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We study the full spectrum of spherically symmetric solutions in the five-dimensional nonprojectable

Horava-Lifshitz type gravity theories. For appropriate ranges of the coupling parameters, we have found

several classes of solutions which are characterized by an AdS5, dS5, or flat large distance asymptotic

behavior, plus the standard 1=r2 tail of the usual five-dimensional Schwarzschild black holes. In addition

we have found solutions with an unconventional short or large distance behavior, and, for a special range

of the coupling parameters, solutions which coincide with black hole solutions of conventional relativistic

five-dimensional Gauss-Bonnet gravity.
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I. INTRODUCTION

A novel quantum gravity model, which claims power-
counting renormalizability, has been formulated recently
by Horava [1]. This scenario is based on an anisotropy
between space and time coordinates, which is expressed
via the scalings t ! bzt and x ! bx, where z is a dynami-
cal critical exponent. For z � 1 the UV behavior of the
model is governed by a nonstandard Lifshitz fixed point,
while for z ¼ 1 we recover the well-known free Gaussian
fixed point. In the Horava model, for three spatial dimen-
sions, the suitable choice is z ¼ 3.

It is worth noting that in the Horava-Lifshitz (HL)
gravity the four-dimensional diffeomorphism invariance
of general relativity is sacrificed in order to achieve
power-counting renormalizability. The action of the model
can be split into a kinetic plus a potential term, which both
respect a restricted (3þ 1) diffeomorphism invariance.
The interesting feature is that the kinetic term contains
only second order time derivatives, while the potential term
consists of higher order spatial derivatives of the metric
components. This particular structure improves signifi-
cantly the UV properties of the graviton propagator, and
renders the model power-counting renormalizable.
Moreover, in this way we avoid ghost modes which are
usual in conventional higher order gravity models.

For the construction of the potential term, there has been
proposed [1] the so-called ‘‘detailed balance principle,’’
which is inspired by condensed matter physics. The main
advantage of this approach is the restriction of the large
number of arbitrary couplings that appear in the bare action
of the model. However, the physical motivation for a
consideration such as the ‘‘detailed balance’’ is not clear
[2,3]. An alternative way for constructing an action is to
include all possible operators which are compatible with

the renormalizability of the model; this implies that all
operators with dimension less or equal to six are allowed in
the action (for the exact form of the action see [3]).
As it has been already mentioned, the HL gravity vio-

lates local Lorentz invariance in the UV, however it is
expected that general relativity is recovered in the IR limit.
This implies a very special renormalization group flow for
the couplings of the model. In particular, the parameter � in
the kinetic term of the action (which measures the depar-
ture from the Lorentz invariance) should flow to unity,
while the higher order couplings should vanish, or they
should become appropriately small, in the IR. Note that,
even though phenomenology suggests a particular IR limit
there is no theoretical study supporting this behavior.
In addition, there are several other possible inconsisten-

cies in HL gravity which have been discussed in several
works. In particular, the absence of full diffeomorphism
invariance introduces an additional scalar mode which can
lead to strong coupling problems or instabilities (see for
example [4–9] and references therein). However, these
problems will not be addressed in the present paper.
Apart from these problems, the HL gravity is an inter-

esting quantum gravity theory, which has stimulated an
extended research on cosmology and black hole solutions
[2,10–28]. In addition to general relativity studies, quan-
tum field theory models in flat space-time with anisotropy
have also been considered [29–39].
Before proceeding it is important to mention that the HL

gravity can be separated into two versions which are
known as projectable and nonprojectable. In the project-
able version the lapse functionN2 depends only on the time
coordinate, while in the nonprojectable version N2 is a
function of both the space and time coordinates.
Although in general relativity the projectable and nonpro-
jectable ansatz for the metric are equivalent, since they are
connected via a diffeomorphism transformation; in the HL
gravity the full diffeomorphism invariance is broken and
they lead to two distinct theories.
Issues connected with broken Lorentz invariance were

studied in the spherically symmetric solutions of 4D HL
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gravity. In the case of detailed balance, such spherically
symmetric solutions were found [11], but they exhibited an
unconventional large distance asymptotic behavior. The
correct Schwarzchild-flat asymptotic behavior can be re-
covered if the detailed balance action is modified in the IR
by a term proportional to Ricci scalar, and the cosmologi-
cal constant term is considered to be zero [12]. A similar
study, in the case of a nonvanishing cosmological constant,
has also been carried out [13]. A generalization to topo-
logical black holes was obtained in [14]. Finally, a system-
atic study of static spherically symmetric solutions of 4D
HL gravity was presented in [15] where the most general
spherically symmetric solution for � � 1 and general cou-
pling parameters was obtained.

In this work we present a full study of spherically
symmetric solutions in the nonprojectable version of the
five-dimensional Horava-Lifshitz gravity, for z ¼ 4. For
the construction of the 5D action we do not use the ‘‘de-
tailed balance principle,’’ but we include all the terms
which are compatible with the renormalizability of the
model. In particular, we can include all spatial curvature
terms with dimension less than or equal to eight. However,
the large number of possible terms, which are allowed in
the action, leads to an equation of motion of great complex-
ity. For this reason we restrict our study only to terms of up
to second order in the curvature. Also, we suppose that in
the IR limit 5D the HL gravity reduces to the 5D general
relativity plus a bulk cosmological constant. A class of
spherically symmetric solutions of the 5D HL gravity has
been considered previously [17], but only for a very spe-
cific choice of the couplings.

Our main motivation in considering static solutions in
5D HL gravity is to investigate whether the rich spectrum
of black hole solutions found in 4D (see Ref. [15]) also
persists in 5D. It seems that the known static solutions of
the HL gravity in 4D with � � 1 do not have any obvious
relation with the corresponding static solutions of the
relativistic 4D gravity. In 5D however we found that there
is a class of spherically symmetric solutions which after a
proper identification of coupling parameters coincide with
the known black hole solutions of conventional relativistic
5D Gauss-Bonnet (GB) gravity.

Static solutions of 5D Gauss-Bonnet theory are well
known [40]. Among them there is a black hole solution
which has two branches (for a review see [41]). The first
branch is referred to as the Einstein branch while the
second as the Gauss-Bonnet branch. Both branches coin-
cide in the Chern-Simons limit for zero gravitational mass.
As we will discuss in the following, we find both branches
of solutions and, in addition, these solutions can also be
obtained for a different combination of coupling parame-
ters of the quadratic curvature terms than the usual combi-
nation that appears in the relativistic Gauss-Bonnet theory.
We also find the black hole solution corresponding to the
Chern-Simons limit with a particular choice of coupling

parameters. This solution has also been found in [17] using
the detailed balance principle.
The paper is organized as follows. In Sec. II we write

down the action of 5D HL gravity. In Sec. III we derive the
equations of motion. In Sec. IV we analyze the static
spherically symmetric solutions for a special choice of
coupling parameters. In Sec. V we study the most general
static spherically symmetric solutions of 5D Horava-
Lifshitz gravity and finally Sec. VI contains our
conclusions.

