than the central
energy density, the equality pðr ¼ 0Þ ¼ �mðr ¼ 0Þ being
reached at a ¼ ð1þ ffiffiffiffiffiffi

13
p Þ2=9 ’ 2:356 79. For a larger than

that value, the central pressure is always larger than the
central energy density. A more detailed analysis valid for
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any r, not just r ¼ 0, shows that at the quasiblack hole limit
r0=m ¼ 1:000 01, the equality p ¼ �m is reached at a ’
2:326 65, above this value one has pðrÞ>�mðrÞ at some
interval of values of r inside the quasiblack hole or frozen
star. Another quantity of importance involving �mðrÞ and
pðrÞ together is �mðrÞ þ pðrÞ for which we obtain that it is
positive for all stars and for the frozen star if a is in the
interval 0< a � 4.

Finally, let us stress that the analysis was performed for
r0=m ¼ 1:000 01, i.e., in the quasiblack hole limit. On the
other hand, sufficiently sparse stars, r0=m > 1, satisfy all
of the energy conditions for all a.

In summary, after a careful numerical analysis of the
quasiblack hole limit, we can state the following:

(i) For 0< a � 4 conditions (b) and (c) are satisfied for
all r0=m including the quasiblack hole. Therefore,
the charged fluid satisfies the NEC as long as the
Guilfoyle parameter a is in the interval 0< a � 4.

(ii) The WEC requires that conditions (a), (b), and
(c) are satisfied. Hence it is satisfied by all of the
stars and by the quasiblack hole or frozen star if
0< a � 4.

(iii) The SEC requires conditions (b), (c), and (d) to be
satisfied, and so the charged fluid satisfies the SEC
for a in the interval 0< a � 4.

(iv) Conditions (e) and (f) are required by the DEC. A
numerical analysis yields �mðrÞ � jpðrÞj for 0<
a & 2:326 65 and, within this interval of a,
condition (e) is satisfied too. Hence the DEC is
satisfied in the interval 0< a & 2:33, where we
put 2:326 65 ’ 2:33 from here onward.

Now, we analyze the speed of sound. From Eq. (40) we
see that c2s ðrÞ is a monotonically increasing function of the

radial coordinate r. Hence, even if at the center of the star,
the parameters are fixed so that the speed of sound is
smaller than the speed of light, it may happen that csðrÞ
reaches values greater than unity at some point r inside the
star. As the numerical analysis has shown, the restriction
that the speed of sound is at most as large as the speed of
light imposes the strongest bounds on the range of values
of a. Indeed, such an imposition restricts the allowed
values of the parameter a to be in the interval 1 � a �
4=3. This is confirmed by the curves shown in Fig. 2, where
we plot csðrÞ as a function of a � 1, at the center and at the
surface of the star, for several different values of the
parameter r0=m, which represents the compactness of the
star. The curves terminate at a ¼ 1 because dpðrÞ=d�mðrÞ
is negative in the interval 0< a< 1, and so the speed of
sound is not defined in that interval. The value a ¼ 4=3,
shown as a vertical dashed line in Fig. 2, is a critical value
in the sense that for a very sparse star, i.e., in the limit r0 !
1, the speed of sound at the center of the star reaches unity
for a ¼ ac ¼ 4=3. It is also seen from Fig. 2 that, for each
a, the speed of sound at the center of the star strongly
depends on the compactness parameter 	. Interestingly,
more compact stars have smaller speeds of sound at the
center. On the other hand, as seen from the right-hand plots
in Fig. 2, for a in the interval 1 � a � 4=3, the speed of
sound close to the surface of the star is practically the same
for all r0=m.
For each value of the Guilfoyle parameter a there is an

infinity of star solutions, functions of the compactness of
the stars themselves, i.e., functions of r0=m. The parameter
a is related to the pressure: for a < 1, the stars are sup-
ported by tension; for a ¼ 1, the stars have no pressure and
they are Bonnor stars [4–9]; and for a > 1, the stars are

