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Much of the progress in the gravitational self-force problem has involved the use of singular

perturbation techniques. Yet the formalism underlying these techniques is not widely known. I remedy

this situation by explicating the foundations and geometrical structure of singular perturbation theory in

general relativity. Within that context, I sketch precise formulations of the methods used in the self-force

problem: dual expansions (including matched asymptotic expansions), for which I identify precise

matching conditions, one of which is a weak condition arising only when multiple coordinate systems

are used; multiscale expansions, for which I provide a covariant formulation; and a self-consistent

expansion with a fixed worldline, for which I provide a precise statement of the exact problem and its

approximation. I then present a detailed analysis of matched asymptotic expansions as they have been

utilized in calculating the self-force. Typically, the method has relied on a weak matching condition,

which I show cannot determine a unique equation of motion. I formulate a refined condition that is

sufficient to determine such an equation. However, I conclude that the method yields significantly weaker

results than do alternative methods.
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I. INTRODUCTION

Perturbation theory is a venerable field of study in
general relativity (GR). In fact, because of the complexity
of the Einstein field equation (EFE), most physically rele-
vant analytical results in GR rely on perturbing away from
a known solution. However, most of the foundational work
in this area has focused only on descriptions of regular
perturbation problems—problems in which a regular
power-series expansion yields a uniform asymptotic ap-
proximation to a true solution. The underlying formalism
of regular perturbation theory in GR has been studied
extensively [1–3], and it has been shown that any regular
asymptotic expansion of the field equations yields a per-
turbative solution that approximates at least one exact
solution, at least locally [4–6].

However, many physically interesting systems must be
modeled as singular perturbation problems—problems in
which a regular power-series expansion fails to provide a
uniform asymptotic approximation. Indeed, one of the
most successful areas of research in GR, post-Newtonian
theory, centers on a singular perturbation problem. As one
would expect, the foundations of that particular problem
have been studied extensively [7,8], and it is now known
that there exist a large class of exact solutions possessing
post-Newtonian expansions [9–12]. But general discus-
sions of singular perturbation theory in GR are lacking;
Kates has provided the only such discussion [13], and his
emphasis was on providing an overview of the geometrical
structure of singular problems, foregoing any discussion of
particular methods.

Along with the post-Newtonian expansion, another
problem of great significance is also singular: the motion
of an asymptotically small body through an external space-

time. This problem will be the primary focus of the present
paper. Study of the point-particle limit is less well devel-
oped than that of the Newtonian limit, and it has typically
focused on proving that at leading order, a small, un-
charged body behaves as a test mass, moving on a geodesic
of the external background spacetime (see, e.g., Refs. [14–
19]). However, in recent years, the advent of gravitational-
wave astronomy has enjoined a need to go beyond the test
particle approximation. Specifically, more accurate ap-
proximations are required to model extreme mass-ratio
inspirals (EMRIs), in which a compact body (such as a
neutron star or black hole) of mass m�M� spirals into a
supermassive Kerr black hole of mass M� ð104–109ÞM�
lying at the center of a galaxy; see Refs. [20,21] for an
overview of these systems. Extreme mass-ratio inspirals
are a potentially important source of wave-signals for the
planned gravitational-wave detector LISA [22], with a
predicted rate of several to 100 detectable events per year
[23,24].
For an EMRI, an expansion in the point-particle limit

roughly corresponds to an expansion in powers of the mass
ratio m=M� ". (For the remainder of this paper, I assume
all variables have been scaled by a global length scale such
as M, such that I can write, e.g., m� ", where " is
dimensionless.) At leading order in a regular expansion,
the small body behaves as a point particle and moves on a
geodesic of the spacetime of the large body. At subleading
order, the metric perturbation generated by the body exerts
a force on it, the dissipative part of which causes it to very
slowly spiral into the large body. The acceleration of this
inspiraling worldline, caused by the body’s interaction
with its own gravitational field, is called the gravitational
self-force. A general, analytical expression for the self-
force in an arbitrary vacuum background spacetime was
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first derived by Mino, Sasaki, and Tanaka [25] and Quinn
and Wald [26]; that expression is now known as the
MiSaTaQuWa equation.

This is a singular perturbation problem for two reasons.
First, near the body, the first-order metric perturbation is
that of a point particle, behaving as a delta function with
support on the particle’s worldline. If the body is anything
other than a black hole, the error in the approximation (i.e.,
the difference between the exact and approximate metrics)
will then be unbounded in a small neighborhood of the
body; and even in the case of a black hole, the expansion
will fail, since the second-order Einstein tensor will con-
tain products of delta functions and hence be ill-defined as
a distribution. Therefore, the approximation breaks down
due to rapid changes, on the length scale�", near the body.
The second reason the problem is singular is the existence
of secular errors (i.e., ones that accumulate over time). If
we use the first-order solution with a point-particle source,
then the Bianchi identity constrains the particle to move on
a geodesic; at higher order in the expansion, this geodesic
worldline is corrected by small deviation vectors [27,28].
But the true path of the small body spirals into the large
black hole, eventually deviating by a very large amount
from the leading-order, geodesic worldline; generically,
the error in the regular expansion will be unbounded on
any time interval ½0; 1="p�, p > 0. Therefore, the approxi-
mation also breaks down due to slow, cumulative changes
over the radiation-reaction time scale trr � 1=". (In an
EMRI, this is the time required for the particle’s energy
and angular momentum to undergo an order-1 change,
since their rate of change is proportional to the self-force,
itself of order ".)

In singular perturbation theory, in order to overcome
these types of errors, one makes use of general expan-
sions,1 of the form

fðx; "Þ ¼ XN
n¼0

"nfðnÞðx; "Þ þOð"Nþ1Þ: (1)

Unlike a regular power-series expansion, here the coeffi-

cients fðnÞðx; "Þ are allowed to depend on "; but they are
nevertheless constrained to be of order 1, in the sense that
there exist positive constants k and "0 such that

jfðnÞðx; "Þj � k for 0 � " � "0, but lim"!0f
ðnÞðx; "Þ 6�0

(unless fðnÞðx; "Þ is identically zero). Put simply, the goal
of a general expansion is to expand only part of a func-
tion’s " dependence, while holding fixed some specific "
dependence that captures one or more of the function’s
essential features. There are two common types of general
expansions: composite expansions and multiscale expan-
sions. The first of these is designed to overcome the failure
of a regular expansion near some submanifold (such as the
position of the small body in an EMRI), while the second is

designed to overcome secular errors (such as the deviation
of the true motion from the leading-order, geodesic
approximation).
Composite expansions are patched together from a finite

number of regular expansions. For example, in the EMRI
problem, if we use a rescaled radial coordinate ~r � r="
near the body, then a regular expansion at fixed ~r could be
accurate on the scale r� ", where an expansion at fixed r
fails; this inner expansion can then be combined with an
outer expansion valid for r� 1, yielding a composite
expansion that is uniformly accurate both near and far
from the body. I will refer to a pair of inner and outer
expansions such as this as dual expansions. One can make
use of dual expansions in a variety of ways, but historically,
they have been used most often in the method of matched
asymptotic expansions, in which the two expansions are
first partially determined in their respective domains of
validity, and then any remaining freedom in them is re-
moved by insisting that they agree in a domain of mutual
validity.2 They were first used in fluid dynamics to analyze
the behavior of a low-viscosity fluid near a boundary. In the
context of GR, since the pioneering work of Burke [29],
who studied the effect of radiation reaction on a post-
Newtonian binary, and D’Eath [16,17], who studied the
motion of black holes, dual expansions have mostly been
utilized for two purposes: determining waveforms by
matching wave-zone expansions to near-zone expansions
(see, e.g., the review [30]), and determining equations of
motion for small bodies by matching an inner expansion
near a body to an outer expansion in a larger region (see,
e.g., [15,31–36]). The latter method, in various forms, has
often been used to derive the MiSaTaQuWa equation
[25,27,28,37,38]. (See Ref. [28] for a more thorough
review.)
Composite expansions are suitable only when the differ-

ent length scales dominate in different regions—e.g., the
metric varies on the short length scale �" near the small
body, while it varies on the background length scale �"0

everywhere else. In contrast, multiscale expansions are
suitable in situations where multiple length scales are
relevant everywhere in the region of interest. These ex-
pansions begin directly with the generalized form (1),

where the coefficients fðnÞðx; "Þ depend on some specific
function of "—for example, in a two-time scale expansion,

fðnÞ is assumed to depend on a time coordinate t and a
slow-time coordinate ~t ¼ "t, which allows the expansion to
capture both short-term and long-term effects. Recently,

1In Ref. [28], I instead used the term ‘‘singular expansions.’’

2My nomenclature is not standard. In most of the literature on
singular perturbation theory, the term ‘‘matched asymptotic
expansions’’ has the meaning that I have here assigned to dual
expansions. However, I have opted to follow the usage in recent
literature on the self-force, which has used the term to refer
specifically to the procedure in which the field equations in the
inner and outer expansions are first solved and then the solutions
are made to match.
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Hinderer and Flanagan [39] have suggested a two-time
scale expansion of the EFE and equation of motion in the
EMRI problem; the method has also been applied to more
restricted expansions of self-forced equations of motion
[40,41].

In addition to these standard expansions, there has been
one further general expansion utilized in the self-force
problem: a self-consistent expansion with a fixed world-
line. In this expansion, rather than allowing a functional
dependence on an "-dependent function from spacetime to
R, such as a slow-time coordinate, one allows a functional
dependence on a function fromR to spacetime. This allows
one to consider a metric perturbation that is a functional of
an exact, "-dependent worldline, bypassing the constraint
that the worldline must be a geodesic at leading order. This
idea underlies the methods of post-Newtonian theory, and
it has been assumed in some form in much of the literature
on the self-force, including in the earliest derivations of the
MiSaTaQuWa equation [25,26]. In Ref. [28], this approach
was first formalized in terms of a systematic approximation
scheme. That scheme makes use of two general expan-
sions: an inner expansion accurate near the small body, and
an outer expansion accurate in the external background
spacetime. In the outer expansion, the metric is treated as a
functional of the exact worldline �, and it is then expanded

while holding that dependence fixed: g ¼ gþ "hð1Þ½�� þ
"2hð2Þ½�� þ . . . . See Ref. [28] for further details. Like a
two-time scale expansion, this fixed-worldline approach
promises to eliminate the secular errors of a regular ex-
pansion; however, the precise relationship between the two
methods remains to be explored.

In this paper, I seek to accomplish two goals. My first
goal is to extend the geometrical description of singular
perturbation techniques. The geometrical picture of regular
perturbation theory in GR is well known; the analogous
description of singular perturbation theory, provided by
Kates [13], is less well known. In Sec. III, I review
Kates’ work and then go beyond it by describing in some
detail the three techniques used in the self-force problem:
dual expansions, multiscale expansions, and the self-
consistent expansion presented in Ref. [28]. I focus on
making precise statements pertaining to these methods,
with the aim of clarifying previous work. With regard to
dual expansions, I identify two matching conditions that
may be used in the method of matched asymptotic expan-
sions—a strong matching condition analogous to the one
used in traditional singular perturbation theory, and a weak
matching condition that arises when working in multiple
coordinate systems. With regard to multiscale expansions,
I provide a covariant description. With regard to the self-
consistent expansion, I extend the discussion of Ref. [28]
by providing an exact formulation of the self-force prob-
lem and a brief discussion of the gauge freedom in the
expansion.

My second goal is to provide a precise formulation of the
derivations of the gravitational self-force using matched

asymptotic expansions. Section IV consists of a new ver-
sion of this derivation, along with detailed analysis and
discussion. Matching was used in some of the earliest
derivations of the MiSaTaQuWa equation [25,37].
Because it can determine the first-order equation of motion
from a first-order outer expansion, it is technically far less
involved than the method of Refs. [15,27,28], which de-
termine the nth-order equation of motion by solving the
field equations to nþ 1st order in a region around the body.
However, as I will discuss, the method as it has been
utilized in the self-force problem has relied on the weak
matching condition, which is too weak to actually deter-
mine an equation of motion. In order to determine an
equation of motion, additional assumptions must be
made. I pinpoint these assumptions and formulate a refined
matching condition. Because of the variety of assumptions
required, I conclude that matching yields weaker results
than one would expect from traditional singular perturba-
tion theory; and it yields weaker results than those obtain-
able through the more laborious approach of
Refs. [15,27,28]. The method can surely be improved,
the number of assumptions reduced, but such improvement
may prove more difficult than using alternative methods.
Before proceeding to these two goals, I begin in Sec. II

with a review of traditional singular perturbation methods
in applied mathematics. Such a review is warranted both to
develop the concepts required in the later sections and to
make the basics of the theory more widely known. More
detailed overviews of the subject can be found in numerous
textbooks (e.g., Refs. [42–46]). Among these, the text by
Kevorkian and Cole [44] covers the broadest range of
topics, and the text by Eckhaus [46] provides the most
rigorous treatment.