II. 5D HORAVA-LIFSHITZ GRAVITY MODELS

In this section we introduce the notation for the so-called
Horava gravity models in the case of four spatial dimen-
sions (d ¼ 4). These models are characterized by an an-
isotropy between space and time dimensions

½t� ¼ �z; ½x� ¼ �1; (2.1)

where z is an integer dynamical exponent. In order to
derive the action of the model, it is useful to express the
space-time metric in the Arnowitt, Deser, and Misner form

ds2 ¼ �c2N2dt2 þ gijðdxi � NidtÞðdxj � NjdtÞ; (2.2)

where c is the velocity of light, with dimension ½c� ¼ z�
1, and spatial components dxi=dt (i ¼ 1, 2, 3, 4). In
addition, N and Ni are the ‘‘lapse’’ and ‘‘shift’’ functions
which are used in general relativity in order to split the
space-time dimensions, and gij is the spatial metric of

signature (þ , þ, þ, þ). For the dimensions of lapse
and shift functions we obtain

½N� ¼ 0; ½Ni� ¼ z� 1: (2.3)

In this paper the dynamical exponent z is set equal to 4. The
5D action of the model is constructed from a kinetic plus a
potential term according to the equation

S ¼ 1

16�G5c

Z
dtddx

ffiffiffiffiffiffi
jgj

q
NfLK þLVg; (2.4)

in which d (D ¼ dþ 1 ¼ 5) is the spatial dimension and
G5 is the five-dimensional Newton constant.
We stress that the main motivation for considering mod-

els of this type is the construction of a power-counting
renormalizable gravity model. However, in order to
achieve renormalizibility, and simultaneously keep the
time derivatives up to second order, we have to sacrifice
the standard 5D diffeomorphism invariance of general
relativity, which is now restricted to the transformation

~x i ¼ ~xðxj; tÞ; ~t ¼ ~tðtÞ: (2.5)

The kinetic part in the above Lagrangian of Eq. (2.4) can be
expressed via the extrinsic curvature as
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L K ¼ ðKijKij � �K2Þ;

Kij ¼ 1

2N
f�@tgij þriNj þrjNig;

i; j ¼ 1; 2; 3; 4;

(2.6)

which is invariant under the transformations of Eq. (2.5).
For the construction of the potential term we will not
follow the standard detailed balance principle, but we
will use the more general approach [2,3], according to
which the potential term is constructed by including all
possible renormalizable operators,1 that have dimension
smaller or equal to eight, hence we write

L V ¼ LR þLR2 þLR3 þL�R2 þLR4 þL�R3

þL�2R2 : (2.7)

where the symbol � is defined as � ¼ @i@i (i ¼ 1, 2, 3, 4).
The dimensions of the various terms in the Lagrangian

read

½R� ¼ 2; ½R2� ¼ 4; ½R3� ¼ ½�R2� ¼ 6;

½R4� ¼ ½�R3� ¼ ½�2R2� ¼ 8:
(2.8)

In this work we are mainly interested in the lowest order
operator LR and the operator LR2 , which contains contri-
butions of second order in the curvature:

L R ¼ �0a þ �1aR;

LR2 ¼ �2aR
2 þ �2bR

ijRij þ �2cR
ijklRijkl;

(2.9)

where we have used the notations R, Rij, and Rijkl for the

Ricci scalar, the Ricci, and the Riemann tensors (i, j ¼ 1,
2, 3, 4), which correspond to the spatial 4Dmetric gij. Note

that in the case of three spatial dimensions the term
RijklRijkl is absent, as the Weyl tensor in three dimensions

automatically vanishes. However, in four spatial dimen-
sions this term cannot be omitted from the action.

The first term LR is necessary in order to recover 5D
general relativity with a cosmological constant in the IR
limit. The second termLR2 , includes all possible quadratic
terms in curvature, and becomes important in the short
distance regime of the theory. Moreover, �0a plays the
role of the cosmological constant, while �1a, �2a, �2b,
and �2c are dimensionful coupling constants with dimen-
sions

½�1a� ¼ 6; ½�2a� ¼ ½�2b� ¼ ½�2c� ¼ 4: (2.10)

In the present analysis we ignore higher order Lagrangian
terms of dimension six and eight. Although we have not
derived the detailed expression for the Lagrangian, it is
worth writing some of the higher order curvature terms
here,

L R3 ¼ R3 þ RijR
ijRþ . . . ;

L�R2 ¼ R4 Rþ Rij�Rij þ . . . ;
(2.11)

LR4 ¼ R4 þ ðRijR
ijÞ2 þ . . . ;

L�R3 ¼ R2 4 Rþ . . . ;

L�2R2 ¼ R�2Rþ . . . ; (2.12)

where � ¼ riri. The short distance effects of these terms
may be important, but this topic is left for a future
investigation.
If this model is to make sense, it is necessary that the 5D

general relativity (with a cosmological constant in our
case) is recovered in the IR limit. Although there is no
theoretical proof for this difficult question, we will assume
that the renormalization group flow towards the IR leads
the parameter � to the value one (� ¼ 1), hence 5D general
relativity is recovered. Also, to obtain the Einstein-Hilbert
action

SEH ¼ 1

16�G5

Z
dx0d4x

ffiffiffi
g

p
Nð ~Kij

~Kij � ~K2 þ Rþ �0aÞ;
(2.13)

we have to set �1a ¼ c2, and

~K ij ¼ 1

2N

�
�@0gij þri

�
Nj

c

�
þrj

�
Ni

c

��
; (2.14)

where the timelike coordinate x0 is defined as x0 ¼ ct.

III. EQUATIONS OF MOTION

We are looking for 5D spherically symmetric solutions
of the Horava-type gravity model we constructed in the
previous section. We use the following ansatz2 for the
metric

ds2 ¼ �NðrÞ2dt2 þ f�1ðrÞdr2 þ r2d�2
k; (3.1)

in which r is a radius coordinate that corresponds to the
extra dimension, and d�2

k is the metric of a 3D maximally

symmetric space, where k is the spatial curvature of 3D
hypersurfaces and for k ¼ 1, �1, 0 we have a sphere,
hyperboloid or 3D torus topology correspondingly. In
what follows it is convenient to perform the transformation

fðrÞ ¼ kþ r2ZðrÞ: (3.2)

Then the action of the model to second order in curvature
terms is

1We have ignored the terms which violate parity, see also [3].

2There is a more general ansatz for the metric, of the form
ds2 ¼ �NðrÞ2dt2 þ f�1ðrÞðdrþ NrðrÞdtÞ2 þ r2d�2

k with non-
zero shift NrðrÞ, but we have set NrðrÞ ¼ 0 [15] to simplify the
equations.
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S ¼ 1

16�G5

Z
dtddx

ffiffiffiffiffiffi
jgj

q
NðKijKij � �K2 þ �0a þ �1aR

þ �2aR
2 þ �2bR

ijRij þ �2cR
ijklRijklÞ; (3.3)

which can be put into the form

S

�
NðrÞ; ZðrÞ; dZðrÞ

dr

�
¼

Z þ1

0
drL

�
NðrÞ; ZðrÞ; dZðrÞ

dr

�
;

(3.4)

after we integrate out the angular coordinates, where

L

�
N;Z;

dZ

dr

�
� r3

ffiffiffiffiffiffi
N2

f

s �
P

�
r
dZ

dr

�
2 þMðZÞ

�
r
dZ

dr

�
þQðZÞ

�
;

(3.5)

and the coefficients P, MðZÞ, and QðZÞ are defined by the
equations

P ¼ 3ð3�2a þ �2b þ �2cÞ;
MðZÞ ¼ 6ð12�2a þ 3�2b þ 2�2cÞZ� 3�1a;

QðZÞ ¼ 12ð12�2a þ 3�2b þ 2�2cÞZ2 � 12�1aZþ �0a:

(3.6)

If we set

� ¼ ð3�2a þ �2b þ �2cÞ;
% ¼ ð12�2a þ 3�2b þ 2�2cÞ;

(3.7)

we can reduce the number of the free parameters of the
model. This is possible because of the spherical ansatz for
the metric, as it is given by Eq. (3.1). In we set �1a ¼ 1, by
choosing a coordinate system in which c ¼ 1, we obtain
the simplified expressions

P ¼ 3�; MðZÞ ¼ 6%Z� 3;

QðZÞ ¼ 12%Z2 � 12Zþ �0a:
(3.8)

We note that the coefficient P is independent from r, while
the functions MðZÞ and QðZÞ do not depend explicitly on
the radius r. The Euler-Lagrange equations for the action
(3.4) are

d

dr

�
@L

@N0

�
� @L

@N
¼ 0;

d

dr

�
@L

@Z0

�
� @L

@Z
¼ 0: (3.9)