FIG. 2. On the left, the speed of sound at the center of the star, csð0Þ, as a function of the parameter a � 1, for a few different values
of 	 ¼ r0=m. For a in the interval 0< a< 1, the speed of sound is not defined, since dp=d�m < 0. The value ac ¼ 4=3 ¼ 1:33 is
shown as a vertical dashed line. Notice that for a very sparse star, i.e., in the limit r0 ! 1, the speed of sound at the center of the star
reaches unity for a ¼ ac ¼ 4=3. For a ! 1, the Schwarzschild interior solution csð0Þ is infinite at the center. On the right, the speed of
sound at the surface of the star csðr0Þ as a function of the parameter a � 1. The value ac ¼ 4=3 is shown as a vertical dashed line. In all
the cases, i.e., for all values of 	, the speed of sound close to the surface of the star tends to unity at a ¼ ac. For a ! 1, the
Schwarzschild interior solution, the speed of sound is infinite at the surface (in fact the speed of sound in the Schwarzschild interior
solution is infinite throughout the whole fluid region).
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supported by pressure. In detail, a can be divided into the
following intervals: 0< a< 1 yields tension stars; a ¼ 1
yields charged dust stars; 1< a � 4=3 yields stars and
quasiblack holes which obey the energy conditions and
have a speed of sound less than the speed of light; 4=3<
a & 2:33 yields stars and quasiblack holes which obey the
energy conditions and have a speed of sound greater than
the speed of light; 2:33< a � 4 yields stars and quasi-
black holes which obey all the energy conditions but the
DEC and have a speed of sound greater than the speed of
light; and 4 � a � 1 yields normal stars which obey all
the energy conditions but the DEC, but yields no quasi-

black holes. In this latter interval of a the matter behaves as
in the Schwarzschild solution (a ! 1), in the sense that
before the gravitational radius is reached gravitational
collapse ensues.
The interval 0< a< 1 does not interest us here because

it gives tension stars, the value a ¼ 1 yields charged dust
Bonnor stars studied previously, and the interval 4< a �
1 does not yield quasiblack holes and so again is of no
interest here, although very interesting in other contexts.
The intervals of a that yield systems that can be pushed
into quasiblack holes is 1 � a � 4. So, since a ¼ 1 has
been studied in previous works, we will study the interval

FIG. 3. The potentials and fluid quantities for the case a ¼ 1:2. The metric potentials BðrÞ and 1=AðrÞ, and the electric potential �ðrÞ
(left panel) and the fluid quantities �mðrÞ, pðrÞ, and �eðrÞ (right panel). All quantities are plotted in terms of the normalized radial
coordinate r=m, where m is the mass of the star, which is kept fixed, for five values of 	 ¼ r0=m in each graph: 	 ¼ 1:000 01 (solid
line) 	 ¼ 1:2 (space-dashed line), 	 ¼ 1:8 (dashed line), 	 ¼ 2:5 (dotted line), and 	 ¼ 50:0 (dot-dashed line). Notice that the case
	 ¼ 1:2 is not shown for the potentials, the case 	 ¼ 3:5 being shown instead, because the curves of the potentials for 	 ¼ 1:2
practically coincide with the curves for 	 ¼ 1:000 01. The horizontal straight dotted line represents the asymptotic limit of the metric
potentials for large r, BðrÞ ¼ 1=AðrÞ ¼ 1, and �ðrÞ ¼ 0, and is plotted for comparison. The case 	 ¼ 1, which gives q ¼ m ¼ r0, is a
quasiblack hole.
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1< a � 4=3, as well as the intervals 4=3< a & 2:33, and
2:33< a � 4. In order to see the main features of these
charged stars and, in particular, to see the quasiblack hole
limit, we have plotted some important curves for three
typical cases within each interval, namely, a ¼ 1:2, a ¼
1:7, and a ¼ 3. We first verify that the quasiblack hole
limit can be attained, and then we check that in such a limit
the physical quantities related to the charged fluid are well
defined.