II. TRADITIONAL SINGULAR PERTURBATION
THEORY

I begin by defining some useful notation. First, I define
the following order symbols: for x 2 Rn,
(i) fðx; "Þ ¼ Oð�ð"ÞÞ if there exist positive constants k

and "� such that jfðx; "Þj � kj�ð"Þj for fixed x and
0 � " � "�.

(ii) fðx; "Þ ¼ oð�ð"ÞÞ if lim"!0
fðx;"Þ
�ð"Þ ¼ 0 at fixed x.

(iii) fðx; "Þ ¼ Osð�ð"ÞÞ if fðx; "Þ ¼ Oð�ð"ÞÞ and
fðx; "Þ � oð�ð"ÞÞ.

For example, 5"þ 2"3=2 ¼ Oð"Þ ¼ 2"3=2, 5"þ 2"3=2 �

oð"Þ ¼ 2"3=2, and 5"þ 2"3=2 ¼ Osð"Þ � 2"3=2.
In general, we are concerned with the asymptotic be-

havior of functions, rather than the behavior of functions
evaluated at particular locations. This means we need a
norm appropriate for a function. Also, a central issue in
perturbation theory is whether or not an approximation is
uniformly accurate in a region of interest, where uniform-
ity is defined as follows:
(i) fðx; "Þ ¼ Oð�ð"ÞÞ uniformly in a region D if there

exist positive constants k and "� such that
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jjfðx; "ÞjjD � kj�ð"Þj for 0 � " � "�, where
jj � jjD ¼ supx2Dj � j.

Analogous definitions hold for o and Os. These definitions
provide a more useful measure of the asymptotic behavior
of a function.

Finally, I define several important asymptotic quantities:
relative to an asymptotic sequence f�nð"Þg, where
�nþ1ð"Þ ¼ oð�nð"ÞÞ,

(i) fðx; "Þ is an Nth-order asymptotic approximation of
fðx; "Þ ¼ Osð1Þ if fðx; "Þ � fðx; "Þ ¼ oð�Nð"ÞÞ,3

(ii) fðx; "Þ is an Nth-order asymptotic solution to a dif-
ferential equation D½fðx; "Þ� ¼ 0 if D½fðx; "Þ� ¼
oð�Nð"ÞÞ,

(iii) fðx; "Þ ¼ P
N
n¼0 �nð"ÞfðnÞðx; "Þ, where fðnÞðx; "Þ ¼

Osð1Þ, is an Nth-order asymptotic series. If fðnÞ is
independent of ", then the series is said to be regular
(sometimes called Poincaré type); if not, then it is
general. If, in addition, f is an asymptotic approxi-
mation to f, then it is an Nth-order asymptotic ex-
pansion of f.

The most common asymptotic sequence is f"ng, which I
will use almost exclusively in this paper. Note that we are
typically uninterested in whether or not an asymptotic
series converges as N ! 1. In fact, even if f is an asymp-
totic series that both converges and asymptotically approx-
imates f, the function that it converges to might not be f.

In any given perturbation calculation, one almost always
calculates an asymptotic solution to an equation.
Determining whether or not an asymptotic solution is
also an asymptotic approximation to an exact solution is
typically far more difficult. It is, however, an essential step
in proving the reliability of an expansion, because an
asymptotic solution may not be an asymptotic approxima-
tion to an exact solution (more pathologically, an asymp-
totic approximation may not be an asymptotic solution
[42]).

General asymptotic expansions are a powerful tool for
solving singular perturbation problems, which are defined
by the failure of a regular expansion to provide a uniform
approximation. This failure is often signaled by a change
of character in the governing differential equation when
" ! 0; for example, a hyperbolic equation might degener-
ate into a parabolic equation. The inaccuracy of a regular
expansion is also frequently signaled by its failure to
satisfy a given boundary condition, or by the expansion
growing without bound in a system that we have reason to
believe should be bounded. Typically, the underlying ori-
gin of the failure is the presence of distinct length scales,
one of which appears only for " > 0. Often, this means that
the exact solution to a problem is singular at " ¼ 0. Hence,
in singular perturbation problems, we assume that " 2
ð0; "��, which allows us to take the limit " ! 0, but which

prevents us from setting " ¼ 0. In this section, I consider
two types of systems: first, systems in which the exact
solution undergoes a rapid change near a submanifold;
second, systems in which rapid changes occur throughout
the region of interest. In the first type of system, dual
expansions can be used to construct a uniform general
expansion; in the second type, a multiscale expansion
can be used.
Before proceeding, I define two final pieces of notation.

c � and c � denote, respectively, the push-forward and
pullback corresponding to a map c . So, for example, if f
is a function of coordinates x, and ~x ¼ c ðxÞ, then c �f is
the function rewritten in terms of ~x. �N

" f denotes the Nth-
order regular asymptotic expansion of f in the limit of small
", holding fixed the coordinates of which f is a function.

A. Dual expansions

Dual expansions are typically used to solve boundary
value problems in which the solution exhibits rapid change
in a very small region (or a finite number of such regions).
The regions of rapid change are referred to as boundary
layers. Frequently, this rapid change prevents a regular
expansion from satisfying a given boundary condition,
though a ‘‘boundary layer’’ can sometimes arise away
from any boundary. The usual means of solving these
problems is to make use of two regular expansions: an
inner expansion fin that is expected to be valid in the
boundary layer, and an outer expansion fout that is ex-
pected to be valid outside of it. Suppose we have a one-
dimensional problem with coordinate r, and that the
boundary layer is at r ¼ rb and has a thickness ��ð"Þ.
Then the outer expansion is simply a regular series at fixed
r, and the inner expansion is a regular series at fixed values
of the rescaled coordinate ~r � ðr� rbÞ=�ð"Þ; this can be
written as c ":r � ~r. The inner expansion allows us to
capture changes over the length scale �ð"Þ, since ~r is of
order unity when the original coordinate r is of order �ð"Þ.
Note that if we treat the problem on a two-dimensional
plane with coordinates ðr; "Þ, then the inner and outer
expansions can be visualized as expansions along flow
lines defined by r ¼ constant and r=" ¼ constant, as
shown in Fig. 1.
For simplicity, suppose that rb ¼ 0 and that boundary

data is given at r ¼ 0 and r ¼ 1. In this case, the outer
expansion typically fails to satisfy the boundary condition
at r ¼ 0, but it can be made to satisfy the condition at r ¼
1; conversely, the inner expansion can satisfy only the
condition at r ¼ 0. This leaves each of the expansions
underdetermined. The basic idea of dual expansions is to
fully determine them by insisting that they agree in some
region of mutual validity. Suppose that fin is an Nth-order
asymptotic approximation of f in a regionDin, and fout is an
Nth-order asymptotic approximation in a regionDout. Then
by definition, f� fin ¼ oð�Nð"ÞÞ in Din and f� fout ¼
oð�Nð"ÞÞ in Dout. Subtracting the second equation from

3In the case fðx; "Þ ¼ Osð�kð"ÞÞ, functions would be rescaled
by �kð"Þ before making comparisons.
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the first, we have the overlap matching condition:

fout � fin ¼ oð�Nð"ÞÞ in Dout \Din: (2)

Note that this condition relies on the existence of the
overlap region Dout \Din. If that region is empty, then the
condition is vacuous. And it may not be obvious that such a
region ever exists, since the inner expansion trivially ap-
pears to be valid only for ~r� 1, and the outer expansion
only for r� 1. However, if foutðrÞ is a uniform asymptotic
approximation to fðrÞ on an interval ½a; 1� for constant a,
then it is also a uniform approximation on the extended
interval ½�ið"Þ; 1� for some �ið"Þ ¼ oð1Þ; similarly, if finð~rÞ
is a uniform approximation to fð~rÞ on ½0; b�, then it is a
uniform approximation on the extended interval
½0; 1=�jð"Þ� for some �jð"Þ ¼ oð1Þ [45,46]. If we have

access to the exact function f, then we can explicitly
determine the overlap of these extended regions. But in a
typical application, without access to an exact solution, we
must make use of the overlap hypothesis, which states that
the overlap region exists. In order to implement the overlap
matching condition, one then simply assumes that the
constructed asymptotic series of a given order are asymp-
totic approximations of the same order, and one then takes

the overlap region to be the region in which fout � fin ¼
oð�Nð"ÞÞ.
In this paper, I will not make direct use of the overlap

matching condition. Instead, I will use a second, simpler
matching condition, which I will refer to as the coefficient-
matching condition:

�k
"c

��m
" c �f ¼ �k

"c
��m

" c ��m
" f: (3)

In this matching condition, we match results term by term
in the expansions. On the left-hand side we have the inner
expansion (�m

" c �f) written as a function of r (via c �) and
then expanded in the outer limit; on the right-hand side, we
have the outer expansion (�m

" f) written as a function of ~r
(via c �) and expanded in the inner limit, and then rewritten
as a function of r and re-expanded. (The right-hand side
requires an extra expansion in order to remove terms that
would appear as higher-order terms in the inner expansion.
Refer to Appendix A for an illustrative example.) We can
write this schematically as

�"finðrÞ ¼ �rfout; (4)

meaning that when the inner expansion is re-expanded for
small " at fixed r, and the outer expansion is re-expanded
for small r at fixed ", the two results must agree term by
term. We can then, for example, equate coefficients of
"nrm on the left- and right-hand sides.
If we define the buffer region by the inequalities

" 	 r 	 1,4 this equation states that the inner and outer
expansions must agree term by term when they are both
expanded in the buffer region. In other words, if the exact
solution is expanded first for small " at fixed r=" (yielding
an inner expansion), and then expanded at fixed r (or in
other words, for r 
 "), it must agree, term by term, with
the result of expanding first for small " at fixed r and then
expanding for r 	 1.
From the perspective of the inner limit, the buffer region

lies at asymptotic infinity (~r ! 1); from the perspective of
the outer expansion, it lies asymptotically close to r ¼ 0.
From this we can intuit a still simpler matching condition,
which I will call the asymptotic matching condition:

lim
~r!1f

ð0Þ
in ¼ lim

r!0
fð0Þout; (5)

where fð0Þin and fð0Þout are the leading-order terms in, respec-

tively, the inner and outer expansions.
The three matching conditions I have discussed are

obviously related. In fact, one can derive the asymptotic
matching condition and (a condition similar to) the
coefficient-matching condition from the overlap hypothe-
sis. However, one should realize that the overlap hypothe-

FIG. 1. Upper: inner limit (dashed curves) and outer limit
(dotted curves) in the ðr; "Þ plane. Lower: the same limits in
the ð~r; "Þ plane. The inner limit is defined by " ! 0, ~r ¼ r="
fixed; the outer limit, by " ! 0, r fixed. From the perspective of
the inner limit, the outer limit sends all points to infinity (~r !
1). From the perspective of the outer limit, the inner limit sends
all points to zero (r ! 0).

4In the applications of matched asymptotic expansions in GR,
the meanings that I have assigned to the terms ‘‘overlap region’’
and ‘‘buffer region’’ are often conflated, and the terms are often
used interchangeably. For the sake of clarity, I distinguish
between the two.
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sis is merely sufficient to arrive at those two matching
conditions: it is not necessary. Functions exist that do not
satisfy the overlap hypothesis but nevertheless satisfy the
coefficient-matching condition, for example [46].

Once a matching condition has been used to fully de-
termine the inner and outer expansions, one can construct a
composite expansion that is uniformly accurate on the full
domain of the problem. This expansion consists of the sum
of the inner and outer expansions, minus the terms that are
common to both in the buffer region. Explicitly,

fcomp ¼ �m
" fþ c ��m

" c �f� c ��m
" c ��m

" f; (6)

which we can write schematically as

fcomp ¼ fout þ fin ��rfout: (7)

Note that this is a general asymptotic expansion of the formP
n�nð"ÞFðnÞðr; r=�ð"ÞÞ.
The matching conditions presented here can be used in a

variety of ways. Most traditionally, in the method of
matched asymptotic expansions, the inner and outer solu-
tions are determined as far as possible using the governing
differential equation and boundary conditions, and then
they are fully determined by imposing a matching condi-
tion. However, one can instead begin with the matching
conditions to restrict the general form of one or the other of
the expansions, or to develop a general expansion in the
buffer region. In Appendix A, I illustrate the method of
matched asymptotic expansions with a simple example.
For further information on dual expansions, see
Refs. [45,46].

B. Multiscale expansions

In some systems, rather than a rapid change occurring
near a submanifold, rapid changes occur over the entire
region of interest (in other words, the ‘‘boundary layers’’
are dense in the region). When studying these systems, one
cannot form a uniform approximation by making use of
regular expansions in separate regions and then combining
them. Instead, one must assume a general expansion from
the start.