The first equation of motion, the one for the function ZðrÞ,
reads

P

�
r
dZ

dr

�
2 þMðZÞ

�
r
dZ

dr

�
þQðZÞ ¼ 0: (3.10)

If we algebraically solve the above equation we obtain the
first order differential equations

r
dZ

dr
¼ HðZÞ; (3.11)

where HðZÞ are the solutions of second order algebraic

equation (3.10). For P � 0:

HðZÞ ¼ �MðZÞ þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðZÞ2 � 4PQðZÞp
2P

; (3.12)

where � is a sign. For P ¼ 0 we have only one solution:

HðZÞ ¼ �QðZÞ
MðZÞ : (3.13)

Now we can derive the equation of motion for the function
NðrÞ. If we set

�NðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
NðrÞ2
fðrÞ

s
; (3.14)

we obtain from the second Euler-Lagrange equation in
(3.9):

d �NðrÞ
dr

þ �CðrÞ �NðrÞ ¼ 0;

�CðrÞ ¼
�

1

r4G1

dðr4G1Þ
dr

� G2

rG1

�
; (3.15)

where

G1 ¼ 2P

�
r
dZ

dr

�
þMðZÞ; (3.16)

G2 ¼ M0ðZÞ
�
r
dZ

dr

�
þQ0ðZÞ: (3.17)

Changing variables from r to Z, Eq. (3.15) becomes

d ~NðZÞ
dZ

þ ~CðZÞ ~NðZÞ ¼ 0;

~CðZÞ ¼ 1

HðZÞ
�
4�

~G2

~G1

�
þ 1

~G1

d ~G1

dZ
; (3.18)

where

~G 1ðZÞ ¼ 2PHðZÞ þMðZÞ;
~G2ðZÞ ¼ M0ðZÞHðZÞ þQ0ðZÞ:

(3.19)

Finally, we emphasize that the parameter � does not
appear in the equations of motion, so they only depend on
three parameters: �, %, and the cosmological constant �0a.
This is similar to the 4D case [15]. The reason is that we are
looking for static solutions, hence extrinsic curvature terms
do not contribute to the equations of motion, as they
contain only time derivatives of the metric components.
In addition, note that the parameter � appears only in the
extrinsic curvature part of the action. Therefore, the solu-
tions we will obtain in the following sections will be valid
for arbitrary values of �.
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IV. SPHERICALLY SYMMETRIC SOLUTIONS,
SPECIAL CASES

In this section we study static spherically symmetric
solutions for three special cases of the free coupling pa-
rameters � and %: (a) � ¼ 0 and % ¼ 0, (b) � ¼ 0 and
% � 0, (c) % ¼ 0 and � � 0.

A. No quadratic terms, � ¼ 0 and % ¼ 0

If we set � ¼ % ¼ 0 in Eq. (3.10) we find

r
dZ

dr
¼ �0a

3
� 4Z; (4.1)

from which it follows that

� 3Zþ �0a

4
þ

~C�

r4
¼ 0; (4.2)

or equivalently we take the simple solution

fðrÞ ¼ kþ r2Z ¼ kþ �0a

12
r2 þ

~C�

3r2
; (4.3)

where ~C� is a constant of integration. If we set

�eff ¼ ��0a; � ¼ �
~C�

3
; (4.4)

the above equation takes the well-known form

fðrÞ ¼ k��eff

12
r2 � �

r2
; (4.5)

which is the standard AdS5 (for �eff < 0) or dS5 (for
�eff > 0) or the asymptotically flat (for �eff ¼ 0)
Schwarzschild black hole solution of 5D general relativity
with a cosmological constant.

B. � ¼ 0 and % � 0

If � ¼ 0 Eq. (3.8) implies P ¼ 0, hence Eq. (3.10) can
be written as

r
dZ

dr
¼ �QðZÞ

MðZÞ : (4.6)

In this case the function QðZÞ and MðZÞ can be written as

MðZÞ ¼ �3þ 6%Z; (4.7)

QðZÞ ¼ �0a � 12Zþ 12%Z2; (4.8)

and Eq. (4.6) becomes:

r
dZ

dr
¼ ��0a � 12Zþ 12%Z2

�3þ 6%Z
: (4.9)

Integration of this equation yields:

3%Z2 � 3Zþ �0a

4
þ

~C�

r4
¼ 0; (4.10)

where ~C� is an integration constant which is related to the

mass of the black hole. The algebraic equation (4.10) gives
two solutions

ZðrÞ ¼ 1

2%
þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3� %�0aÞr4 � 12% ~C�

q
6%r2

; (4.11)

where � is a sign (� ¼ �1), so for the function fðrÞ ¼
kþ r2Z we obtain

fðrÞ ¼ kþ r2

2%

�
1þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� %�0a

3

�
� 4% ~C�

3r4

s �
: (4.12)

In what follows we will assume that % ~C� < 0, because for

% ~C� > 0 the range of radius r has a lower bound (r >

rmin). This case will be discussed further in Sec. VB.
From the above equation (4.12) we can extract the large

distance asymptotic behavior for fðrÞ, which reads

fðrÞ ¼ kþ 1

2%

�
1þ �ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� %n0a
p �

r2 � �ffiffiffi
3

p

�
~C�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� %n0a
p

r2
þO

�
1

r6

�
: (4.13)

Note that fðrÞ has a large distance limit only if 3> %n0a,
or else there is an upper bound for the radius r. The
asymptotic formula (4.13) is of the form

fðrÞ ’ k��eff

12
r2 � �

r2
; (4.14)

with

�eff ¼ � 6

%

�
1þ �ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� %n0a
p �

;

� ¼ �ffiffiffi
3

p
~C�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� %n0a
p :

(4.15)

Depending on the values of the free parameters % and �0a,
the asymptotic behavior is either AdS5 (for �eff < 0), or
dS5 (for �eff > 0), or flat (for �eff ¼ 0). Also, note that
½�� ¼ 2. and �eff is an effective 5D cosmological con-
stant. The mass parameter of the black hole, when � ¼
% ¼ 0, is m ¼ ð8�G5Þ�1��2

eff�.

The Euler-Lagrange equations for NðrÞ yield
d ~NðZÞ
dZ

þ ~CðZÞ ~NðZÞ ¼ 0;

~CðZÞ ¼ 1

HðZÞ
�
4�

~G2

~G1

�
þ 1

~G1

d ~G1

dZ
; (4.16)

where

HðZÞ ¼ � QðZÞ
MðZÞ ;

~G1 ¼ MðZÞ;

~G2 ¼ �QðZÞM0ðZÞ
MðZÞ þQ0ðZÞ:

Then we obtain
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~CðZÞ ¼ Q0ðZÞ � 4MðZÞ
QðZÞ ¼ 0;

where we have taken into account Eqs. (4.7) and (4.8) for
MðZÞ and QðZÞ. Finally, we find

NðrÞ2 ¼ fðrÞ: (4.17)

C. Comparing with the 5D Gauss-Bonnet gravity

It is worth noting that the spherically symmetric solu-
tions we obtained in the previous section, for � ¼ 0 and
% � 0, are identical with the corresponding solutions of the
5D relativistic GB gravity. The action of the GB gravity is
given by:

S ¼ 1

16�G5

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffi
jgðDÞj

q
fRðDÞ � 2�þ â Ĝg;

D ¼ 5;

(4.18)

where the GB density Ĝ is

Ĝ ¼ Rð5ÞabcdRð5Þ
abcd � 4Rð5ÞabRð5Þ

ab þ ðRð5ÞÞ2;
a; b; c; d ¼ 0; 1; . . . 4: (4.19)

Note that in the GB gravity, the definition of the symbols

Rð5Þ, Rð5Þab, and Rð5Þabcd is based on the relativistic 5D

metric gð5Þab , where a, b, c, d ¼ 0; 1; . . . 4. In addition, â is

the Gauss-Bonnet coupling and � is the 5D cosmological
constant. The static spherically symmetric solutions of the
GB gravity in AdS space, for D ¼ 5, are of the form

ds2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ r2d�2
k; (4.20)

and

fðrÞ ¼ kþ r2

4â

�
1þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8ân2 þ 8

a�g

r4

r �
;

� ¼ �1; (4.21)

in which �g is a constant of integration which is related

with the mass of the black hole, and the parameter n2 ¼
�2� corresponds to a negative bulk cosmological
constant.