2. The interval 1< a � 4=3. Typical case: a ¼ 1:2

The metric and electromagnetic fields, and the fluid
quantities, such as mass density �mðrÞ, charge density
�eðrÞ, pressure pðrÞ, and speed of sound csðrÞ, are well-
behaved functions of the radial coordinate for 1 � a �
4=3, even in the quasiblack hole limit. In fact, we have
numerically analyzed each one of these functions for sev-
eral values of r0=m as functions of the normalized radial
coordinate r=m. Within this interval we analyze the typical
case a ¼ 1:2.

Metric and the electric potentials: The metric potentials
BðrÞ and 1=AðrÞ, and the electric potential �ðrÞ as a
function of the normalized radial coordinate r=m, for the
case a ¼ 1:2, are shown in the left panel of Fig. 3. The
metric potentials BðrÞ and 1=AðrÞ are obtained from
Eqs. (28) and (26), respectively, while �ðrÞ is obtained
using relation (21) with c ¼ 0, and by choosing the con-
stant b so that the potential�ðrÞ is a continuous function at
the surface r ¼ r0. The exterior metric is the Reissner-
Nordström metric, and then the curves for the potential
BðrÞ and 1=AðrÞ tend to unity for large values of the radial
coordinate r=m. We plot the curves for each one of the
potentials for five different values of the normalized radius
of the star 	 ¼ r0=m, namely, 	 ¼ 1:000 01 (solid line),
	 ¼ 1:8 (space-dashed line), 	 ¼ 2:5 (dashed line), 	 ¼
3:5 (dotted line), and 	 ¼ 50 (dash-dotted line). The case
	 ¼ 50 represents a very sparse star and the metric poten-
tials are nearly constant close to unity in the hole region
inside the star. As a consequence, the curves of the poten-
tials in this case are horizontal lines, with �ðrÞ very close
to zero. On the other hand, the electric potential is close to
zero inside the star. It is also seen that for the quasiextremal
case where r0=m ¼ 1:000 01, the quasiblack hole features
show up. Namely, BðrÞ ! " for the whole interior region,
0 � r < r0 and 1=AðrÞ ! " at r ¼ r0.

The fluid quantities: The mass density �mðrÞ, the electric
charge density �eðrÞ, and the pressure pðrÞ as a function of
the normalized radial coordinate r=m are shown in the
right panel of Fig. 3, for the case a ¼ 1:2. As in the case
of the potential functions (see the left panel of Fig. 3), we
plot the curves in terms of the radial coordinate r=m for
five different values of the normalized radius of the star
	 ¼ r0=m, namely, 	 ¼ 1:000 01 (solid line), 	 ¼ 1:2
(space-dashed line), 	 ¼ 1:8 (dashed line), 	 ¼ 2:5 (dot-
ted line), and 	 ¼ 50 (dash-dotted line).

The case 	 ¼ 50 represents a very sparse star and the
fluid quantities are very small and are nearly constant in the
hole region inside the star, with the corresponding curves
being the lowest horizontal lines, almost coinciding with
the horizontal axes line (the bottom line) of the plot. In fact,
such curves do not appear in the graphs. It is also seen that
for the quasiblack hole case, represented in the figures by
the case r0=m ¼ 1:000 01, the fluid quantities assume the
largest possible values. With the chosen value for the
parameter a (1 � a � 4=3), the fluid quantities are con-
tinuous decreasing functions of the radial coordinate inside
the star. The exterior region is given by the Reissner-
Nordström electrovacuum metric. The functions �mðrÞ
and �eðrÞ are truncated at r ¼ r0, resulting in two discon-
tinuous functions at that point which signal the jump into
vacuum. On the other hand, the function pðrÞ is a mono-
tonically decreasing function of r, starting at pð0Þ with the
highest value and reaching p ¼ 0 at r ¼ r0. We also see
that the central pressure pð0Þ increases with the compact-
ness parameter 	 of the star, analogous to the behavior of
the central pressure in white dwarfs, and contrary to the
behavior of the central pressure in main sequence stars.
One can also verify numerically that the energy conditions
listed in the previous section are satisfied within the pa-
rameter space considered here.
Another final physical quantity worthy of numerical