Suppose for simplicity that the rapid changes occur on a
scale �1, and the slow changes occur on a scale �1=",5

and that we seek an approximation to fðt; "Þ that is uniform
on the time interval ½0; 1="�. Then we proceed by introduc-
ing a fast time variable � ¼ �ðt; "Þ and a slow time

variable ~t ¼ ~tðt; "Þ satisfying @�
@t ¼ !ðt; "Þ and @~t

@t ¼
" ~!ðt; "Þ, where ! and ~! are uniformly Osð1Þ; changes in
� are of the same order as changes in t, while ~t changes
appreciably only after t changes by a very large amount.
(In the simplest case, we have� ¼ t and ~t ¼ "t.) We invert

the transformation in order to write the frequencies as
functions of the slow time alone: !ð~t; "Þ and ~!ð~t; "Þ. I
next note that while setting ! ¼ 1 will lead to large errors
on a time scale 1=" (consider, for example, attempting to
approximate cosðtþ "tÞ by cost), setting ~! ¼ 1 will lead
to large errors only on extremely long time scales outside
our range of interest. Hence, I will take the slow time to be
given by ~t ¼ "t. The remaining frequency, !, must be
determined over the course of the calculation. To make
such a goal feasible, I assume ! possesses a regular

expansion
P

n�0�nð"Þ!ðnÞð~tÞ.
I next assume that fðt; "Þ can be written as a function

Fð�;~t; "Þ, and that F possesses a regular expansion: that is,

f ðt; "Þ ¼ Fð�; ~t; "Þ ¼ X
n

�nð"ÞFðnÞð�;~tÞ: (8)

Suppose f is to satisfy some differential equation D½f� ¼ 0.
After making the substitution fðt; "Þ ¼ Fð�;~t; "Þ, we use
the chain rule to convert derivatives with respect to t into
the sum of partial derivatives d

dt ¼ !ð~t; "Þ @
@� þ " @

@~t . We

then arrive at a partial differential equation in terms of �
and ~t. Now, the essential step in a multiscale expansion
consists of treating � and ~t as independent variables at this
point; that is, F is taken to be a solution to the partial
differential equation (PDE) for arbitrary values of � and ~t.
Given this assumption, after substituting the expansions for
F and !, we can solve the equation by setting the coeffi-
cient of each �n to zero. If I did not assume thatF solves the
equation for arbitrary � and ~t, then the " dependence
scattered throughout �ðt; "Þ and ~tðt; "Þ would prevent us
from solving the equation in this manner.
Treating� and ~t as independent is equivalent to working

on an enlarged manifold with coordinates ð�;~t; "Þ. The
solution manifold on which f lives is a submanifold defined
by � ¼ �ðt; "Þ and ~t ¼ ~tðt; "Þ. (See Fig. 2 for an illustra-
tion in the simple case where � ¼ t and ~t ¼ "t.)
Determining ! can be viewed as a step in determining
this submanifold; in fact, we can note that the transforma-
tion from the extrinsic coordinates x� ¼ ð�;~t; "Þ to the
intrinsic coordinates ya ¼ ðt; "Þ defines a set of basis vec-
tors e�a on the submanifold, given by e�t ¼ ð!; "; 0Þ and
e�" ¼ ð@"�; t; 1Þ.
Because we are provided with sufficient boundary data

for an ordinary differential equation (ODE), rather than for
a PDE, we must place some constraints on the function F.
The most commonly imposed constraint is the nonsecular-
ity condition, which says that integration constants must be
chosen such that any secularly growing term vanishes.
Other possible constraints include the demand that each

coefficient FðnÞð�; ~tÞ is a periodic function of �, and the
demand that each coefficient be unique. Obviously, one
must apply such constraints judiciously and systematically.
Of course, this procedure relies on a host of assump-

tions. There is no guarantee that the exact solution f pos-
sesses an asymptotic expansion of the form (8); and even if

5One could rescale the variables such that the rapid changes
occur on the scale �" and the slow changes on the scale �1, to
accord with the description of a region dense with boundary
layers.
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it does, there is no guarantee that the terms in the expansion
will necessarily solve the equation for arbitrary � and ~t.
However, this method is extremely successful in practice.
If one instead assumes a regular expansion, then the de-
pendence of f on ~t will be expanded in powers of "t. These
powers of t will eventually grow large, such that terms
initially supposed to be high order become as large as the
lower-order terms, preventing the expansion from provid-
ing a uniform approximation. In many cases, one can avoid
this secular growth by using a rigorous method of averag-
ing, which removes the rapid time dependence and recov-
ers only the leading-order slow time dependence. However,
if one requires the fast time dependence as well, then the
two-time method offers the most powerful means of doing
so.

In Appendix B, I illustrate the above ideas with an
example. In that example, I demonstrate that even if the
assumptions of the multiscale expansion fail at some order,
the lower-order solution can still yield a uniform asymp-
totic approximation; in addition, the failure of the assump-
tions is made manifest over the course of the calculation.
For further information on multiscale expansions, see
Ref. [44].

C. Singular versus regular perturbation theory

We should now take note of the essential differences
between regular perturbation techniques and singular per-
turbation techniques. When a regular expansion of an exact
solution f is substituted into a differential equation D½f� ¼
0, the coefficients in the expansion are guaranteed to solve
a hierarchy of differential equations, simply by setting the
coefficients of each power of " to zero. Hence, when
constructing a regular series solution to a differential equa-
tion, one can determine each term in the solution solely

from the given differential equation (and its attendant
boundary conditions). But a general expansion of an exact
solution is not guaranteed to satisfy any such hierarchy,
because the coefficients in the expansions depend on ".
Hence, when constructing a general series solution to a
differential equation, one must impose some extra condi-
tions upon it—e.g., satisfying the overlap hypothesis in the
method of matched asymptotic expansions, or satisfying a
PDE rather than an ODE in the method of multiple
scales—which are not guaranteed to be satisfied given
only the form of the general expansion.
This means that proving general properties of solutions

is much more difficult using singular perturbation theory.
In regular perturbation theory, one can construct proofs of
the form ‘‘given an exact solution to such and such a
boundary value problem, if it possesses a regular asymp-
totic expansion then that expansion has such and such
behavior’’; in singular perturbation theory, we must append
further hypotheses to this statement. However, if we seek a
very strong statement about the solution to a problem, we
must in any case go beyond the form of such a proof: we
must also prove that the exact solution actually does pos-
sess the assumed expansion. This is a difficult feat regard-
less of whether the assumed expansion is regular or
general. While it is usually easier in the case of regular
expansions, techniques do exist for handling singular per-
turbation problems (see Ref. [46] for examples).
Furthermore, general expansions provide asymptotic solu-
tions where regular series cannot, and they provide uniform
asymptotic solutions. Hence, in most cases of interest, their
advantages far outweigh any disadvantages.

III. PERTURBATION THEORY IN GENERAL
RELATIVITY

In GR we typically do not begin with a predetermined
manifold with predetermined boundary conditions that
uniquely determine an exact solution. Instead, the manifold
is (mostly) determined by the leading-order ‘‘background’’
solution to the Einstein equations. Within that manifold,
we define boundary conditions that uniquely determine the
perturbations. This somewhat complicates the problem, but
it also makes the assumptions of singular perturbation
theory more reasonable: since we do not seek an approxi-
mation to a unique exact solution to a given boundary value
problem, but only an approximation to some exact solution
to the EFE, it is eminently reasonable to impose the
supplementary conditions required to construct general
expansions.

A. Regular perturbation theory

Before describing singular perturbation theory in GR, I
will briefly review regular perturbation theory. In its most
geometric description, the formalism begins with a five-
dimensional manifoldN carrying a five-dimensional met-
ric g0�� of signature ð0;�;þ;þ;þÞ and a non-negative

FIG. 2. In a multiscale expansion, we work on a manifold of
larger dimension than that on which the original problem is
posed. The solution is eventually evaluated on the submanifold
defined by ~t ¼ "t, shown here in grey.
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scalar field ":N ! R. The manifold is foliated by four-
dimensional submanifolds M" defined by d" ¼ 0, such
thatN �M" � R. When restricted to act on dual vectors
tangent to M", g

0�� can be inverted, inducing a four-
dimensional Lorentzian metric g". Each member of the
family of metrics fg"g is taken to be an exact solution of
Einstein’s equation at fixed ". A regular expansion of the
pair ðM"; g"Þ is an expansion around a known ‘‘base’’ pair
ðM0; g ¼ g0Þ. This expansion is performed by first defin-
ing a one-to-one relationship between points on M0 and
M" via a diffeomorphism ’":M0 ! M", called an iden-
tification map. This map induces a flow on N with a
tangent vector field X that is nonvanishing and nowhere
tangent to the submanifolds M". (Note that one could
instead begin with a vector field and derive from it an
identification map, but beginning with the identification
map will be more useful in formalizing general
expansions.)

In this context, the regular expansion g" ¼ gþP
n�1"

nhðnÞ is given by an expansion along the flow in-
duced by X:

��
"ðg"Þ ¼ e"LXgjM0

; (9)

where ��
"g" is the pullback of g" onto the base manifold

M0, and LX is the Lie derivative along the vector X. The
background metric and the perturbations of it have clear
geometrical interpretations: the background metric g is the
restriction of g" to the submanifold defined by " ¼ 0; the

first-order perturbation "hð1Þ � "ðLXgÞj"¼0 is the product
of the ‘‘distance’’ " along a flow line and the rate of change
of g in the direction of the flow; and so on.

A choice of gauge corresponds to a choice of identifica-
tion map’". A different choice, say c ", leads to a different
tangent vector field Y, which in turn leads to a change

c �
"ðg"Þ ���

"ðg"Þ ¼ ðe"LY � e"LX ÞgjM0
: (10)

By expanding the exponentials, one finds that this induces

changes hðnÞ ! hðnÞ þ�hðnÞ. At first and second order, the
changes are given explicitly by

�hð1Þ ¼ L�ð1Þg; (11)

�hð2Þ ¼ 1
2ðL�ð2Þ þL2

�ð1Þ ÞgþL�ð1Þh
ð1Þ; (12)

where �ð1Þ � ðY � XÞj"¼0 and �ð2Þ � ½X; Y�j"¼0 are vector

fields in the tangent bundle of M0. Note that �ð1Þ and �ð2Þ
are linearly independent, so they can be chosen indepen-
dently. In terms of coordinates, they correspond to the
near-identity transformation

x� ! x0� ¼ x� � "��
ð1Þ þ 1

2"
2ð��

ð1Þ;	�
	
ð1Þ � ��

ð2ÞÞ þOð"3Þ;
(13)

where the components on the right-hand side are in the
original coordinates x�. We say that the vectors �ðnÞ are the

generators of the gauge transformation. (See Ref. [3] for
the precise meaning of this phrase.)

B. Singular perturbation theory

Although singular perturbation techniques have been
utilized in many calculations in GR, the only formal de-
scription of them was provided by Kates [13]. I will review
his description in this section, before extending it in the
following sections. A singular perturbation problem is
characterized by the limit " ! 0 being singular: g" may
not exist at " ¼ 0, the topology or dimension of M" may
change between " ¼ 0 and " > 0, etc. This means that the
five-dimensional manifold N does not in general contain
a base manifold M0; instead, it is given by N �M" �
ð0; "��. Hence, one cannot generically build an approxima-
tion on the limiting manifold by finding derivatives of the
exact metric at " ¼ 0. Instead, one works on a ‘‘model
manifold’’ MM, on which one constructs a family of
approximate solutions

gMð"Þ ¼ gð"Þ þ X
n�1

"nhðnÞð"Þ: (14)

The topology of the model manifold is taken to be compat-
ible with the leading-order metric gð"Þ. If there exists an
identification map ’":MM ! M", which maps a region
UM  MM to a region U"  M", such that gMð"Þ uni-
formly approximates ’�

"g" in the region UM as " ! 0,
then gMð"Þ is a uniform asymptotic approximation (as
measured in some suitable norm) to the exact solution in
the region U". Once again, the identification map induces
a family of curves in the five-dimensional manifold N ,
but these curves will not, in general, continue smoothly to a
base manifold M0.
As an example, consider a post-Newtonian expansion,

which is singular [7,36,47,48]. The Newtonian limit is
given by " ¼ v=c ! 0, where v is the supremum of the
velocities in the system. In this limit, the light cones of the
spacetime fold out into spatial surfaces, and the time
components of the metric blow up—alternatively, if we
consider the inverse metric, we see that its time compo-
nents vanish, such that it degenerates into a three-
dimensional spatial metric. Hence, we can infer that the
manifold defined by " ¼ 0 corresponds to the three-
dimensional spatial manifold of Newtonian theory.6 In
this case, the model manifold and background metric are
taken to be those of Minkowski spacetime.
In the next two subsections, I formulate dual expansions

and multiscale expansions within this framework. The
description of dual expansions follows that given by
Kates [13], which built on the work of D’Eath [16,17];
however, I more carefully formulate the matching condi-

6The singular nature of the Newtonian limit is also signaled by
the fact that hyperbolic wave equations become elliptic Poisson
equations as the speed of gravity’s propagation becomes infinite.
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tions, specifically stressing the distinction between the
strong matching condition (used in traditional singular
perturbation theory) and a weak matching condition (often
used in GR). My discussion of multiscale expansions is
original to this work.