If we replace

â ! %

2
; n2 ! �0a

12
; �g ! �C�

3
; (4.22)

in Eq. (4.21), we recover the black hole solution of
Eq. (4.12) for the specific case � ¼ 0 and % � 0 of the
previous section.

Note, that the condition � ¼ 3�2a þ �2b þ �2c ¼ 0 is
satisfied in the case of GB coefficients �2a ¼ â, �2b ¼
�4â, and �2c ¼ â, but there are other different combina-
tions of the coupling parameters �2a, �2b, �2c which give
� ¼ 0 and % � 0. This is a very interesting result which
merits further investigation. Note also that the relation 1�

%�0a

3 ¼ 0 corresponds to the Chern-Simons limit of GB

gravity.

D. % ¼ 0 and � � 0

If we assume that % ¼ 0, Eqs. (3.8) yield

P ¼ 3�; MðZÞ ¼ �3; QðZÞ ¼ �12Zþ �0a:

(4.23)

By solving Eq. (3.10) we obtain the following two solu-
tions:

r
dZ

dr
¼ 3� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 12��0a þ 144�Z

p
6�

; (4.24)

with � ¼ �1. The above differential equation can be
integrated analytically, to give�
�

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 12��0a þ 144�Z

p � 1

�
e½ð�=3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�12��0aþ144�Z

p
�1�

¼
~C�

r4
; (4.25)

where ~C� is an integration constant.

In this section we are interested only in solutions with

� ¼ 1 and ~C� > 0. The other cases lack a short distance

limit (for details see Appendix A) and hence their inter-
pretation is problematic, as we explain in Sec. VB below.
From Eq. (4.25) we obtain

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 12��0a þ 144�Z

p � 1 ¼ WL

� ~C�

r4

�
; (4.26)

Note that WLðxÞ is the Lambert function, which is defined

as the real solution of the equation eWLðxÞWLðxÞ ¼ x. We
recall some of the properties of this equation: (a) for x <
�1=e it has no real solutions, (b) for �1=e � x < 0 it has
two real solutions and, (c) for x � 0 it has a unique real
solution. In the case (b) we define the function WLðxÞ by
demanding that �1 � WLðxÞ< 0 [the other set of solu-
tions, which lies in the range (�1, �1), is not
considered].
Now, from Eq. (4.26) we find that

ZðrÞ ¼ �0a

12
þ 1

16�

�
W2

L

� ~C�

r4

�
þ 2WL

� ~C�

r4

��
; (4.27)

so we find for the function fðrÞ ¼ kþ r2ZðrÞ:

fðrÞ ¼ kþ �0a

12
r2 þ r2

16�

�
W2

L

� ~C�

r4

�
þ 2WL

� ~C�

r4

��
:

(4.28)

The large r asymptotic behavior of Eq. (4.28) is found to
be

fðrÞ ¼ kþ �0a

12
r2 þ

~C�

8�r2
þO

�
1

r6

�
; (4.29)
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which is of the standard form

fðrÞ ’ k��eff

12
r2 ��

r2
; �eff ¼��0a; �¼�

~C�

8�
:

(4.30)

Now, Eqs. (3.8), (3.18), and (3.19) yield

~CðZÞ ¼ 72�

9� 12��0a þ 144�Z

� �
24�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 12��0a þ 144�Z
p ; (4.31)

where the function ~NðZÞ satisfies the equation
d ~NðZÞ
dZ

þ ~CðZÞ ~NðZÞ ¼ 0: (4.32)

Solving this equation and choosing the constant of inte-
gration appropriately, we get

~NðZÞ ¼ 3e½ð�=3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�12��0aþ144�Z

p
�1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 12��0a þ 144�Z
p : (4.33)

Note that for � ¼ 1 and ~C� > 0, if we take into account

Eqs. (4.26) and (4.33), the function NðrÞ2 can be expressed
in the following closed form:

NðrÞ2 ¼ fðrÞ ~NðZðrÞÞ2 ¼
~C2
�fðrÞ

r8ðW2
Lð

~C�

r4
Þ þWLð

~C�

r4
ÞÞ2

: (4.34)

In the large r regime we find, from the above equation, that

NðrÞ2 ¼ fðrÞ
�
1þ

~C2
�

r8
þO

� ~C3
�

r12

��
; (4.35)

hence in the large distance limit we recover the standard
asymptotic behavior NðrÞ2 ’ fðrÞ.

In Fig. 1 we give a typical plot of the functions fðrÞ and
NðrÞ2 for zero spatial curvature k ¼ 0 and positive effec-
tive cosmological constant �eff ¼ 1. We see that fðrÞ is
finite [in particular fð0Þ ¼ 0] but NðrÞ2 blows up at the
singularity rs ¼ 0. We also see that only when the coupling
� is positive there exists a horizon, while for negative �
there is a naked singularity. In the case of nonzero spatial
curvature the horizon rh is determined by solving equation
fðrhÞ ¼ �k, (k ¼ �1). It is possible to see by inspection
of Fig. 1, that for k ¼ �1, we have the same situation
which holds for zero spatial curvature. Finally, we observe
that fðrÞ and NðrÞ2 tend rapidly to their common asymp-
totic behavior (dS5), as it is expected from the analysis
above [see Eqs. (4.29) and (4.35)].

V. STATIC SOLUTIONS IN THE GENERIC CASE
(� � 0 AND % � 0)

In the generic case, � � 0 and % � 0, we obtain from
Eqs. (3.8), (3.11), and (3.12)

r
dZ

dr
¼ 3�6%Zþ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�12�0a�þ36ð%�4�Þð%Z2�ZÞp

6�
:

(5.1)

If we make the replacement

Z ¼ 1

2%
� y

3
(5.2)

in Eq. (5.1), we find

r
dy

dr
¼ ~HðyÞ; ~HðyÞ ¼ � 1

�
ð%yþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
Þ;
(5.3)

where the new parameters A and B are defined through

A � �3�0a�þ 9�

%
; B � %ð%� 4�Þ: (5.4)

For the computation of the functionNðrÞ, Eqs. (3.8), (3.18),
and (3.19) yield

d ~NðyÞ
dy

� ~CðyÞ ~NðyÞ ¼ 0; (5.5)

where ~CðyÞ is given by the equation

~CðyÞ ¼ �B

%

%yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p
Aþ By2

: (5.6)

In the following sections we analyze two cases for the
parameter B: (1) B � 0, (2) B< 0. The mathematical de-
tails for the derivation of the final formulas for fðrÞ and
NðrÞ are given in Appendix B.