analysis is the speed of sound. The results confirm that
the interesting solutions, for which cs is well defined and
the system preserves causality, are those in which the
parameter a belongs to the interval 1 � a � 4=3. The
curves for csðrÞ as a function of r=m for a ¼ 1:2 are shown
in Fig. 4. The chosen values of the normalized radius of the
star are the same as for the other fluid quantities, as in the
right panel of Fig. 3. The horizontal dot-dashed line is for a
very sparse star, with 	 ¼ 50. The radial dependence of
the speed of sound is not seen because in this case the
radius of the star is too large. The other horizontal line, the

FIG. 4. The speed of sound cs for a ¼ 1:2, as a function of the
normalized coordinate r=m, for five values of 	 ¼ r0=m (from
bottom to top: 	 ¼ 1:000 01, 	 ¼ 1:2, 	 ¼ 1:8, 	 ¼ 2:5, and
	 ¼ 50:0). Notice that the speed of sound is smaller than the
speed of light throughout the star.

QUASIBLACK HOLES WITH PRESSURE: RELATIVISTIC . . . PHYSICAL REVIEW D 81, 124016 (2010)

124016-11



dashed line, indicates the maximum value of csðrÞ close to
the surface of the star in the quasiblack hole case, which is
approximately 0.7. It also can be verified that for a ¼ 4=3
such a maximum value is cs ’ 1, for r very close to r0,
independently of how compressed or how sparse the star is.
In fact, the value of csðr0Þ is the maximum value of the
speed of sound for all the stars within the parameter space
considered in this section. In turn, the minimum value of
csðrÞ occurs at the center of the star.
3. The interval 4=3< a & 2:33. Typical case: a ¼ 1:7

In this section we show the main features of the metric
and electric functions and of the fluid quantities for a
particular case of a in the interval 4=3< a< 2. In this
interval, all the potentials are well-behaved functions of the

radial coordinate for all the stars. The fluid quantities are
also smooth inside the star, and satisfy the energy condi-
tions (see Sec. IVB2). However, the speed of sound may
reach values larger than the speed of light. Within this
interval we analyze the typical case a ¼ 1:7.
The metric and the electric potentials: The general form

of the curves for the metric potentials for a ¼ 1:7 is nearly
the same as for a ¼ 1:2 (see the left panels of Figs. 3 and
5). This is true for all finite values of a in the intervals we
investigated. As seen from Fig. 5 the metric potentials are
more sensible to the radius to mass relation, r0=m, than to
the parameter a. The metric potential BðrÞ in the interior
region decreases slightly with a, indicating that the gravi-
tational field strength increases with a. Similar small
changes are observed also in the metric function AðrÞ.

FIG. 5. The same potentials (left panel) and the fluid quantities (right panel) as in Fig. 3, but here for the case a ¼ 1:7. As above, all
quantities are plotted in terms of the normalized radial coordinate r=m, for five values of 	 ¼ r0=m in each graph, and the same
conventions for the lines are used. Again, the case 	 ¼ 1, which gives q ¼ m ¼ r0, is a quasiblack hole. Notice that the pressure is
larger than in Fig. 3, but it is smaller than the energy density.
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The main changes, even though small too, are in the
electric potential �ðrÞ which, with our choice of positive
charge, increases with a. This indicates a noticeable
change in the central electric charge density.
The fluid quantities: A comparison between the right

panels of Figs. 3 and 5 indicates that even though the fluid
quantities strongly depend on the parameter a, for the
values of a in the interval 4=3< a< 2, the overall behav-
ior of the density and pressure is similar to the case 1 �
a � 4=3. Namely, �mðrÞ, �eðrÞ, and pðrÞ are monotoni-
cally decreasing functions of the radial coordinate.
However, while the central value of the mass density
remains almost the same, the values of the pressure and
of the charge density increase substantially from a ¼ 1:2
to a ¼ 1:7. In particular, the central pressure pðr ¼ 0Þ
increases by a factor of approximately 4. Interestingly,
even though the central charge density increases with a,

FIG. 6. The speed of sound cs, for a ¼ 1:7, as a function of the
normalized coordinate r=m, for five values of 	 ¼ r0=m in each
graph (from bottom to top: 	 ¼ 1:000 01, 	 ¼ 1:2, 	 ¼ 1:8,
	 ¼ 2:5, and 	 ¼ 50:0). The case 	 ¼ 1 is a quasiblack hole.