In the final subsection, I formulate the self-force prob-
lem as a free-boundary value problem. I then discuss
means of solving the problem within the context of a
self-consistent expansion with a fixed worldline.

C. Dual expansions

Though most of the description in this section carries
over to a more general situation, I will restrict it to the
pertinent case of a family of exact solutions g" containing a
body of mass �", on a family of manifolds M". In this
section, I only sketch the formalism of inner and outer
limits for this system; in Secs. III E and IV, I provide
further discussion of concrete applications of these limits.

Suppose that we are given two coordinate systems on
M": a local coordinate system X� ¼ ðT; R;�AÞ that is
centered (in some approximate sense) on the small body,
and a global coordinate system x�. For example, in an
EMRI, the global coordinates might be the Boyer-
Lindquist coordinates of the supermassive Kerr black
hole (though we could consider the case in which both
coordinate systems are centered on the small body); the
local coordinates might be Schwarzschild-type coordinates
for the small body. The local coordinates cover some
region DI around (and possibly inside) the body, while
the global coordinates cover a larger region DE outside the
body. Assume, without loss of generality, that the two
coordinate systems have overlapping domains, and that
they are related by a map �":x

� � X� in the region D ¼
DI \DE.

A regular outer expansion gEðx; "Þ ¼ gðxÞ þ "hð1ÞðxÞ þ
. . . is constructed by taking the limit " ! 0 at fixed x�. In
this limit, the body shrinks toward zero size as all other
distances remain roughly constant. For simplicity, I assume
that this limit continues to a base manifold M0. However,

the limit certainly does not exist on a remnant curve �ð0Þ
corresponding to the ‘‘position’’ of the small body—for
example, if one takes a regular limit of the Schwarzschild
metric in Schwarzschild coordinates, then there is no limit
defined at coordinate values corresponding to r ¼ 0.
Hence, I take the model manifold in the outer expansion

to be ME ¼ M0 [ �ð0Þ, and I take the external back-
ground metric to be g ¼ g0. Of course, this construction
is not essential; the model manifold need not be defined by
setting " ¼ 0 in this way. But at the very least, for the outer
expansion to be regular, we require g ¼ lim"!0g.

A regular inner expansion gIð ~X; "Þ ¼ gBð ~XÞ þ
"Hð1Þð ~XÞ þ . . . is constructed by taking the limit " ! 0
at fixed values of the scaled coordinates ~X� ¼ c ðX�Þ ¼
ððT � T0Þ="; R=";�AÞ. This limit is naturally singular: it
follows flow lines that converge at a single point defined by

ðT ¼ T0; R ¼ 0Þ in ME. Explicitly, since the metric writ-
ten in these coordinates has the form g� "2gB�	d ~X

�d ~X	,

all distances vanish at " ¼ 0. As discussed by D’Eath [17]
(see also Ref. [27]), to make the limit regular, one must use
the conformally rescaled metric ~g" � "�2g". This rescal-
ing effectively ‘‘blows up’’ the distances in spacetime, such
that as " ! 0, the size of the small body remains constant
while all other distances are sent to infinity; thus, the inner
limit serves to ‘‘zoom in’’ on a small region around the
body. The background spacetime defined by " ¼ 0 is then
defined by the metric gB of the isolated small body, and the
approximation is built on a model manifold MI with the
topology of that spacetime.7

The outer and inner expansions are related to the exact
solution via identification maps ’E:ME ! M" and
’I:MI ! M", which, respectively, identify points on
ME and MI with points on M". (See Fig. 3.) These
two identification maps induce a map �:ME ! MI,
given by � ¼ ’�1

I � ’E, which has the identical coordi-
nate description as the original transformation �" between
the global and local coordinates. Gauge transformations in
the outer and inner expansions are generated by vector

fields ��ðxÞ and ~��ð ~XÞ, which take their respective values
in the tangent bundles of ME and MI. Note that a gauge
transformation in the outer expansion generically corre-
sponds to a finite coordinate transformation in the inner
expansion, due to the rescaling of the coordinates.
A uniform composite expansion is formed on a model

manifold M�M" by cutting out a portion of ME and
stitching part ofMI into the excised region. The local and
global coordinates each cover a patch of M, identified
with the patches DI and DE on M" via the maps ’I and
’E. The uniform metric is constructed on this manifold by
adding together the inner and outer approximations in each
coordinate system, then removing any ‘‘double-counted’’
terms that appear in both metrics.
How would one go about constructing such a uniform

approximation if one did not have access to an exact
solution? Just as in traditional perturbation theory, one
would construct two separate asymptotic solutions to
Einstein’s equation, but now in possibly two different
coordinate systems and on possibly two different mani-
folds. If one assumes that the two asymptotic solutions are
approximations of a single exact solution, and if there
exists an overlap region on the manifold M in which
both approximations are valid to the same order, then
they must agree in that overlap region. In this case, ‘‘agree-
ment’’ is defined by the existence of the unique map� that

7Note that MI generically differs from ME. Consider, for
example, the case of a small black hole orbiting a large black
hole. The manifold MI possesses a singularity at the position of
the small black hole but is otherwise smooth, while the manifold
ME possesses a singularity at the position of the large black hole
but possesses a smooth worldline where the small black hole
should be.
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relates the two expansions. As usual, we will not worry
about a specific overlap region, but instead expand the two
solutions in the buffer region.

However, before performing that expansion in the buffer
region, one must write gI and gE in the same coordinate
system. Let us choose this system to be the local coordi-
nates X�. Then, adapting Eq. (3), the matching condition
reads

�k
""

2c ��m
" "

�2c �gðXÞ ¼ �k
""

2c ��m
" "

�2c ����m
" gðxÞ:

(15)

On the left, we begin with the exact metric in the local
coordinates X�. It is then expanded tomth order in an inner
expansion, by transforming into scaled coordinates ~X� via
c (along with an appropriate conformal rescaling) and
expanding. Next, it is expanded in the buffer region by
re-expressing it in the unscaled local coordinates and ex-
panding to kth order; this is equivalent to an expansion of
the inner solution for R 
 ". On the right-hand side of the
equation, we begin with the exact metric in the global
coordinates x�. It is expanded to mth order in those coor-
dinates, yielding an outer expansion. It is then transformed
to the starting point of the left-hand side, by transforming
to the local coordinates via �, then to the scaled local
coordinates via c , then re-expanding to mth order to yield
an inner expansion. Finally, it is expanded in the buffer
region by transforming back to the unscaled local coordi-
nates and re-expanding. The content of this equation is that
the expansion in the buffer region must be the same
whether it is obtained by first performing an outer expan-
sion or by first performing an inner expansion.
Schematically, we can write

�"gIðXÞ ¼ �R��gE; (16)

which states that if the inner and outer expansions are
written in the same coordinate system, then they must yield
the same expansion in the buffer region.
But this is decidedly not the matching condition that has

been used in practice. Instead, what has been done in
practice is the reverse: first, expand the two solutions in
the buffer region, and only afterward find the coordinate
transformation between them. This is accomplished by
setting up a second local coordinate system Y� ¼
��ðx�Þ ¼ ðt; r; 
AÞ centered on a worldline � in ME; for

example, these might be Fermi normal coordinates, and in
the case of regular expansions, they would be centered on

�ð0Þ. The outer expansion is then written in these local
coordinates and expanded for small r, under the presump-
tion that r� R. After performing this expansion (and the
expansion of gI in the buffer region), one seeks a unique
transformation �buf:Y

� � X� that maps the buffer-region
expansion of gE into the buffer-region expansion of gI.

8

Schematically, we can write

�"gIðXÞ ¼ �buf��r���gE: (17)

On the left, the inner expansion gI is expanded in the buffer
region in the local unscaled coordinates X�. On the right,
the outer expansion gE is transformed to the local coordi-
nates Y� via ��, then it is expanded in the buffer region

(i.e., for small r). Hence, the two buffer-region expansions
are written in two different coordinate systems: the inner
expansion in the coordinates X�, and the outer expansion
in the coordinates Y�. So, in order to make a comparison,
as the final step on the right-hand side, the buffer-region
expansion of gE is transformed to the coordinates X� via
�buf�. In short, Eq. (17) states that if gI and gE are
expanded in the buffer region, then the resulting expan-
sions must be related by a coordinate transformation.
I will call Eq. (15) the strong matching condition and

Eq. (17) the weak matching condition. The weak condition
follows from the strong condition, but not vice versa, and
one can easily imagine situations in which the weak con-
dition would be satisfied while the strong condition would
not. In the weak matching condition, because the metric is
already expanded for small r before �buf is determined,
�buf will itself be written as an expansion. Thus, the weak
matching condition only requires an asymptotic approxi-
mation of �buf (or, equivalently, of � ¼ �buf ���). Of

course, one can only ever determine an asymptotic ap-
proximation—but in the strong matching condition, the
approximation is for small ", rather than for both small "
and small r. This essentially reduces �buf to a gauge
transformation in the buffer-region expansion defined by

FIG. 3. Regular inner limit (dashed curves) and outer limit
(dotted curves) on the manifold N �M" � ð0; "��. The inner
limit is generated by the map ’I from the manifold MI on
which the interior background metric of the isolated small body
lives; these curves terminate at a point ðT ¼ T0; R ¼ 0Þ on �ð0Þ.
The outer limit is generated by the map ’E from the manifold
ME on which the external background metric lives. The external
manifold in this case is taken to be equal toM0 [ �ð0Þ. The gray
region is a surface of constant ~R, which converges to the
"-independent worldline �ð0Þ.

8One can see that if everything is correct, the various trans-
formations must be related as � ¼ �buf ���.
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R (or r) and " both being small. As mentioned above, a
gauge transformation in the outer expansion corresponds to
a finite coordinate transformation in the inner expansion,
and vice versa. Hence, any choice of gauge onME must be
compatible with the choice of background coordinates on
MI (and vice versa). The two matching conditions insist
on this compatibility to differing extents.

One should note that though the description in this
section makes use of two regular expansions, as in tradi-
tional matched asymptotic expansions, the same general
description holds for two general expansions. The only
differences are that g � lim"!0g and that there is no
need to conformally scale the metric to arrive at the inner
expansion. This is particularly important if one wishes to
allow the internal metric to vary on its ‘‘natural’’ time scale
~T � 1 (i.e., the time scale determined by the mass of the
small object). If the metric near the body varies on this time
scale, then in the unscaled coordinate time T ¼ " ~T, the
metric will have a functional dependence on the combina-
tion T=", which will be singular in the limit " ! 0. Thus, if
both the expansions are to be regular, the internal metric
can vary only on the external time T, corresponding to an
internal slow evolution depending only on " ~T. In other
words, regularity requires that the internal solution varies
quasistatically (see D’Eath’s discussion [17]). Of course,
for " > 0, one could construct a general inner expansion
that is identical to the regular inner expansion by rescaling
R only, instead of both T and R, and then simply assuming
the inner expansion varies quasistatically; using this
method, a global-in-time expansion can be constructed,
and the metric is never conformally rescaled. Also, by
using this method, one can remove the quasistatic assump-
tion entirely.

Finally, before moving to the next singular perturbation
technique, I will note that just as in traditional singular
perturbation theory, there is a distinction between what I
have called the overlap region and the buffer region. The
buffer region corresponds simply to " 	 R 	 1. In order
for us to express the outer solution in terms of the field R,
the buffer region must lie within the region D, where both
the local and global coordinate systems apply, but the size
of the region is independent of the order of accuracy of the
inner and outer solutions. As discussed in
Refs. [15,27,28,33,36], one can extract considerable infor-
mation about the metric—and, in particular, equations of
motion for the small body—by working entirely within the
buffer region, without ever constructing explicit inner and
outer solutions or making use of an overlap hypothesis.
This information is typically extracted by defining the
mass and current moments of the body in the buffer region,
which is possible because the buffer region lies at asymp-
totic infinity from the perspective of the inner expansion.
Solving the Einstein equation then determines the evolu-
tion of these moments. In particular, an evolution equation
for the body’s mass dipole informs us of the motion of the

body’s center of mass relative to the chosen local coordi-
nate system, providing an equation of motion for the body.