FIG. 1. A typical plot of fðrÞ and NðrÞ2 versus r, in the case of
% ¼ 0 and � � 0, for k ¼ 0, �0a ¼ �1 (positive cosmological
constant), ~C� ¼ 10, � ¼ �0:1 (top) and � ¼ þ0:1 (bottom).
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A. B � 0

By integrating Eq. (5.3) for B � 0 we obtain

j%yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
jj ffiffiffiffi

B
p

yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
j�ð ffiffiffi

B
p

=%Þ ¼
~C�

r4
:

(5.7)

Note, that in this case the parameter A can be positive,
negative, or zero. For the function ~N, we obtain from
Eqs. (5.6) and (5.5)

~NðyÞ ¼
~CNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ By2
p j ffiffiffiffi

B
p

yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p j
ffiffiffi
B

p
=%
; (5.8)

where ~C� and ~CN are constants of integration. Note, that
~C� must be always positive ( ~C� > 0). Also, the constant
~CN is fixed if we demand ~N ! 1 for r ! þ1, as we will
discuss later in this section. An alternative expression for ~N
can be found if we take into account Eqs. (5.7) and (5.8). In
particular, we obtain that

~NðyÞ ¼
�CN

r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p j%yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p j
;

�CN ¼ ~CN
~C�:

(5.9)

For B> 0, two cases for the ratio
ffiffiffiffi
B

p
=%will be discussed3:

(a) j ffiffiffiffi
B

p
=%j< 1 and (b) j ffiffiffiffi

B
p

=%j> 1. The case B ¼ 0 will
also be examined separately in Sec. VC.

1. j ffiffiffiffi
B

p
=%j< 1 and A > 0

For j ffiffiffiffi
B

p
=%j< 1 and A > 0, we can verify that Eq. (5.7)

above has two solutions for y (y1 and y2) for a given value
of the radius r in the range ½0;þ1Þ. Hence, the function
fðrÞ has two branches f1ðrÞ and f2ðrÞ, which are exhibited
in the left part of Fig. 2, when � ¼ 1 for two typical values
of % (% ¼ �10). However, only one of them has a horizon
for zero spatial curvature (k ¼ 0), while the other repre-

FIG. 2. A typical plot of fðrÞ versus r, in the case of k ¼ 0, A ¼ 1, B ¼ 1, ~C� ¼ 1, � ¼ 1. In the left part of the figure the parameter
% equals �10:0 (top), or þ10:0 (bottom), while for the right part of the figure % ¼ þ0:5 (top) and % ¼ �0:5 (bottom).

3Note that if j ffiffiffiffi
B

p
=%j ¼ 1 we have no solution at all.
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sents a spherically symmetric solution with a naked singu-
larity. In addition, as we see in Fig. 2, for % > 0 the black
hole solution is AdS5 asymptotically, while for % < 0 it is
dS5 (note that % should be nonzero in the case we examine
here).

In what follows, we will assume that A > 0, as for
negative A the solutions have no large distance limit4

when j ffiffiffiffi
B

p
=%j< 1, hence they will not be examined here.

In particular for j ffiffiffiffi
B

p
=%j< 1, if we take into account Eq.

(5.7), we obtain
(i) r ! þ1 ) y ! y0 (large distance asymptotic

behavior)
(ii) r ! 0 ) y ! �1 (short distance asymptotic

behavior)
where the plus and minus signs above correspond to the
two branches of the function fðrÞ. In addition,

y0 ¼ �sgn

�
�

%

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

%2 � B

s
(5.10)

is the unique solution of the following equation:

%y0 þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By20

q
¼ 0: (5.11)

If we expand Eq. (5.7) around y0 we can find the large
distance asymptotic behavior for yðrÞ which reads

yðrÞ ’ y0 	 3�

r4
þO

�
1

r8

�
;

� ¼ j%j jy0ð
ffiffiffiffi
B

p � %Þj
ffiffiffi
B

p
=%

3ð%2 � BÞ
~C�;

(5.12)

hence

fðrÞ ¼ kþ r2Z ¼ kþ r2
�
1

2%
� y

3

�
’ fðrÞ

’ kþ
�
1

2%
� y0

3

�
r2 � �

r2
þO

�
1

r6

�
; (5.13)

which has the standard asymptotic behavior, AdS5, dS5, or
flat, depending on the values of the free parameters of the
model. The plus and minus signs in the above asymptotic
formulas give rise to the two branches of the function fðrÞ.

Now, for the function ~NðyÞ, if take into account
Eqs. (5.9) and (5.12), we obtain the following large dis-
tance asymptotic behavior:

~NðyðrÞÞ ’ 1þO

�
1

r8

�
; (5.14)

where the constant of integration ~CN has been set to

~CN ¼ ��%y0jy0ð
ffiffiffiffi
B

p � %Þj
ffiffiffi
B

p
=%; (5.15)

in order to satisfy the condition ~Nðy0Þ ¼ 1.

The asymptotic behavior of Eq. (5.14) is verified graphi-
cally in Fig. 3. We observe that the function NðrÞ2 tends
rapidly to its asymptotic behavior which is identical with
that of fðrÞ, as it is given by Eq. (5.13). Also, we would like
to note, that the above analysis is valid only when A > 0.
For negative A we see that the left -hand side of Eq. (5.7)
cannot vanish [see Eqs. (5.10) and (5.11)], so the radius r
has an upper bound. We conclude that this class of solu-
tions lacks physical interest, since the function fðrÞ has no
large distance limit, so it will not be examined here. The
case A ¼ 0 is also examined separately in Sec. VA4.

2. j ffiffiffiffi
B

p
=%j> 1 and A > 0

In the right part of Fig. 2 we have plotted the function

fðrÞ when j ffiffiffiffi
B

p
=%j> 1 (� ¼ 1, % ¼ �0:5). As we see, in

contrast with the case j ffiffiffiffi
B

p
=%j< 1, now there is only one

branch for the function fðrÞ. However, there is an even
more significant difference, as this class of solutions does
not exhibit the standard AdS5, dS5, or flat asymptotic
behavior, as it is shown in the following analysis. For
negative � (� ¼ �1) the behavior of fðrÞ does not change
significantly, so we do not give a figure for reasons of
space. The asymptotic behavior of fðrÞ, for negative and
positive �, is described in Eq. (5.17) below, and fðrÞ obeys
the same power law for both values of �.
Although we will assume that A > 0, there are also

solutions for negative A in the case j ffiffiffiffi
B

p
=%j> 1. These

solutions do not have any new features, as we comment in
Sec. VA 3.

For j ffiffiffiffi
B

p
=%j> 1 and A > 0, from Eq. (5.7) above, we

obtain
(i) r ! þ1 ) y ! �ðþ1Þ (large distance asymptotic

behavior)

FIG. 3. A typical plot of the two branches of NðrÞ2 versus r, in
the case of B> 0 and j ffiffiffiffi

B
p

=%j< 1, for k ¼ 0, A ¼ 1, B ¼ 1,
~C� ¼ 1, � ¼ 1, and % ¼ 10. We observe that NðrÞ2 ’ fðrÞ
when r ! þ1, as expected.

4For A < 0 and j ffiffiffiffi
B

p
=%j< 1 the left-hand side of Eq. (5.7) is

never zero, so the radius r has an upper bound.
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(ii) r ! 0 ) y ! ��ðþ1Þ (short distance asymptotic
behavior)

where � is a sign defined as � ¼ sgnð%�Þ. Note, that the
left hand side of Eq. (5.7) does not vanish for a finite value
of y (y ¼ y0), the way it did in the previous section.

For the large distance asymptotic behavior of yðrÞ, if we
take into account Eq. (5.7), we find

y ’ C�r
ð4j%jÞ=ð ffiffiffi

B
p �j%jÞ; (5.16)

where the form of the coefficient C� depends on the sign of
the parameter � ¼ sgnð%�Þ, according to the equations:

(i) C� ¼ ð 1
2
ffiffiffi
B

p Þ
ffiffiffi
B

p
=ð ffiffiffi

B
p �j%jÞð

ffiffiffi
B

p þj%j
~C�

Þj%j=ð
ffiffiffi
B

p �j%jÞ, if � ¼ 1

(ii) C� ¼ �ð2
ffiffiffi
B

p
A Þ

ffiffiffi
B

p
=ð ffiffiffi

B
p �j%jÞð

ffiffiffi
B

p þj%j
~C�

Þj%j=ð
ffiffiffi
B

p �j%jÞ, if � ¼
�1.