FIG. 7. The same quantities as in Figs. 3 and 5 are plotted as a function of the normalized coordinate r=m, but here for the case
a ¼ 3:0. The same five values of 	 ¼ r0=m, and the same conventions are used too. As above, the case 	 ¼ 1:2 is not shown in the
plots for the potentials, the case 	 ¼ 3:5 being shown instead. Notice that �mðrÞ does not decrease monotonically toward the surface
r ¼ r0. Note also that the central pressure is larger than the energy density.
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the total charge inside the star decreases slowly with a,
reaching zero as a ! 1 for r0=m � 2 as discussed above.
Moreover, in this interval, the energy conditions are sat-
isfied by all of the stars. On the other hand, the speed of
sound may be greater than the speed of light in some cases.
This fact is illustrated in Fig. 6, where we see that the
curves representing csðrÞ for very compact stars, i.e., for
	 ¼ r0=m small, reach unity at some rwell inside the star.
It is also seen that, for sufficiently sparse stars, i.e., for	 ¼
r0=m large enough compared to unity, the speed of sound is
larger than the speed of light everywhere inside the star.

4. The interval 2:33< a � 4. Typical case: a ¼ 3:0

Here we show the main features of the metric and
electric functions and of the fluid quantities for a particular
case of a in the interval 2:33 � a � 4. In this interval, all
the potentials are well-behaved functions of the radial
coordinate for all the stars. The fluid also is smooth inside
the star, and satisfies the energy conditions (see
Sec. IVB2). However, the speed of sound reaches values
larger than the speed of light and, for the most compact
stars, it diverges at some point inside the star. Within this
interval we analyze the typical case a ¼ 3:0.

Metric and electric potentials: The metric potentials
BðrÞ and 1=AðrÞ, and the electric potential �ðrÞ as a
function of the normalized radial coordinate r=m, for the
case a ¼ 3, are shown in the left panel of Fig. 7. The
general features of the curves are the same as in the case
of the left panel of Figs. 3 and 5, for which a ¼ 1:2 and
a ¼ 1:7, respectively. By comparing the three cases, the
dependence of these potentials upon the Guilfoyle parame-
ter a is now more clearly seen. As a grows, the central
values of the metric potentials BðrÞ and 1=AðrÞ diminish by
a small amount, and the electric potential �ðrÞ grows
substantially when compared to the case a ¼ 1:2. Of
course, because of the normalization used, these changes
are not observed in the quasiblack hole limit.

The fluid quantities: The fact that the fluid quantities
strongly depend on the parameter a is especially noticed
for values of a in the interval 2:33 � a < 4, as seen in the
right panel of Fig. 7. An interesting particularity is that, for
sufficiently large a and small 	, i.e., more compact stars,
the energy density �mðrÞ is not a monotonically decreasing
function of r anymore. As seen in that figure, the curve of
�eðrÞ for the quasiblack hole case oscillates, attaining a
minimum value for some r ¼ rm inside the star. This
happens for all the sufficiently compact stars. Also worthy
of note is the fact that the central value of �mðrÞ does not
depend on a. Meanwhile, the pressure pðrÞ starts from a
relatively high value at the center of the star, and decreases
very fast to zero at the surface. As a consequence, even
though the pressure is always positive and a monotonically
decreasing function of r, the speed of sound increases very
rapidly from the center, diverges at r ¼ rm, and becomes
undefined in the region r > rm. For large a, the central

value of the electric charge density also becomes much
larger than the central energy density. Moreover, for
2:33 & a < 4, the dominant energy condition is not satis-
fied by any one of the stars. In fact, excluding the central
region of very compact stars, the speed of sound is greater
than the speed of light for all the stars. This fact is illus-
trated in Fig. 8, where we see that the curves for csðrÞ are
larger than unity for all r inside the stars.