D. Multiscale expansions

In the method of multiple scales, changes on both short
and fast time scales occur throughout the spacetime. Thus,
one cannot construct a uniform asymptotic approximation
based on combining only two limit processes. If we con-
sider a two-time scale expansion, with a fast time t and a
slow time ~t ¼ "t, there are only two limits that can be
easily envisioned: the slow-time limit " ! 0 at fixed ~t,
which follows a congruence of curves in N that tend
toward t ! 1 as " ! 0; or the fast-time limit " ! 0 at
fixed t, which follows a congruence of curves that tend
toward ~t ! 0. However, in a multiscale expansion, both
quantities are to be kept fixed. As discussed above, this is
accomplished by treating them as independent variables.
Consider the case of an expansion that holds fixed both a

set of coordinates x� and some scalar field �ðx; "Þ satisfy-
ing @�

@x� ¼ oð1Þ:
g ðx; "Þ ¼ gðx; �Þ þ X

n�1

"nhðnÞðx; �Þ: (18)

In the simplest case, � is equal to the product of " and one
of the coordinates. When substituting this multiscale ex-
pansion into Einstein’s equation, one would treat � and x�

as independent coordinates on an extended, five-

dimensional manifold ~M"; these five-dimensional mani-
folds are stacked atop one another to form a six-

dimensional manifold ~N �M" � R2. The limit " ! 0
is taken at fixed values of both � and x, and the actual
solution is obtained by restricting the expansion to the
submanifold defined by � ¼ �ðx; "Þ.
As in traditional perturbation theory, one might require a

fast-time variable � that differs from the given coordinate
time. Indeed, one might use any coordinates one likes on
~M". To provide some flavor of the expansions, in this
section I will define gauge transformations and sketch a
multiscale expansion of the EFE for the simple case with
coordinates ðx�; �Þ; I will occasionally provide details
given the additional simplifying assumption @�� ¼
"V�ðx; �Þ for some V� ¼ Osð1Þ.
Note that the gauge transformations in this expansion

differ from those of a regular expansion. Gauge transfor-
mations are generated by transformations of the form

x� ! x0� ¼ x� � "��ðx; �Þ þOð"2Þ; (19)

where � ¼ Osð1Þ. In order to determine the effect of this
transformation, I expand the Lie derivative as

L � ¼ Lð0Þ
� þLð1Þ

� ; (20)

where, e.g., for a vector �ðx; �Þ and a tensor T�
�ðx; �Þ,

L ð0Þ
� T�

� ¼ �� @T
�
�

@x�
� T�

�

@��

@x�
þ T�

�

@��

@x�
; (21)
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Lð1Þ
� T�

� ¼ �� @T
�
�

@�

@�

@x�
� T�

�

@��

@�

@�

@x�

þ T�
�

@��

@�

@�

@x�
: (22)

These definitions are independent of the behavior of � . But
in the particular case that @�� ¼ "V�ðx; �Þ, the gauge

transformation generated by a vector "�ðx; �Þ can be writ-
ten as

�hð1Þ ¼ Lð0Þ
� g; (23)

�hð2Þ ¼ 1
2L

ð0Þ
� Lð0Þ

� gþLð0Þ
� hð1Þ þLð1Þ

� g: (24)

Similarly, I expand the covariant derivative as

r�V
�ðx; �Þ ¼ ðrð0Þ

� þrð1Þ
� ÞV�ðx; �Þ; (25)

where r� is compatible with gðx; �ðx; "ÞÞ, rð0Þ
� is compat-

ible with g at fixed � , andrð1Þ
� is compatible with g at fixed

x. Explicitly,

rð0Þ
� V�ðx; �Þ ¼ @V�

@x�
þ �ð0Þ�

��V
�; (26)

rð1Þ
� V�ðx; �Þ ¼ @V�

@�

@�

@x�
þ �ð1Þ�

��V
�; (27)

where the Christoffel symbols are given by

�ð0Þ�
	� ¼ 1

2
g��

�
@g�	
@x�

þ @g��

@x	
� @g	�

@x�

�
; (28)

�ð1Þ�
	� ¼ 1

2
g��

�
@g�	
@�

@�

@x�
þ @g��

@�

@�

@x	
� @g	�

@�

@�

@x�

�
:

(29)

The ‘‘correction’’ rð1Þ
� ensures that the total covariant

derivative r� is compatible with the � dependence of g.

Note that all three derivatives are metric compatible:rg ¼
0, rð0Þg ¼ 0, and rð1Þg ¼ 0.

By writing the Lie derivative in terms of the covariant
derivative, we can express the gauge transformation gen-
erated by a vector field "�ðx; �Þ as

�hð1Þ�	 ¼ 2rð0Þ
ð��	Þ; (30)

�hð2Þ�	 ¼ ��rð0Þ
� rð0Þ

ð��	Þ þ rð0Þ
ð� �	Þrð0Þ

� �� þrð0Þ
ð���Þrð0Þ

	 ��

þ ��rð0Þ
� hð1Þ�	 þ 2hð1Þ�ð	rð0Þ

�Þ�
� þ 2rð1Þ

ð��	Þ; (31)

assuming that @�� ¼ "V�ðx; �Þ.
Note that because the background metric g depends on

� , the Riemann tensor constructed from it can be expanded
in powers of ":

R����ðx; �Þ ¼ Rð0Þ
����ðx; �Þ þ "Rð1Þ

����ðx; �Þ
þ "2Rð2Þ

����ðx; �Þ; (32)

where Rð0Þ
����ðx; �Þ is constructed from g and rð0Þ,

Rð1Þ
����ðx; �Þ contains one rð1Þ derivative, and Rð2Þ

����ðx; �Þ
contains two rð1Þ derivatives. The nth-order perturbation
of the Ricci tensor can be similarly expanded as

�nR��½h� ¼ P
2
m¼0 "

m�nRðnÞ
��½h�. This means that the vac-

uum Einstein equation R�� ¼ 0 becomes

Rð0Þ
�� ¼ 0; (33)

�Rð0Þ
��½hð1Þ� ¼ Rð1Þ

��; (34)

�Rð0Þ
��½hð2Þ� ¼ Rð2Þ

�� � �Rð1Þ
��½hð1Þ� � �2Rð0Þ

��½hð1Þ�;
..
. (35)

Similarly, the Bianchi identity on the background,
g��r�G��½g� ¼ 0, becomes

rð0Þ
� �Gð0Þ

�� ¼ 0; (36)

rð0Þ
� �Gð1Þ

�� ¼ �rð1Þ
� �Gð0Þ

��; (37)

rð0Þ
� �Gð2Þ

�� ¼ �rð1Þ
� �Gð1Þ

��; (38)

rð1Þ
� �Gð2Þ

�� ¼ 0; (39)

where a dot indicates contraction over � and �. And the
Bianchi identitity on the full spacetime, g��gr�G�� ¼ 0,

can be expanded schematically as

rð0Þ � �Gð0Þ½hð1Þ� ¼ 0; (40)

rð0Þ � �Gð0Þ½hð2Þ� ¼ �ðrð1Þ � �Gð0Þ þ rð0Þ � �Gð1ÞÞ½hð1Þ�
þ hð1Þrð0ÞðGð1Þ þ �Gð0Þ½hð1Þ�Þ
� ��ð0Þ½hð1Þ� � ðGð1Þ þ �Gð0Þ½hð1Þ�Þ
� rð0Þ � �2Gð0Þ½hð1Þ�; (41)

where ��ð0Þ�
	� ½hð1Þ� ¼ 1

2g
��ðrð0Þ

� hð1Þ�	 þrð0Þ
	 hð1Þ�� �rð0Þ

� hð1Þ	�Þ,
and the leading-order Einstein equation Rð0Þ

�� ¼ 0 and the
Bianchi identity g��r�G�� ¼ 0 have already been im-

posed for compactness.
Note that the � dependence of g allows the background

to slowly react to the perturbation. Determining this reac-
tion is the backreaction problem, which has been studied
extensively in the past.
Recently, Hinderer and Flanagan [39] have constructed a

significantly more complicated two-time scale expansion
tailored to EMRIs. In their method, all dynamical variables
(i.e., the metric and the phase space variables of the world-
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line) are submitted to two-time scale expansions; this
expansion captures both the fast dynamics of orbital mo-
tion and the slow dynamics of the particle’s inspiral and the
gravitational backreaction on the background spacetime.
Since the metric and the worldline are related by the EFE,
it is assumed that the metric can be written as a function of
the phase space variables of the worldline. On each time
slice, the limit " ! 0 is then taken with the phase space
variables held fixed. Specifically, the true worldline is
specified by a set of action-angle variables
ðJð~t; "Þ; ’ð~t; "ÞÞ and a slow time variable ~t. Expanding for
" ! 0 with ’ and ~t held fixed results in a sequence of fast-
time and slow-time equations. In the fast-time equations,
wherein ~t (and therefore J) is treated as a constant, the
metric is a function of ’ only; in other words, it is a
functional of the geodesic that is instantaneously tangential
to the true worldline. From this it follows that the leading-
order fast-time equation yields a metric perturbation
sourced by that geodesic, as in regular perturbation theory.
However, that is only at fixed ~t—the true worldline and
metric perturbation emerge by allowing the variables to
vary with ~t, with a ~t dependence determined from the slow-
time equations.

Although exceedingly useful for EMRIs, this procedure
relies on the background metric being stationary at fixed ~t,
such that it has no fast time dependence, and on the
geodesic motion in that background being integrable,
such that the metric can be written in terms of the action-
angle variables. In addition, it requires one to determine the
slow evolution of the background metric, which has not yet
been done.

E. Self-consistent expansion

In Hinderer and Flanagan’s formalism, the metric is
written as a function of the phase space variables on the
worldline, and then both the metric and those variables are
submitted to a two-time scale expansion. The formalism I
will now describe is a generalization of this: the metric is
written as a functional of the worldline, and then the metric
is expanded with that worldline held fixed. In order to
motivate this approach, I will first provide a formulation
of the exact problem to which we seek an approximate
solution.

We wish to determine the mean motion of a small,
spatially bounded matter distribution. (For the moment, I
neglect the case of a black hole.) In principle, we have
some matter field equations to go along with the EFE for
this blob of matter. As governed by the field equations, the
boundary of the blob traces out some surface in spacetime.
In the interior of the boundary, the matter density is finite,
and in the exterior it vanishes. To determine the motion of
the body, we seek the equation for the generators of this
boundary. This is a free-boundary value problem [49], in
which some boundary values are specified on a boundary
that is free to move. In the context of bodies in GR, this

problem has received some study [50,51], but it is still far
from understood, and it must certainly be tackled
numerically.
To make progress with an approximation scheme, I

reformulate the problem. I surround the body by a tube �
embedded in the buffer region, such that for " ! 0, the
radius of the tube vanishes. For the moment, consider � to
be defined by constant radius R ¼ Rð"Þ in the local coor-
dinates X�. I assume that the body is fairly widely sepa-
rated from all other matter sources, such that outside of �
there is a large vacuum region�. I also assume that � is in
vacuum; since it lies in the buffer region around the small
body, this means that I must restrict my approximation to a
small body that is sufficiently compact to not fill the entire
buffer region. Now, since the tube is close to the small body
(relative to all external length scales), the metric on the
tube is primarily determined by the small body’s structure.
In other words, the information about the body has now
been transplanted into boundary conditions on the tube.
Recall that the buffer region corresponds to ~R ! 1.
Hence, on the tube, we can construct a multipole expansion
of the body’s field, with the form

P ~R�n. I assume that the
local coordinates X� are mass centered, such that the mass
dipole term in this expansion vanishes. (See Ref. [52] and
references therein for discussion of multipole expansions
in GR; see Refs. [33,52] for discussion of mass-centered
coordinates in the buffer region; see, e.g., Ref. [53] for
further discussion of definitions of center of mass.) This,
then, is another free-boundary value problem: we must
determine the equations of motion of the generators of
the tube, given the boundary values of the metric on it,
and, in particular, given that the body lies at the ‘‘center’’
of it. With this formulation, we can also determine the
motion of a black hole, rather than just a matter
distribution.
Now suppose that I want to represent the motion of the

body through the external spacetime ðg;MEÞ, rather than
through the exact spacetime. As we can see from Fig. 3,
this is easily accomplished by using the regular limit and
taking the motion to be represented by the remnant world-

line �ð0Þ. However, as mentioned in Sec. I, on long time
scales this will provide a very poor representation of the
motion. (See Ref. [28] for a detailed discussion.)
Let us consider this from another direction. Assume that

we were given the exact solution g" onM", along with the
coordinate transformation �" between the local coordi-
nates X� and the global coordinates x� in the buffer region.
At fixed R ¼ Rð"Þ ¼ oð1Þ, we could write this transfor-
mation as x� ¼ ��1

" ðT;R;�AÞ. In the limit of small ",R
becomes small as well, meaning that this transformation
can be expanded as x ¼ ��1

" ðT; 0;�A
0 Þ þ oð1Þ, where �A

0

is an arbitrary choice of angles. This transformation thus
defines a curve z�ðT; "Þ � ��1

" ðT; 0;�A
0 Þ in the external

manifold ME. Since the small body is centered ‘‘at’’ R ¼
0, this curve defines a meaningful long-term representative
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worldline �. If we expand �"ðT; 0;�A
0 Þ for small ", then it

will not provide a uniform transformation between the
inner and outer coordinates; it will contain secularly grow-
ing errors of the form "t. So, instead, in order to construct a
uniform asymptotic solution, when constructing the exter-
nal approximation, one must hold � fixed. Determining �
then amounts to determining the ‘‘location’’ at which the
(mass-centered) inner expansion is to be performed.