The leading terms for fðrÞ are

fðrÞ ’ kþ r2

2%
� c�r

2

3
rð4j%jÞ=ð

ffiffiffi
B

p �j%jÞ; (5.17)

which is not the standard asymptotic behavior for a 5D

black hole solution, since it is proportional to r2þ�, � �
4j%jffiffiffi
B

p �j%j > 0, rather than r2. The large distance asymptotic

behavior for the modified lapse function ~NðrÞ, if we take
into account Eqs. (5.9) and (5.16), is

~NðrÞ ’
�CN

C�

ffiffiffiffi
B

p j%þ sgnð%Þ ffiffiffiffi
B

p j r
�4ð ffiffiffi

B
p

=ð ffiffiffi
B

p �j%jÞÞ: (5.18)

We see that ~NðrÞ ! 0 for large r, which implies a violation
of the common large distance asymptotic behaviorNðrÞ2 ’
fðrÞ. Finally, from the above equations (5.17) and (5.18) we
can determine the leading term for the lapse function NðrÞ,
which reads

NðrÞ ’ �
�CN

3
ffiffiffiffi
B

p j%þ sgnð%Þ ffiffiffiffi
B

p j r
ð�6

ffiffiffi
B

p þ2j%jÞ=ð ffiffiffi
B

p �j%jÞ:

(5.19)

We observe that also the lapse function NðrÞ vanishes for
large values of r.

3. j ffiffiffiffi
B

p
=%j> 1 and A < 0

In fact, the solutions for j ffiffiffiffi
B

p
=%j> 1 and A < 0, are a

mixture of solutions that were presented is the previous
two sections. More specifically every solution consists of
two branches. One of them has exactly the same short and
large distance asymptotic behavior with the solutions of
Sec. VA 1. This is mainly due to the fact that the left hand
side of Eq. (5.7) vanishes for a finite value of y. The other
branch is similar to the solutions of Sec. VA 2 but it lacks a
short distance limit. We will not discuss these cases further
since their behavior is similar to the solutions we have
already discussed.

4. B> 0 and A ¼ 0

If we set5 A ¼ 0 (or �0a% ¼ 3) in Eq. (5.7), we find

yðrÞ ¼ C0r
ð4%Þ=ð ffiffiffi

B
p �%Þ;

C0 ¼ �

�
1

2
ffiffiffiffi
B

p
� ffiffiffi

B
p

=ð ffiffiffi
B

p �%Þ�%þ ffiffiffiffi
B

p
~C�

�
%=ð ffiffiffi

B
p �%Þ

;
(5.20)

so we obtain for the functions fðrÞ and N̂ðrÞ:

fðrÞ ¼ kþ r2

2%
� C0

3
r2ðð

ffiffiffi
B

p þ%Þ=ð ffiffiffi
B

p �%ÞÞ; (5.21)

and

N̂ðrÞ ¼
�CN

C2
0

ffiffiffiffi
B

p j%þ ffiffiffiffi
B

p j r
�4ðð ffiffiffi

B
p þ%Þ=ð ffiffiffi

B
p �%ÞÞ: (5.22)

As we see the above solutions exhibit an unconventional
asymptotic behavior which is not of the type AdS5, dS5, or
flat 5D Schwarzschild form.

B. B < 0

For B< 0, if we integrate Eq. (5.3), we find

j%yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� jBjy2

q
jeðð�

ffiffiffiffiffi
jBj

p
Þ=%Þtan�1ðð

ffiffiffiffiffi
jBj

p
yÞ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A�jBjy2

p
ÞÞ

¼
~C�

r4
: (5.23)

Note that in this case the parameter A should be always
positive (A > 0). Equations (5.5) and (5.6) yield

~NðyÞ ¼
~CNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A� jBjy2p eðð�
ffiffiffiffiffi
jBj

p
Þ=%Þtan�1ðð

ffiffiffiffiffi
jBj

p
yÞ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A�jBjy2

p
ÞÞ:

(5.24)

Now, if we use Eqs. (5.23) and (5.24) we can get an
alternative expression for ~N according to the equation

~NðyÞ ¼
�CN

r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� jBjy2p j%yþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� jBjy2p j

: (5.25)

If we take into account the restriction from the square root

in Eq. (5.23), we find that y varies in the finite interval jyj<ffiffiffiffiffi
A
jBj

q
.

In Fig. 4 we have plotted the function fðrÞ, for positive�
(� ¼ 1), two typical values of % (% ¼ 5> 0 and % ¼
�5< 0) and zero spatial curvature k ¼ 0. As we see
fðrÞ consists of two distinct branches f1ðrÞ and f2ðrÞ,
with a dS5 (for % < 0) and AdS5 (for % > 0) large distance
asymptotic behaviors, correspondingly. In contrast with the
previous case (B> 0) the range of radius r terminates at a
lower nonzero bound rmin1 [for f1ðrÞ] and rmin2 [for f2ðrÞ].

5We remind the reader, that we can set A ¼ 0 only when B is
positive or zero.
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For zero spatial curvature, k ¼ 0, we observe that for % <
0 both the two branches have a horizon, while for % > 0we
do not obtain horizons at all. Notice that the lower branch
in the bottom of Fig. 4 may have a horizon if k ¼ �1. In
Fig. 5 we see that the function NðrÞ2=fðrÞ tends to unity as
r tends to infinity, but NðrÞ2=fðrÞ blows up when r !
rmin1;2. We observe that in this case there is an infinite set

of singularity points which lie on a 4D hypersurface of
constant radius rmin1;2. (This situation is to be compared

with the standard case of a black hole solution where the
singularity point is located at the origin.) These solutions
may have a physical relevance in the case where the
singular shell is protected by a horizon, for example, the
branches of fðrÞ with negative % develop a horizon as we
pointed out above.

Also, in Fig. 6, we have plotted the function fðrÞ for
negative � (� ¼ �1) for the same two typical values of %

and k ¼ 0. Note that there are no significant differences if
we compare with the corresponding figure for � ¼ 1
(Fig. 4). However, we see that for negative � only one of
the two branches of fðrÞ possesses a horizon, while the
other exhibits a naked singularity (in fact we have a naked
singular shell).
Although in the above mentioned figures we have used

specific values for the free parameters, our conclusions are
quite general as the values we chose represent a wide range
of the parameter space.
In what follows we try to better understand some of the

properties of the solutions by using the analytical formulas
of Eqs. (5.23) and (5.24) above. First, we would like to
stress that the transcendental equation (5.23) gives two
solutions for y for a fixed value of the radius r, as it may
also be seen in Figs. 4 and 5. In particular the two branches
f1ðrÞ and f2ðrÞ correspond to the two intervals of the
parameter y: (1) ½� A

jBj ; y0� and (2) ½y0; A
jBj�. Now, if we

take into account Eq. (5.23) we find that for large r the
function yðrÞ tends to a constant value, or equivalently that

r ! þ1 ) y ! y0: (5.26)

We note that

y0 ¼ �sgn

�
�

%

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

%2 þ jBj

s
(5.27)

is the unique solution of the equation

%y0 þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� jBjy20

q
¼ 0: (5.28)

Note, that for negative B (B< 0) there is no short distance
limit with r ! 0. We find that r > rmin, where rmin is a
nonzero lower bound for the radius r, which is given by the
equation

FIG. 5. NðrÞ2=fðrÞ versus r, in the case of B< 0, for k ¼ 0,
A ¼ 1, B ¼ �1, ~C� ¼ 1, � ¼ 1, and % ¼ þ5.

FIG. 6. fðrÞ versus r, in the case of B < 0, for k ¼ 0, A ¼ 1,
B ¼ �1, ~C� ¼ 1, � ¼ �1, and % ¼ �5:5.