V. CONCLUSIONS

We have analyzed the class Ia of solutions provided by
Guilfoyle [24]. Such spherically symmetric relativistic
charged fluid distributions are bounded by a surface of
radius r0. The interior region is filled with a fluid charac-
terized by its mass and charge densities and by a nonzero
pressure. The spacetime in the exterior region is repre-
sented by the Reissner-Nordström metric. These global
solutions represent relativistic stars, i.e., relativistic cold
charged spheres with pressure. Besides the mass m (or
charge q, which are related to each other) and the radius
of the star r0, this class of solutions is characterized by
another free parameter, the Guilfoyle parameter a. This
parameter is related to the pressure: for a < 1, the stars are
supported by tension; for a ¼ 1, the stars have no pressure
(they are Bonnor stars); and for a > 1, the stars are sup-
ported by pressure. The interval of the free parameter a can
be fixed in such a way that the fluid satisfies the energy
conditions, and other physical requirements for a relativ-
istic cold star. We have then studied relativistic stars within
the interval 1< a � 4. We have found that these cold stars
show a mixed behavior; in one instance they behave as
main sequence stars, in another instance as white dwarfs.
Indeed, the mass to radius relation of these cold stars is
analogous to the behavior of the mass to radius relation in
main sequence stars and contrary to the mass to radius
relation in white dwarfs, whereas the central pressure of
these cold stars has an analogous behavior to the central

FIG. 8. The speed of sound cs, for a ¼ 3:0, as a function of the
normalized coordinate r=m, for five values of 	 ¼ r0=m in each
graph (from bottom to top: 	 ¼ 1:000 01, 	 ¼ 1:2, 	 ¼ 1:8,
	 ¼ 2:5, and 	 ¼ 50:0). The case 	 ¼ 1 is a quasiblack hole.
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pressure of white dwarfs, and a contrary behavior to the
central pressure of main sequence stars. We have also
shown that, in the interval 1< a � 4, the most compact
configuration is a quasiblack hole with pressure. Thus,
quasiblack holes without pressure (a ¼ 1) studied previ-
ously, as well as quasiblack holes with pressure (1< a �
4) studied here, can be found within the context of general
relativity. As the most compact configuration is a cold star,
it can be called a frozen star.
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São Paulo (FAPESP) and Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico of Brazil
(CNPq) for financial help.

[1] Y. B. Zel’dovich and I. D. Novikov, Relativistic
Astrophysics 1: Stars and Relativity (University of
Chicago, Chicago, 1971), p. 369 (translation from the
1967 Russian edition).

[2] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973), p. 874.

[3] W. Israel, in 300 Years of Gravitation, edited by S.W.
Hawking and W. Israel (Cambridge University Press,
Cambridge, England, 1987), p. 199.

[4] W. B. Bonnor and S. B. P. Wickramasuriya, Int. J. Theor.
Phys. 5, 371 (1972).

[5] W. B. Bonnor, Classical Quantum Gravity 16, 4125
(1999).

[6] J. P. S. Lemos and E. Weinberg, Phys. Rev. D 69, 104004
(2004).

[7] A. Kleber, J. P. S. Lemos, and V. T. Zanchin, Gravitation
Cosmol. 11, 269 (2005).

[8] J. P. S. Lemos and V. T. Zanchin, J. Math. Phys. (N.Y.) 47,
042504 (2006).

[9] J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D 77, 064003
(2008).

[10] A. Lue and E. J. Weinberg, Phys. Rev. D 60, 084025
(1999).

[11] A. Lue and E. J. Weinberg, Phys. Rev. D 61, 124003
(2000).

[12] J. P. S. Lemos and O. B. Zaslavskii, Phys. Rev. D 76,
084030 (2007).

[13] J. P. S. Lemos and O. B. Zaslavskii, Phys. Rev. D 78,
024040 (2008).