Since we will never be seeking � directly, and in case
the inverse of �" does not exist at R ¼ 0, allow me to
present the final reformulation of the problem. Define a
tube �E½��  ME such that it is a surface of constant
radius r in Fermi normal coordinates centered on a world-
line �  ME. Using the map ’E from the regular expan-
sion, this defines a tube � ¼ �Eð�EÞ. Now, the problem is
the following: what equation of motion must � satisfy in
order for � to be mass centered (in the sense that the mass
dipole of the inner expansion vanishes when mapped to
M" via ’I)? Note that the worldline is a curve in the
external manifold ME. It should not be thought of as a
curve in the manifold M" on which the exact metric g"
lives; in fact, if the small body is a black hole, then there is
obviously no such curve.

In order to determine the equation of motion of the
worldline, I consider a family of metrics gEðx; ";�Þ pa-
rametrized by �, such that when � is given by the correct
equation of motion, we have gEðx; ";�ð"ÞÞ ¼ ’�

Eg"ðxÞ.
The metric in the outer limit is thus taken to be the general
expansion

g ðx; "Þ ¼ gEðx; ";�Þ ¼ gðxÞ þ hðx; ";�Þ; (42)

where

hðx; ";�Þ ¼ XNE

n¼1

"nhðnÞE ðx;�Þ þOð"NEþ1Þ: (43)

Solving Einstein’s equations will determine the worldline
� for which the inner expansion is mass centered. I will call
this either a self-consistent or a fixed-worldline expansion.
In it, the perturbations produced by the body are con-
structed about a fixed worldline determined by the particu-
lar value of " at which one seeks an approximation. Refer
to Figs. 3 and 4 for a graphical comparison between this
expansion and a regular one.

In the remainder of this section, I present a sequence of
perturbation equations that arise in this expansion scheme,
along with a complementary sequence for the inner expan-
sion. The equations were originally presented in Ref. [28].
In that paper, I described a particular, lengthy method of
solving the equations and deriving equations of motion. In
Sec. IV, I will discuss an alternative approach using the
method of matched asymptotic expansions.

My sequence of perturbation equations relies on a par-
ticular choice of gauge. I discuss the gauge freedom in the
self-consistent expansion, and the effect of gauge trans-
formations on the equation of motion, in Appendix C.

1. Field equations in outer expansion

To begin, I surround the body with a worldtube �, where
� is embedded in the buffer region, such that the field on it
can be found from either the inner or outer expansion. I
seek a solution in a vacuum region� outside of �; I further
specify that� consists of the future domain of dependence
of � [�, where � is a spacelike initial-data surface.
Now, recall that in a multiscale expansion, the expanded

equations are solved by assuming that they are valid for
arbitrary values of the slow-time variable ~t, not only on the
true solution manifold defined by ~t ¼ "t. Similarly, in the
fixed-worldline expansion, one method of solving the ex-
panded EFE will consist of assuming that it is valid for
arbitrary worldlines; the true solution is found by choosing
the true worldline. Solving the EFE with an arbitrary
worldline seems to require reformulating it in a ‘‘relaxed’’
form before expanding it, such that, for example, the
linearized equation does not immediately determine � to
be a geodesic. To accomplish this, I assume that the Lorenz
gauge can be imposed everywhere in � on the entirety of
h, such that L�½h� ¼ 0, where L� is the operator defined

by

L�½h� ¼ ðg��g�� � 1
2g

�
�g��Þr�h��: (44)

In Appendix C, I discuss the validity of this assumption.
With this choice of gauge, the vacuum Einstein equation

R�� ¼ 0 is reduced to a weakly nonlinear wave equation

that can be expanded and solved at fixed �, leading to the
sequence of wave equations

FIG. 4. Fixed-worldline expansion of a family of spacetimes.
The dotted lines correspond to the outer limit, which lets the
body shrink to zero size but keeps its motion fixed. The dashed
lines correspond to the inner limit, which keeps the size of the
body fixed. Here, I display the singular inner limit, which does
not rescale the inner time coordinate; hence, dashed lines orig-
inating at different times will terminate at different points on �.
The worldline lies in the manifoldME ¼ M0 [ �ð0Þ, but it does
not correspond to the remnant curve �ð0Þ defined by the regular
limit; instead, it is allowed to have " dependence, and it is
determined by the particular value of " at which an approximate
solution is sought.
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E��½hð1ÞE � ¼ 0; (45)

E��½hð2ÞE � ¼ 2�2R��½hð1ÞE �;
..
. (46)

where E�� is the relativistic wave operator defined by

E��½h� ¼ ðg��g��r�r� þ 2R�
�
�
�Þh��: (47)

More generally, we can write the nth-order equation as

E��½hðnÞE � ¼ SðnÞ��½hð1ÞE ; . . . ; hðn�1Þ
E ; ��; (48)

where the source term SðnÞ�� consists of nonlinear terms in
the expansion of the Ricci tensor. These equations can be
solved for arbitrary � (and hence for arbitrary �). The
formal solution is given by

hðnÞE�	 ¼ 1

4

I
@�

ðG�	
�0�0r�0hðnÞ

E�0�0

� hðnÞ
E�0�0r�0G�	

�0�0 ÞdS�0

� 1

4

Z
�
G�	

�0�0
SðnÞ
�0�0dV 0;

(49)

where G�	�0	0 is the retarded Green’s function for E�	; I

adopt the conventions of Ref. [54] for the Green’s function.
This formal solution requires boundary data on �. Since �
lies in the buffer region, the boundary data on it can be
provided by the inner expansion, as discussed in Ref. [28].

In this scheme, the equation of motion is determined
only once the perturbative EFE, rather than just the wave
equation, is satisfied. One means of ensuring that the EFE
is satisfied is to ensure that the gauge condition is satisfied.
I assume that the acceleration of � possesses an expansion

a�ðt; "Þ ¼ að0Þ� ðtÞ þ "að1Þ� ðt;�Þ þ . . . : (50)

This is an expansion of a particular function of time on the
worldline; it does not suggest a multiplicity of worldlines
with differing accelerations. Substituting this expansion,
along with that of h��, into the exact gauge condition

L�½h� ¼ 0 and solving with arbitrary �, we arrive at the

sequence of equations

Lð0Þ
� ½hð1ÞE � ¼ 0; (51)

Lð1Þ
� ½hð1ÞE � ¼ �Lð0Þ

� ½hð2ÞE �;
..
. (52)

where Lð0Þ½f� � L½f�ja¼að0Þ , L
ð1Þ½f� is linear in að1Þ, Lð2Þ½f�

is linear in að2Þ and quadratic in að1Þ, and so on. More
generally, for n > 0 the equations read

LðnÞ
� ½hð1Þ� ¼ � Xn

m¼1

Lðn�mÞ
� ½hðmþ1Þ�: (53)

In these expressions, L½f� is first calculated on an arbitrary
worldline, and then to find LðnÞ, the expansion of the
acceleration is inserted—while still holding � and u�

fixed. These equations will determine successive terms

aðnÞ� . At the end of the calculation, when a� has been
determined to the desired accuracy, h½�� is evaluated for

the particular worldline with acceleration a� ¼
að0Þ� þ "að1Þ� þ . . . , just as at the end of a two-time scale
expansion, the solution is evaluated for ~t ¼ "t.
Beyond formalizing the self-consistent approach as a

systematic approximation scheme, this method differs in
one key respect from previous derivations of self-
consistent equations of motion. Earlier derivations gener-
ally result in equations containing derivatives of the accel-
eration; in the case of an uncharged body in vacuum, this is
seen in the gravitational antidamping term discovered by
Havas [55] (as corrected by Havas and Goldberg [56]).
Such equations are unphysical, exhibiting, for example,
runaway solutions. Traditionally, they have been made
well behaved via an a posteriori ‘‘reduction of order’’
[26,54]. However, my assumed expansion of the accelera-
tion automatically yields a well-behaved, order-reduced
equation of motion. Furthermore, the expansion of the
acceleration was necessary to split the gauge condition
(or, equivalently, the Bianchi identity) into a sequence of
exactly solvable equations. Hence, we can see that a sys-
tematic approach, in which one requires exact solutions to
the perturbation equations, eliminates the ill-behaved
equations of motion that have plagued prior self-consistent
derivations.
In particular, this method differs from the gauge-

relaxation procedure that has been used historically in
the gravitational self-force problem [25–28]. In that pro-
cedure, one constructs an approximate solution to the
regular linearized Einstein equation by (i) solving the
linear wave equation and (ii) ensuring the equation of

motion enforces the relaxed gauge condition L�½"hð1Þ� ¼
Oð"2Þ. The relaxed gauge condition accomplishes the same
goal as my reformulation of the Einstein equation into
relaxed form: it allows the body to move on an accelerated
worldline rather than the geodesic worldline enforced by
the regular linearized Einstein equation. However, this
procedure is an a posteriori corrective measure, rather
than part of a systematic expansion, and unlike Eq. (51),
it results in an ill-behaved equation of motion requiring
further a posteriori correction in the form of order
reduction.
Before proceeding to the inner expansion, I note that the

first-order acceleration að1Þ is determined by Eq. (52),

which requires the second-order metric perturbation hð2ÞE .

Hence, if the gauge condition is to be used to determine the
equation of motion, one must solve the second-order wave-
equation in order to determine the first-order acceleration.
However, in the method of matched asymptotic expan-
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sions, the inner expansion at any given order generically
contains information that is of infinite order in the outer
expansion. Therefore, if matching is used, it may be pos-
sible to derive an equation of motion using only the first-
order term in the outer expansion. This will be the route
explored in Sec. IV.

2. Field equations in inner expansion

For the inner expansion, I assume the existence of some
local polar coordinates X� ¼ ðT; R;�AÞ, such that the
metric can be expanded for " ! 0while holding fixed ~R �
R=", �A, and T. This leads to the ansatz

g ðX; "Þ ¼ gIðT; ~R;�A; "Þ
¼ gBðT; ~R;�AÞ þHðT; ~R;�A; "Þ; (54)

where H at fixed ðT; ~R;�AÞ is a perturbation beginning at
order ". The leading-order term gBðT; ~R;�AÞ at fixed T is
the metric of the small body if it were isolated. For ex-
ample, if the body is a small Schwarzschild black hole of
Arnowitt-Deser-Misner mass "mðTÞ, then in
Schwarzschild coordinates gBðT; ~R;�AÞ is given by

ds2 ¼ �ð1� 2mðTÞ= ~RÞdT2 þ ð1� 2mðTÞ= ~RÞ�1"2d ~R2

þ "2 ~R2ðd�2 þ sin2�d�2Þ: (55)

Since the metric becomes one dimensional at " ¼ 0, the
limit " ! 0 is singular. As mentioned in Sec. III C, the
limit can be made regular by rescaling time as well, such
that ~T ¼ ðT � T0Þ=", and then rescaling the entire metric
by a conformal factor 1="2. This is equivalent to using the
above general expansion and assuming that the metric gB
and its perturbations are quasistatic (evolving only on time
scales �1). Both are equivalent to assuming that the exact
metric contains no high-frequency oscillations occurring
on the body’s natural time scale �". In other words, the
body is assumed to be in equilibrium.

I seek a solution in a vacuum region outside the body.
Given my assumptions, the vacuum EFE G ¼ 0 can be
expanded as

0 ¼ G ¼ G1½gB� þ gGI½H� þ �2GI½H� þ . . . ; (56)

where each term is further expanded as

GI½gB� ¼ "�2ðGð0Þ
I ½gB� þ "Gð1Þ

I ½gB� þ "2Gð2Þ
I ½gB�Þ; (57)

�kGI½gB� ¼ "�2ð�kGð0Þ
I ½H� þ "�kGð1Þ

I ½H�
þ "2�kGð2Þ

I ½H�Þ: (58)

The overall factors of "�2 result from ~R ¼ R=" and the
fact that the Einstein tensor scales as the metric divided by
two powers of length. The correction terms contain deriva-
tives with respect to T, which are each suppressed by a

factor of "; specifically, GðnÞ
I and �kGðnÞ

I consist of the
terms in GI and �kGI that contain n derivatives with

respect to T. Now, suppose H possesses an expansion

HðT; ~R;�A; "Þ ¼ XNI

n¼1

"nHðnÞðT; ~R;�AÞ: (59)

Substituting this expansion of H into the above expansion
of the EFE, and then solving order by order in powers of ",
leads to the sequence

G
ð0Þ��
I ½gB� ¼ 0; (60)

�Gð0Þ��
I ½Hð1Þ� ¼ �Gð1Þ��

I ½gB�; (61)

�G
ð0Þ��
I ½Hð2Þ� ¼ ��2G

ð0Þ��
I ½Hð1Þ� � �G

ð1Þ��
I ½Hð1Þ�

�Gð2Þ��
I ½gB�;

..