FIG. 4. fðrÞ versus r, in the case of B< 0, for k ¼ 0, A ¼ 1,
B ¼ �1, ~C� ¼ 1, � ¼ 1, and % ¼ �5 (top), þ5 (bottom).
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rmin ¼
�
~C�1
� j%j

ffiffiffiffiffiffiffi
A

jBj

s ��1=4
e	ðð�

ffiffiffiffiffi
jBj

p
�Þ=ð8%ÞÞ: (5.29)

It turns out that

lim
r!rmin

y ¼ �
ffiffiffiffiffiffiffi
A

jBj

s
: (5.30)

The large distance asymptotic behavior for yðrÞ is obtained
by expanding Eq. (5.23) around y0:

yðrÞ ’ y0 	 3�

r4
þO

�
1

r8

�
;

� ¼ j%j ~C�

3ð%2 þ jBjÞ e
ð
ffiffiffiffiffi
jBj

p
=%Þtan�1ð

ffiffiffiffiffi
jBj

p
=%Þ;

(5.31)

hence for the function fðrÞ we find the corresponding
asymptotic behavior

fðrÞ ’ kþ
�
1

2%
� y0

3

�
r2 � �

r2
þO

�
1

r6

�
; (5.32)

which has the standard AdS5, dS5, or flat asymptotic
behavior, depending on the values of the free parameters
of the model.

For the function ~NðyðrÞÞ, when the radius tends to in-
finity, we find

~NðyðrÞÞ ’ 1þO

�
1

r8

�
; (5.33)

where the constant of integration ~CN has been set to

~CN ¼ ��%y0e
�ð

ffiffiffiffiffi
jBj

p
=%Þtan�1ðjBj=%Þ; (5.34)

to satisfy the condition ~Nðy0Þ ¼ 1.

C. B ¼ 0

Although the special case of B ¼ 0 is included in
Sec. VA1, we present the relevant results separately
here, since fðrÞ can be expressed explicitly as a function
of r. If B ¼ 0 and A > 0, from Eq. (5.1) we obtain

r
dy

dr
¼ � 1

�
ð%yþ �

ffiffiffiffi
A

p Þ: (5.35)

From B ¼ %ð%� 4�Þ ¼ 0 and % � 0, we conclude that
% ¼ 4�, hence the above equation (5.35) can be written as

r
dy

dr
¼ � 4

%
ð%yþ �

ffiffiffiffi
A

p Þ; (5.36)

which yields

y ¼ ��
ffiffiffiffi
A

p
%

	
~C�

%r4
; (5.37)

while for the function fðrÞ we find

fðrÞ ¼ kþ
�
1

2%
þ �

ffiffiffiffi
A

p
3%

�
r2 �

~C�

3%r2
: (5.38)

This has the standard form of a AdS5, dS5, or flat solution.
The above formulas can also be obtained if we set B ¼ 0 in
Eqs. (5.10), (5.12), and (5.13), of Sec. VA1. Finally, from
Eqs. (5.5) and (5.6), choosing suitably the integration
constant, we find that

NðrÞ2 ¼ 1

fðrÞ : (5.39)

It is interesting to note that (at least the positive branch
of) the solution (5.38) coincides, after a proper identifica-
tion of the parameters, with the black hole solutions found
in Lanczos-Lovelock theories [42]. The Lanczos-Lovelock
action is a polynomial of degree ½D=2� (the integer part of
D=2) in the curvature and in 5D it has solutions of the
Schwarzschild-AdS type.

VI. CONCLUSIONS AND DISCUSSION

We studied static spherically symmetric solutions in the
framework of the 5D Horava-Lifshitz gravity. We consid-
ered an action consisting of terms of up to second order in
the curvature and we solve the theory with a nonproject-
able spherically symmetric ansatz for the metric. The black
hole spectrum we found is controlled by three parameters
�, %, and �0a, where �0a is a cosmological constant. The
black hole solutions we found do not depend on the pa-
rameter � which measures the departure from the Lorentz
invariance as it appears only in the extrinsic curvature part
of the action.
We presented a full analysis of 5D Horava-Lifshitz static

solutions scanning the values of the free parameters �, %,
and �0a, which can be positive, negative, or zero. This
analysis comes as a generalization and extension of the 4D
case studied in [15]. More specifically, we obtained three
main sets of solutions: the two special cases (� ¼ 0, % �
0) and (� � 0, % ¼ 0), and the generic case (� � 0, % �
0). In all cases we obtained analytic black hole solutions
which have the standard AdS5, dS5 of flat asymptotic
behavior, plus the well-known 1=r2 tail. However, we
also obtained solutions with an unconventional short and
large distance asymptotic behavior. For example, in the
generic case, we found solutions with an asymptotic fall-
off which is stronger than the AdS5 or dS5 asymptotic
behavior. We have also found solutions (in the cases with
� � 0) in which the asymptotic behavior is the usual one,
but the radius has a lower bound rmin different from zero.
Also, in many cases we obtained solutions with a naked
singularity.
We also found static solutions which, after a proper

identification of coupling parameters, coincide with static
black hole solutions of relativistic gravity theories with
quadratic curvature correction terms. One class of these
solutions consists of the Schwarzschild-AdS black hole
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solutions of five-dimensional Lanczos-Lovelock gravity
theories. Another class of solutions contains the well-
known Gauss-Bonnet black hole solutions. The interesting
result we obtained in our investigation is that the non-
relativistic solutions of the HL gravity corresponding to
the Gauss-Bonnet solutions can be obtained for various
combinations of the coupling parameters � and % and not
just the standard Gauss-Bonnet combination. This may be
attributed to the fact that the HL static solutions are in-
sensitive to the coupling parameter �, so they hold even if
� � 1 (the value which signals the breaking of Lorentz
invariance).

We do not have a full understanding of the quantum UV
structure of the Horava-Lifshitz gravity. The � functions
for the UV marginal couplings have not yet been calcu-
lated, so the claim that in the IR the � ¼ 1 is a fixed point is
an assumption. The fact that a class of our solutions
coincides with relativistic Gauss-Bonnet black hole solu-
tions is suggesting that in the running of couplings towards
the IR, the Gauss-Bonnet regime is reached before the 5D
gravity is attained. After all, the Gauss-Bonnet theory is an
UV correction of 5D gravity.

Important issues remain to be investigated. One of them
is the stability of our solutions. For example, the stability of
the class of solutions we found which coincides with the
Gauss-Bonnet solutions is an interesting issue to be
studied. The stability of the Gauss-Bonnet static solutions
has been extensively studied [43]. It was found in [44] that
one branch of these solutions suffers from ghostlike insta-
bility up to the strongly coupled Chern-Simons limit where
linear perturbation theory breaks down. In our case be-
cause the Lorentz invariance is broken in the UV this
behavior could be different. Therefore, a careful stability
analysis is required.

Other interesting issues are the thermodynamic proper-
ties of our solutions, or the contribution of terms of higher
order in the curvature, which have been omitted in the
present work. It would also be interesting to generalize
the solutions we presented here in the presence of electric
charge.

Finally, one field that our findings can be applied is the
extra-dimensional gravity theories, in particular, the brane
world models. Note that in contrast to the standard vacuum
of Randall-Sundrum [45], the five-dimensional AdS black
hole vacuum does not preserve 4D Lorentz invariance on
the brane, which may have interesting phenomenological
implications [46,47]. For appropriate ranges of the cou-
pling parameters, we have obtained solutions with an AdS5
large distance asymptotic behavior, plus the standard 1=r2

tail of a usual 5D Schwarzschild black hole. These solu-
tions may serve as backgrounds in the framework of brane
worlds models, but now there is additional advantage: the
starting point is a renormalizable theory such as the 5D HL
gravity, in contrast with the 5D General Relativity, which is
nonrenormalizable and requires a UV complement.
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APPENDIX A: ASYMPTOTIC BEHAVIOUR
ANALYSIS IN THE CASE % ¼ 0 AND � � 0

In this appendix we will examine the short and large
distance asymptotic behavior of the solution (4.25) in the
case % ¼ 0 and � � 0. In particular we will examine two
cases (I) � ¼ 1, and (II) � ¼ �1 for the equation

�
�

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 12��0a þ 144�Z

p � 1

�
e½ð�=3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�12��0aþ144�Z

p
�1�

¼
~C�

r4
: (A1)

As we will see, the only interesting case is that for � ¼ 1

and ~C� > 0. The problem in other cases is that ZðrÞ is not
defined on the whole interval ½0;þ1Þ.