[14] J. P. S. Lemos and O. B. Zaslavskii, Phys. Rev. D 78,
124013 (2008).

[15] J. P. S. Lemos and O. B. Zaslavskii, Phys. Rev. D 81,
064012 (2010).

[16] J. P. S. Lemos and O. B. Zaslavskii, ‘‘Quasiblack holes
with pressure: General results’’ (unpublished).

[17] J.M. Bardeen and R.V. Wagoner, Astrophys. J. 167, 359
(1971).

[18] R. Meinel, Classical Quantum Gravity 23, 1359 (2006).
[19] J. P. S. Lemos and O. B. Zaslavskii, Phys. Rev. D 79,

044020 (2009).
[20] H. Weyl, Ann. Phys. (Berlin) 359, 117 (1917).
[21] S. D. Majumdar, Phys. Rev. 72, 390 (1947).
[22] A. Papapetrou, Proc. R. Irish Acad., Sect. A 51, 191

(1947).

[23] J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D 71, 124021
(2005).

[24] B. S. Guilfoyle, Gen. Relativ. Gravit. 31, 1645 (1999).
[25] J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D 80, 024010

(2009).
[26] R. Gautreau and R. B. Hoffman, Nuovo Cimento B 16,

162 (1973).
[27] F. de Felice, Y. Yunqiang, and F. Jing, Mon. Not. R.

Astron. Soc. 277, L17 (1995).
[28] F. de Felice, L. Siming, and Y. Yunqiang, Classical

Quantum Gravity 16, 2669 (1999).
[29] S. Ray, A. L. Espindola, M. Malheiro, J. P. S. Lemos, and

V. T. Zanchin, Phys. Rev. D 68, 084004 (2003).
[30] C. R. Ghezzi, Phys. Rev. D 72, 104017 (2005).
[31] H. A. Buchdahl, Phys. Rev. 116, 1027 (1959).
[32] P. Karageorgis and J. G. Stalker, Classical Quantum

Gravity 25, 195021 (2008).
[33] Y. Yunqiang and L. Siming, Commun. Theor. Phys. 33,

571 (2000).
[34] M.K. Mak, P. N. Dobson, and T. Harko, Europhys. Lett.

55, 310 (2001).
[35] A. Giuliani and T. Rothman, Gen. Relativ. Gravit. 40,

1427 (2008).
[36] C. G. Boehmer and T. Harko, Gen. Relativ. Gravit. 39, 757

(2007).
[37] H. Andreasson, Commun. Math. Phys. 288, 715 (2009).
[38] J.M. Bardeen, in Proceedings of the International

Conference GR5 (Tiflis, USSR, 1968), p 174.
[39] A. Borde, Phys. Rev. D 50, 3692 (1994).
[40] E. Ayón-Beato and A. Garcı́a, Phys. Lett. B 493, 149

(2000).
[41] A. B. Balakin, V. V. Bochkarev, and J. P. S. Lemos, Phys.

Rev. D 77, 084013 (2008).
[42] I. Dymnikova, Gen. Relativ. Gravit. 24, 235 (1992).
[43] D. V. Gal’tsov and J. P. S. Lemos, Classical Quantum

Gravity 18, 1715 (2001).
[44] S. Conboy and K. Lake, Phys. Rev. D 71, 124017

(2005).
[45] K. A. Bronnikov, H. Dehnen, and V.N. Melnikov, Gen.

Relativ. Gravit. 39, 973 (2007).
[46] K. A. Bronnikov and O. B. Zaslavskii, Phys. Rev. D 78,

021501 (2008).
[47] O. B. Zaslavskii, Phys. Lett. B 688, 278 (2010).