.
(62)

Note that there is only one time scale here, so these
equations automatically follow from the assumed form of
the expansion of the metric; there is none of the potential
failings of a two-time scale expansion. In Sec. IVB and
Appendix F, I discuss a particular solution to this sequence
of equations.

IV. CALCULATION OF THE SELF-FORCE FROM
MATCHED ASYMPTOTIC EXPANSIONS

In this section, I consider the most intuitive means of
solving the sequences of equations just presented: the
method of matched asymptotic expansions. As outlined
in the previous section, in this method the perturbation
equations in the inner and outer expansions are solved
independently, and then any free functions are identified
by insisting that the two metrics agree in the buffer region
around the body. Following the tradition of the field, in
matching the two metrics I make use of the weak matching
condition, rather than the strong condition.
My presentation of the matching procedure roughly

follows that of Refs. [37,54], though most of my conclu-
sions apply as well to the earlier calculation performed by
Mino, Sasaki, and Tanaka [25]. However, my goal is not
simply to review those earlier calculations, but to pinpoint
their underlying assumptions. First among these assump-
tions is a very strong restriction on the relationship be-
tween the inner and outer solutions: essentially, the two
solutions must be assumed to differ only by generically
‘‘small’’ coordinate transformations in the buffer region.
This restriction is required because the weak matching
condition, which has always been used in matched-
expansion derivations of the self-force, is found to be too
weak to yield unique results. The required restriction
amounts to introducing a ‘‘refined’’ matching condition
midway between the weak and strong conditions.
Second among the underlying assumptions is the restric-

tive choice of inner solution, which effectively already
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removes many of the integration constants that would
normally be fixed by a matching procedure. As discussed
in Sec. II, in traditional matched asymptotic expansions the
leading-order inner and outer solutions are determined
entirely by boundary conditions, while in the matched
expansions used in the self-force problem, the leading-
order solutions must be chosen based on some desired
physical properties; only after the leading-order solutions
are chosen can boundary conditions be imposed. In the
self-force problem, the leading-order outer solution is
taken to be some desired vacuum metric. For the EMRI
problem, the desired metric is that of a Kerr black hole.
Typically, for simplicity, the leading-order inner solution is
taken to be that of a Schwarzschild black hole, though one
could instead choose, for example, that of a neutron star
[57,58].

However, in derivations of the self-force, the inner and
outer solutions have been even further restricted: the form
of the perturbations have also been largely selected, rather
than determined by matching. For example, the inner
perturbations have been taken to be of a particular form
presumed to correspond to the influence of tidal fields on
the small black hole. And the outer perturbation has been
taken to be that of a point particle. In this section, I will
make use of these assumed forms for the inner and outer
solutions. As shown in Refs. [17,27,28], the assumption of
a point-particle perturbation can be removed, because the
point-particle solution follows directly from the assumed
existence of an inner expansion. On the other hand, the
assumed form of the tidally perturbed black hole metric has
not, to my knowledge, been rigorously justified. Instead, I
will point out the ways in which this metric restricts the
generality of the inner solution.

My analysis begins with a discussion of the outer ex-
pansion. Section IVB then describes the metric in the inner
expansion. In Secs. IVC and IVD, I perform the matching
procedure, focusing on the restrictions that must be im-
posed to yield a unique result. I conclude the section with a
discussion of the method.

The calculations in this section make use of numerous
computational techniques that are standard in the litera-
ture: near-coincidence expansions, Fermi and retarded co-
ordinate systems, and curved-spacetime Green’s functions,
STF (symmetric trace-free) decompositions, and tensor-
harmonic expansions. Refer to Ref. [54] for pedagogical
reviews of the first three techniques. STF decompositions
and tensor-harmonic expansions are briefly outlined in
Appendices D and F.

A. Outer expansion

I require an expansion of the background metric g and

the first-order external perturbation hð1ÞE in the buffer re-

gion. To find these expansions, I adopt Fermi coordinates
ðt; xaÞ centered on � and then expand in powers of the

geodesic distance r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ijx

ixj
q

. The construction of the

coordinate system is derived in Ref. [54].
Uppercase Latin indices I, J, K run from 0 to 3, corre-

sponding to an orthonormal tetrad e�I . Lowercase Latin
indices i, j, k run from 1 to 3 and correspond to the spatial
part of either the coordinate basis or the orthonormal basis.
I am interested only in components in the Cartesian-type
coordinates ðt; xaÞ, but I will sometimes express these
components in terms of r and two angles 
A, which are
defined in the usual way in terms of xa. I also introduce the
unit one-form n� � @�r, which depends only on the angles

A, and use the multi-index notation nL � ni1 . . . ni‘ �
ni1...i‘ . Angular brackets around indices denote the STF
combination of the enclosed indices; a caret over a tensor
denotes the STF part of that tensor. Finally, I define the
coordinate one-forms t� � @�t and xa� � @�x

a.
In Fermi coordinates, the components of the background

metric are given by

gtt ¼ �1� 2rain
i � 1

3r
2aia

i � ahiajin̂ij

� r2Eijn̂
ij þOðr3Þ; (63)

gta ¼ 2
3r

2�aikBk
j n̂

ij þOðr3Þ; (64)

gab ¼ �ab � 1
9r

2�abEijn̂
ij � 1

9r
2Eab þ 2

3r
2Eihan̂ibi þOðr3Þ;

(65)

where I have decomposed the components into irreducible
STF pieces, and defined the tidal fields Eab � Ra0b0 and
Bab � 1

2 �a
cdR0bcd. The tidal fields are functions on the

worldline, and are therefore functions of t only.
One should note that the coordinate transformation

x�ðt; xaÞ between Fermi coordinates and the global coor-
dinates is " dependent, since Fermi coordinates are teth-
ered to an "-dependent worldline. If one were using a
regular expansion, then this coordinate transformation
would devolve into a background coordinate transforma-
tion to a Fermi coordinate system centered on a geodesic
worldline, combined with a gauge transformation to ac-
count for the " dependence. But in the present general
expansion, the transformation is purely a background
transformation, because the " dependence in the trans-
formation is reducible to the " dependence in the fixed
worldline.
The transformation hence induces not only new " de-

pendence into the perturbations hðnÞE , but also " dependence
in the background metric g. (Despite its " dependence, g is
the background metric of the outer expansion, and I will
use it to raise and lower indices on h.) This new " depen-
dence takes two forms: a functional dependence on z�ðtÞ ¼
x�ðt; xa ¼ 0Þ, the coordinate form of the worldline written
in the global coordinates x�; and a dependence on the
acceleration vector a�ðtÞ on that worldline. For example,
the first type of dependence appears in the components
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of the Riemann tensor (or tidal fields) in Fermi coordi-
nates, which are related to the components in the

global coordinates via the relationship RIJKLðtÞ ¼
R�	��ðz�ðtÞÞe�I e	J e�Ke�L. The second type of " dependence

consists of factors of the acceleration a�ðtÞ, which has the

assumed expansion aiðt; "Þ ¼ að0Þi ðtÞ þ "að1Þi ðt;�Þ þ
Oð"2Þ.

Hence, in the buffer region we can opt to work with the
quantities g and hE, which are defined with a fixed, or we
can opt to re-expand these quantities by substituting into
them the expansion of a. (In either case, wewould still hold
fixed the functional dependence on z�.) Substituting the
expansion of a in Fermi coordinates yields the buffer-
region expansions

g�� ¼ gð0Þ��ðt; xa;�Þ þ "gð1Þ��ðt; xa;�Þ þOð"2Þ; (66)

hðnÞE�	 ¼ hðnÞ�	ðt; xa;�Þ þOð"Þ; (67)

where gð0Þ�� � g��ja¼að0Þ , g
ð1Þ
�� is linear in a

ð1Þ
i and its deriva-

tives, and hðnÞ�� � hðnÞE��ja¼að0Þ . Because the inner expansion

does not hold the acceleration fixed, for the sake of match-

ing, I will use the buffer-region quantities gð0Þ, gð1Þ, and
hð1Þ.

In order to determine hð1Þ, I rewrite the wave equation
(45) as

E�	½hð1ÞE � ¼ �16ðT�	 � 1
2g�	g

��T��Þ; (68)

where T�	 is the stress-energy tensor of a point particle,

given by

T��ðxÞ ¼
Z
�

mu�u�ffiffiffiffiffiffijgjp �4ðx� zðtÞÞdt; (69)

where u� � dz�

dt is the four-velocity on �, and jgj denotes
the absolute value of the determinant of g�	. Note that

there is no contradiction between this equation and
Eq. (45), since the latter applies only in the vacuum region
�, where T�	 vanishes pointwise. The solution to this

wave equation can be expressed in terms of an integral
over the worldline �. Near the worldline, the solution can
then be expanded in powers of r. That calculation is
presented in Appendix E. The result is the following:

hð1ÞEtt ¼
2m

r
þ Âð1;0Þ þ 3main

i þ r

�
4maia

i þ Âð1;1Þ
i ni

þm

�
3

4
ahiaji þ 5

3
Eij

�
n̂ij

�
þOðr2Þ; (70)

hð1ÞEta ¼ Ĉð1;0Þ
a þ rðB̂ð1;1Þna � 2m _aa þ Ĉð1;1Þ

ai ni

þ �ai
jD̂ð1;1Þ

j ni þ 2
3m�aijB

j
kn̂

ikÞ þOðr2Þ; (71)

hð1ÞEab ¼
2m

r
�ab þ ðK̂ð1;0Þ �main

iÞ�ab þ Ĥð1;0Þ
ab

þr

�
�ab

�
4

3
maia

i þ K̂ð1;1Þ
i ni þ 3

4
mahiajin̂ij

� 5

9
mEijn̂

ij

�
þ 4

3
mEi

han̂bii þ 4mahaabi � 38

9
mEab

þ Ĥð1;1Þ
abi n

i þ �i
j
ðaÎ

ð1;1Þ
bÞj ni þ F̂ð1;1Þ

ha nbi
�
þOðr2Þ:

(72)

Here, the uppercase hatted quantities are STF Cartesian
tensors that are functions of time alone; they are named
following the scheme of Eqs. (D14)–(D16). They are con-
structed from tail integrals, the acceleration, and E, and
their exact form is specified in Table I. Together, they make
up the Detweiler-Whiting regular field [59], a solution to

the homogeneous linearized Einstein equation. hð1Þ is given
by setting ai ¼ að0Þi in the above expressions.
The buffer-region expansion of the full metric in the

outer limit can now be written as

gE�	 ¼ gð0Þ�	 þ "gð1Þ�	 þ "hð1Þ�	 þOðr3; "r2; "2Þ; (73)

where g�	 is given in Fermi coordinates in Eqs. (63)–(65).

B. Inner expansion

I assume that the internal solution is that of a perturbed
Schwarzschild black hole, and I adopt retarded Eddington-
Finkelstein coordinates ðU;XaÞ adapted to that spacetime.
The background metric gB is then given by

gB ¼ �fðU; ~RÞdUdU� 2�adUdXa

þ ð�ab ��abÞdXadXb; (74)

TABLE I. Symmetric trace-free tensors in the first-order met-
ric perturbation in the buffer region, written in terms of the
electric-type tidal field Eab, the acceleration ai, and the tail of the
perturbation.

Âð1;0Þ ¼ htail00

Ĉð1;0Þ
a ¼ htail0a þmaa

K̂ð1;0Þ ¼ 1
3�

abhtailab

Ĥð1;0Þ
ab ¼ htailhabi

Âð1;1Þ
a ¼ htail00a þ 2htail00 aa þ 2

3m _aa

B̂ð1;1Þ ¼ 1
3h

tail
0ij�

ij þ 1
3h

tail
0i a

i

Ĉð1;1Þ
ab ¼ htail0habi þ 2mEab þ htail0haabi

D̂ð1;1Þ
a ¼ 1

2 �a
bcðhtail0bc þ htail0b acÞ

K̂ð1;1Þ
a ¼ 1

3�
bchtailbca þ 2

3m _aa

Ĥð1;1Þ
abc ¼ htailhabci

F̂ð1;1Þ
a ¼ 3

5�
ijhtailhiaij

Îð1;1Þab ¼ 2
3 STFabð�bijhtailhaiijÞ
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where fðU; ~RÞ ¼ 1� 2MðUÞ
~R

, and ~�a � Xa=R is a function

of two angles�A. (Note that in this equation, I have written
the metric in nonrescaled coordinates, but I have written
the components of the metric in terms of the scaled coor-
dinate ~R.) Here,MðUÞ is the Bondi mass of the spacetime,
divided by the mass at U ¼ 0. The mass is allowed to
depend on U because gB is required only to solve Eq. (60),
which contains no time derivatives. Next, I expand the
components of the metric perturbation H as

H��ðU; ~R;�A; "Þ ¼ "Hð1Þ
��ðU; ~R;�AÞ þ "2Hð2Þ

��ðU; ~R;�AÞ
þ . . . (75)

As a boundary condition on these perturbations, I require
that they remain regular on the event horizon. In addition, I
adopt the light cone gauge [60], defined in retarded polar

coordinates by the condition HðnÞ
UR ¼ HðnÞ

RR ¼ HðnÞ
RA ¼ 0. In

this gauge, U and R maintain their geometrical meaning
even in the perturbed spacetime: U is constant on each
outgoing light cone, and R is an affine parameter on out-
going light rays. I assume that this gauge condition can
always be imposed.