1. Case I (� ¼ 1)

Although, the case � ¼ 1 and ~C� > 0 has been exam-

ined in detail in Sec. IVD, we summarize our results here
(i) r ! þ1 ) Z ! �0a

12 (and Z > �0a

12 )

(ii) r ! 0 ) Z ! sgnð�Þðþ1Þ.
For ~C� > 0, we see that ZðrÞ is well defined in the range

½0;þ1Þ.
For � ¼ 1 and ~C� < 0 we find

(i) r ! þ1 ) Z ! �0a

12 (and Z < �0a

12 )

(ii) r ! 0 ) the limit does not exist, as there is a lower
bound r > rmin.

For ~C� < 0, the function ZðrÞ is defined in a range of the

form ½rmin;þ1Þ, where rmin > 0. In both cases the large
distance asymptotic behavior is given by Eq. (4.29) in
Sec. IVD, which is of the standard form

fðrÞ ’ k��eff

12
r2 � �

r2
: (A2)

In addition, for ~C� < 0, the rmin can be determined if we

take into account that the Lambert function has a lower
bound WLðxÞ � �1=e, we then obtain

rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e ~C�

4

q
; (A3)

and

ZðrminÞ ¼ 12��0a � 9

144�
: (A4)

In order to derive the above equation we used that
WLð�1Þ ¼ �1=e.
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2. Case II (� ¼ �1)

For � ¼ �1, from Eq. (A1) we see that the parameter
~C� should be negative, hence we examine only the case
~C� < 0

(i) r ! þ1 ) Z ! sgnð�Þðþ1Þ
(ii) r ! 0 ) the limit does not exist, as there is a lower

bound r > rmin.
We see that for � ¼ �1, the function ZðrÞ is defined in a
range of the form ½rmin;þ1Þ, where rmin and ZðrminÞ are
given by Eqs. (A3) and (A4) above. In addition, the large
distance asymptotic behavior in this case can be estimated
from Eq. (A1) if we keep only the exponential term

ZðrÞ ’ 1

16�
ln

�� ~C�

r4

�
; (A5)

hence

fðrÞ ’ kþ r2
1

16�
ln

��e ~C�

r4

�
; (A6)

while for ~N, from Eq. (4.33), we obtain

~NðZðrÞÞ ’
~C�

3r4 lnð�e ~C�

r4
Þ
: (A7)

We conclude that for � ¼ �1 (and % ¼ 0, � � 0) the
large distance asymptotic behavior is not of the standard
form (A2), so we will not study this class of solutions
further.

APPENDIX B: TECHNICAL DETAILS IN THE
GENERIC CASE (� � 0 AND % � 0)

In this section we present the same mathematical details
for the derivation of the formulas of Eqs. (5.7) and (5.23).
In particular we have to integrate Eq. (5.1)

r
dZ

dr
¼ 3�6%Zþ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�12�0a�þ36ð%�4�Þð%Z2�ZÞp

6�
:

(B1)

In order to perform the above integral we make the replace-
ment Z ¼ 1

2% � y
3 , then we obtain

r
dy

dr
¼ ~HðyÞ; ~HðyÞ ¼ � 1

�
ð%yþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
Þ;
(B2)

where

A ¼ �3�0a�þ 9�

%
; B ¼ %ð%� 4�Þ: (B3)

Note that

�%

2ð%2 � BÞ ¼ 1

8
;

so we have %2 � B ¼ 4%� � 0. For B � 0, we obtain

cþ lnðrÞ ¼ ��
Z dy

%yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p
¼ ��

Z
dy

%y� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p
ð%2 � BÞy2 � A

(B4)

¼ � 1

8
lnjð%2 � BÞy2 � Aj þ ��

Z
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p
ð%2 � BÞy2 � A

;

(B5)

where c is an integration constant. In order to calculate the
second integral in Eq. (B4) separately, we write the corre-
sponding integrand in the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p
ð%2 � BÞy2 � A

¼ 1

%2 � B

�
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ By2
p þ A%2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ By2
p

� 1

ðð%2 � BÞy2 � AÞ
�
: (B6)

For B> 0 we obtain

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p
ð%2 � BÞy2 � A

¼
ffiffiffiffi
B

p
%2 � B

lnj ffiffiffiffi
B

p
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
j

� %

2ð%2 � BÞ ln
��������%y� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ By2
p

%yþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p ��������;

(B7)

while for B< 0 we get

Z
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� jBjy2p

ð%2 þ jBjÞy2 � A
¼ 1

%2 þ jBj

�
ffiffiffiffiffiffiffi
jBj

p
tan�1

� ffiffiffiffiffiffiffijBjp
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A� jBjy2p �

� %

2ð%2 þ jBjÞ

� ln

��������%y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p
%yþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ By2
p ��������;

(B8)

where we have taken into account that

A%2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p 1

ðð%2 � BÞy2 � AÞ

¼ � A%2

ðAþ By2Þ3=2
1

ð1� %2y2

AþBy2
Þ
; (B9)

and the well-known relations
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d

dy

�
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ By2
p �

¼ A

ðAþ By2Þ3=2 ;Z dx

1� x2
¼ 1

2
ln

��������1� x

1þ x

��������; x ¼ %yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p :

(B10)

Moreover, we will use the identity

1

2
ln

��������%y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p
%yþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ By2
p ��������¼ � 1

2
lnjð%2 � BÞy2 � Aj

þ lnj%yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
j:
(B11)

For B> 0 from Eqs. (B4), (B7), and (B11), if we take into
account that %2 � B ¼ 4%�, we obtain

cþ lnðrÞ ¼ �� 1

8
lnjð%2 � BÞy2 � Aj þ �

ffiffiffiffi
B

p
4%

lnj ffiffiffiffi
B

p
y

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
j � �

4
lnj%yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
j;
(B12)

or equivalently

c0 þ lnðrÞ ¼ � 1

4
lnj%yþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
j

þ
ffiffiffiffi
B

p
4%

lnj ffiffiffiffi
B

p
yþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
j; (B13)

where c0 is a new constant which is defined appropriately.
Finally, we obtain

j%yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
jj ffiffiffiffi

B
p

yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

q
j�ð ffiffiffi

B
p

=%Þ ¼
~C�

r4
;

(B14)

where ~C� ¼ ec
0
is the final integration constant which is

related to the mass of the black hole. For B< 0, in a similar
way, if we use Eq. (B8) instead of (B7), we obtain

j%yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� jBjy2

q
jeð�

ffiffiffiffiffi
jBj

p
=%Þtan�1ð%y=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A�jBjy2

p
ÞÞ ¼

~C�

r4
:

(B15)

Finally, for the computation of NðrÞ we use the following
equations:

d ~NðyÞ
dy

� ~CðyÞ ~NðyÞ ¼ 0; (B16)

where ~CðyÞ is given by the equation

~CðyÞ ¼ �B

%

%yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p
Aþ By2

; (B17)

and we find in a similar way, as it is described above, that

~NðyÞ ¼
~CNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ By2
p j ffiffiffiffi

B
p

yþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ By2

p j
ffiffiffi
B

p
=%

(B18)

for B> 0, and

~NðyÞ ¼
~CNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A� jBjy2p eð�
ffiffiffiffiffi
jBj

p
=%Þtan�1ð

ffiffiffiffiffi
jBj

p
y=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A�jBjy2

p
ÞÞ

(B19)

for B< 0, where ~CN is an integration constant.
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