QUASIBLACK HOLES WITH PRESSURE: RELATIVISTIC . . . PHYSICAL REVIEW D 81, 124016 (2010)

124016-15

http://dx.doi.org/10.1007/BF00713098
http://dx.doi.org/10.1007/BF00713098
http://dx.doi.org/10.1088/0264-9381/16/12/401
http://dx.doi.org/10.1088/0264-9381/16/12/401
http://dx.doi.org/10.1103/PhysRevD.69.104004
http://dx.doi.org/10.1103/PhysRevD.69.104004
http://dx.doi.org/10.1063/1.2184766
http://dx.doi.org/10.1063/1.2184766
http://dx.doi.org/10.1103/PhysRevD.77.064003
http://dx.doi.org/10.1103/PhysRevD.77.064003
http://dx.doi.org/10.1103/PhysRevD.60.084025
http://dx.doi.org/10.1103/PhysRevD.60.084025
http://dx.doi.org/10.1103/PhysRevD.61.124003
http://dx.doi.org/10.1103/PhysRevD.61.124003
http://dx.doi.org/10.1103/PhysRevD.76.084030
http://dx.doi.org/10.1103/PhysRevD.76.084030
http://dx.doi.org/10.1103/PhysRevD.78.024040
http://dx.doi.org/10.1103/PhysRevD.78.024040
http://dx.doi.org/10.1103/PhysRevD.78.124013
http://dx.doi.org/10.1103/PhysRevD.78.124013
http://dx.doi.org/10.1103/PhysRevD.81.064012
http://dx.doi.org/10.1103/PhysRevD.81.064012
http://dx.doi.org/10.1086/151039
http://dx.doi.org/10.1086/151039
http://dx.doi.org/10.1088/0264-9381/23/4/016
http://dx.doi.org/10.1103/PhysRevD.79.044020
http://dx.doi.org/10.1103/PhysRevD.79.044020
http://dx.doi.org/10.1002/andp.19173591804
http://dx.doi.org/10.1103/PhysRev.72.390
http://dx.doi.org/10.1103/PhysRevD.71.124021
http://dx.doi.org/10.1103/PhysRevD.71.124021
http://dx.doi.org/10.1023/A:1026706031676
http://dx.doi.org/10.1103/PhysRevD.80.024010
http://dx.doi.org/10.1103/PhysRevD.80.024010
http://dx.doi.org/10.1007/BF02749744
http://dx.doi.org/10.1007/BF02749744
http://dx.doi.org/10.1088/0264-9381/16/8/307
http://dx.doi.org/10.1088/0264-9381/16/8/307
http://dx.doi.org/10.1103/PhysRevD.68.084004
http://dx.doi.org/10.1103/PhysRevD.72.104017
http://dx.doi.org/10.1103/PhysRev.116.1027
http://dx.doi.org/10.1088/0264-9381/25/19/195021
http://dx.doi.org/10.1088/0264-9381/25/19/195021
http://dx.doi.org/10.1209/epl/i2001-00416-x
http://dx.doi.org/10.1209/epl/i2001-00416-x
http://dx.doi.org/10.1007/s10714-007-0539-7
http://dx.doi.org/10.1007/s10714-007-0539-7
http://dx.doi.org/10.1007/s10714-007-0417-3
http://dx.doi.org/10.1007/s10714-007-0417-3
http://dx.doi.org/10.1007/s00220-008-0690-3
http://dx.doi.org/10.1103/PhysRevD.50.3692
http://dx.doi.org/10.1016/S0370-2693(00)01125-4
http://dx.doi.org/10.1016/S0370-2693(00)01125-4
http://dx.doi.org/10.1103/PhysRevD.77.084013
http://dx.doi.org/10.1103/PhysRevD.77.084013
http://dx.doi.org/10.1007/BF00760226
http://dx.doi.org/10.1088/0264-9381/18/9/308
http://dx.doi.org/10.1088/0264-9381/18/9/308
http://dx.doi.org/10.1103/PhysRevD.71.124017
http://dx.doi.org/10.1103/PhysRevD.71.124017
http://dx.doi.org/10.1007/s10714-007-0430-6
http://dx.doi.org/10.1007/s10714-007-0430-6
http://dx.doi.org/10.1103/PhysRevD.78.021501
http://dx.doi.org/10.1103/PhysRevD.78.021501
http://dx.doi.org/10.1016/j.physletb.2010.04.031