The first- and second-order perturbations, along with the
time dependence of gB, must satisfy the vacuum Einstein
Eqs. (61) and (62). In Appendix F, I show that dMdU ¼ 0. This

implies that Eq. (61) becomes �Gð0Þ
I ½Hð1Þ� ¼ 0, the line-

arized vacuum EFE for static perturbations. The solutions
to this equation have been thoroughly studied [61–64].
Because of the spherical symmetry of the background
spacetime, the equation can be most easily solved by

decomposing Hð1Þ into spherical harmonics: the various
harmonics decouple in the linearized Ricci tensor, such
that they can be solved independently. In addition, for ‘ >
0, the harmonics can be decomposed into even- and odd-
parity sectors, which also decouple. It is known that the
gauge-invariant content of the monopole terms in the so-
lution corresponds to a constant shift of the black hole’s
mass parameter; odd-parity dipole terms correspond to a
shift to a nonzero, constant spin; and even-parity dipole
perturbations correspond to a shift in center of mass, which
can always be removed via a coordinate transformation. In
addition, it is known that for all ‘, the solutions behave as
� ~R‘ for ~R 
 1.

In the derivation provided by Mino, Sasaki, and Tanaka

[25], the monopole and dipole terms in Hð1Þ were set to
zero, on the basis that they correspond to either pure gauge
or to mere redefinitions of mass and angular momentum.
However, this step is not justified, since the ‘‘constant’’
shifts in the black hole’s parameters are actually functions
of time, with a time dependence to be determined by the
higher-order perturbation equations. Also, the fact that the
even-parity dipole term corresponds to a shift in center of
mass does not mean that it can be trivially ignored; this will
be discussed further in the following sections. For ‘ > 1,
Mino, Sasaki, and Tanaka took the terms to necessarily

behave as ~R‘ in the buffer region. This means that HðnÞ
cannot contain terms of ‘ > n: since "n ~R‘ ¼ "n�‘R‘, if
‘ > n then such a term would correspond to negative

powers of " in the outer expansion. Hence,Hð1Þ can contain
only monopole and dipole terms, and since these are set to

zero, Hð1Þ itself must be zero. It then follows that Eq. (62)
becomes another linearized vacuum EFE for static pertur-

bations, �Gð0Þ
I ½Hð2Þ� ¼ 0. The solutions to this equation

must be purely quadrupolar, since monopole and dipole

terms are set to vanish and Hð2Þ cannot contain terms of
‘ > 2. However, even if the monopole and dipole terms are
set to zero, this reasoning remains specious, because solu-
tions with ‘ > n can exist: though the asymptotically
dominant terms behave as ~R‘, subdominant terms can
grow less rapidly with ‘, as is shown explicitly in
Appendix F. (However, these subdominant terms can be
removed with a gauge transformation.)
In the derivation provided by Poisson Refs. [37,54], all

of the above steps were taken, but the quadrupole terms
were then further constrained. Rather than finding a gen-
eral inner solution and then restricting it by imposing a
matching condition, Poisson simplified the possible forms
of the metric by first imposing a form of the asymptotic
matching condition. (Refer back to Sec. II for the definition
of this condition.) Specifically, he demanded that for ~R 

1, the metric must asymptotically approach that of a vac-
uum spacetime in retarded coordinates centered on a geo-
desic. This demand motivated the following ansatz for the
internal metric in polar coordinates:

gIUU ¼ �f½1þ "2 ~R2e1ð ~RÞE�ðUÞ� þOð"3Þ; (76)

gIUR ¼ �1; (77)

gIUA ¼ R½23"2 ~R2ðe2ð ~RÞE�
A þ b2ð ~RÞB�

AÞ þOð"3Þ�; (78)

gIRR ¼ gIRA ¼ 0; (79)

gIAB ¼ R2½�AB � 1
3"

2 ~R2ðe3ð ~RÞE�
AB þ b3ð ~RÞB�

ABÞ
þOð"3Þ�; (80)

where e1, e2, e3, b2, and b3 are undetermined functions

constrained to approach 1 for ~R 
 1, and the quantities ~E�,
~B�
A, etc., are constructed from tidal fields ~Eab and ~Bab, as

displayed in Eqs. (F104)–(F107). At ~R ! 1 (or " ¼ 0),
this metric is precisely the metric of a vacuum spacetime in
retarded coordinates centered on a geodesic. Note that even
with the constraint on the asymptotic behavior of the
internal metric, the above ansatz is more restrictive than
it need be: generally, the free functions of ~R could also be
functions of U, with a U dependence to be determined by
the higher-order EFE.
One might wonder why the internal metric is con-

strained to approach that of a vacuummetric in coordinates
centered on a geodesic, rather than being constrained to
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approach a vacuum metric in coordinates centered on an
arbitrarily accelerating worldline, to agree with the form of
the external background metric in retarded coordinates.
The reason is that the terms linear in the acceleration in
the external background metric are even-parity dipole
terms, which have been set to zero to ensure that the
coordinates are mass centered. I will return to the relevance
of these terms in the following sections, but I will note now
that this assumed form already suggests that the body must
be moving on a geodesic of some spacetime. That space-
time will turn out to be gþ hR, rather than g. See Ref. [65]
for further discussion of this point.

Substituting the ansatz into the linearized EFE and
imposing regularity at the event horizon determines the
free functions. After transforming the resulting metric back
into Cartesian-type coordinates, one finds

gIUU ¼ �f� "2f2 ~R2~E� þOð"3Þ; (81)

gIUa ¼ ��a þ 2
3"

2 ~R2fð~E�
a þ ~B�

aÞ þOð"3Þ; (82)

gIab ¼ �ab ��ab � 1

3
"2 ~R2

�
1� 2M2

~R2

�
~E�
ab

� 1

3
"2 ~R2 ~B�

ab þOð"3Þ; (83)

where ~E�
a ¼ ~E�

A�
A
a ,

~B�
a ¼ ~B�

A�
A
a , ~E

�
ab ¼ ~E�

AB�
A
a�

B
b , and

~B�
ab ¼ ~B�

AB�
A
a�

B
b . Note that there is no a priori relation-

ship between the mass "M of the internal spacetime and
the mass "m of the point-particle perturbation in the ex-
ternal spacetime. Similarly, although the inner solution was
specifically constructed to asymptotically approach the
form of an external metric in the buffer region, there is

no a priori relationship between ~Eab and Eab or between
~Bab and Bab. These relationships are to be determined in
the matching procedure.

To expand the metric in the buffer region, we rewrite ~R
as R=" and then re-expand in powers of "; this corresponds
to an expansion for R 
 ". In order to agree with the
external metric, which is constructed in Fermi coordinates
and in the Lorenz gauge, we must also transform from
retarded coordinates and the light cone gauge into Fermi-
like harmonic coordinates ðT; XaÞ; and the result must be
decomposed into its irreducible STF pieces. That calcula-
tion is shown in Appendix F. The final result is

gITT ¼ �1þ "
2M

R
þ 5

3
"MR~EijN̂

ij � R2~EijN̂
ij

þOð"2; "R2; R3Þ; (84)

gITa ¼ 2"MR~EaiN
i þ 2

3"MR�aij
~Bj
kN̂

ik þ 2
3R

2�aik
~Bk
jN̂

ij

þOð"2; "R2; R3Þ; (85)

gIab ¼ �ab

�
1þ "

2M

R
� 5

9
"MR~EijN̂

ij � 1

9
R2~EijN̂

ij

�

þ 64

21
"MR~EihaN̂bi

i � 46

45
"MR~Eab � 1

9
R2~Eab

þ 2

3
"MR~EijN̂ab

ij þ 2

3
R2~EihaN̂i

bi

� 4

3
"MR�jkða ~B

k
bÞNj þOð"2; "R2; R3Þ; (86)

where Ni ¼ Xi=R. This is the metric that I will use in the
matching procedure, even though, as pointed out above, it
has already been heavily restricted.
In Appendix F, I derive the above metric without relying

on an ansatz, enabling me to better characterize its
generality.

C. Zeroth-order matching

I now consider the relationship between the two metrics.
Beginning with the zeroth-order weak matching condition,
we have the metric in the outer expansion given by

gEtt ¼ �1� 2rað0Þi ni � 1
3r

2að0Þi að0Þi � r2að0Þhi a
ð0Þ
ji n̂

ij

� r2Eijn̂
ij þOð"; r3Þ; (87)

gEta ¼ 2
3r

2�aikBk
j n̂

ij þOð"; r3Þ; (89)

gEab ¼ �ab � 1
9r

2�abEijn̂
ij � 1

9r
2Eab þ 2

3r
2Eihan̂ibi

þOð"; r3Þ; (88)

while the metric in the inner expansion is given by

gITT ¼ �1� R2~EijN̂
ij þOð"; R3Þ; (90)

gITa ¼ 2
3R

2�aik
~Bk
jN̂

ij þOð"; R3Þ; (91)

gIab ¼ �ab � 1
9R

2�ab
~EijN̂

ij � 1
9R

2~Eab þ 2
3R

2~EihaN̂i
bi

þOð"; R3Þ: (92)

It seems that we may immediately identify these two

metrics and conclude that T ¼ t, Xa ¼ xa, ~Eab ¼ Eab,

and most importantly, að0Þ� ¼ 0. However, the matching
condition does not require that these two metrics be iden-
tical, since they may be in different coordinate systems; the
matching condition requires only that these two metrics be
related by a diffeomorphism. But this condition places no
restriction at all on the acceleration of the worldline: The
form of the inner metric is that of an arbitrary background
written in Fermi coordinates centered on a geodesic world-
line. The form of the outer metric is that of a known
background written in Fermi coordinates centered on a
possibly accelerated worldline. Regardless of the value of
the acceleration, if the geodesic is embedded in the exter-
nal spacetime, then these two solutions are obviously
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related by a diffeomorphism, since the geodesic can be
transformed to the accelerated worldline.

Evidently, some information has been lost here. I as-
sumed from the beginning that the inner and outer expan-
sions were performed ‘‘around’’ the same worldline. In the
inner expansion, the location of the body is encoded into
the coordinate system by the condition that the body’s mass
dipole vanishes in that coordinate system; in the outer
expansion, the location of the body is encoded in the
worldline sourcing the perturbation. If we use the weak
matching condition, in which we expand the metric before
finding the coordinate transformation between the inner
and outer expansions, then this information is lost.

However, one might wonder if this ambiguity might be
removed by supplementing the weak matching condition
with some other condition. One such condition appears
obvious: the coordinate transformation between the inner
and outer expansions in the buffer region must be small—
that is, it must vanish in the limit " ! 0. This removes the
possibility of transforming from an arbitrary geodesic to an
arbitrarily-accelerated worldline. In the buffer region, r !
0 as " ! 0, so this allows transformations that have no
explicit " dependence, but which do have explicit r depen-
dence. I trust the reader to convince himself that under such
a transformation, we must have R ¼ r, T ¼ t, the tidal
fields appearing in the inner metric must be identical (up to
Oð"Þ corrections) to those constructed from the Riemann
tensor in the outer solution—and the leading-order term in

the acceleration must vanish: að0Þ ¼ 0. The two coordinate
systems may, of course, be related by rotations, but these
are insignificant.

Hence, we can adopt a stronger, refined matching con-
dition: the inner and outer expansions in the buffer region
must be equal up to a unique small coordinate transforma-
tion. Unfortunately, this refined condition is still insuffi-
cient. The reason is that the inner expansion could have
included acceleration-type terms. In fact, we can always
include such terms by transforming the metric into an
accelerating frame. Suppose we begin with the
Schwarzschild metric in Kerr-Schild form,

gB�� ¼ ��� þ "M
�R
‘�‘�; (93)

where � ¼ diagð�1; 1; 1; 1Þ is the Minkowski metric,

‘� ¼ ð1; �X
�R
;
�Z
�R
;
�Z
�R
Þ is a null vector, �R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X2 þ �Y2 þ �Z2

p
,

and the (unscaled) coordinates are ð �T; �X; �Y; �ZÞ. Now, by
using the flat-spacetime transformation from an inertial
frame to an accelerated one, we can transform the metric
to a new set of accelerated retarded coordinates
ðU0; R0;�0AÞ. For simplicity, assume that the acceleration
is in the �Z direction. Then the transformation is given by

�T ¼ T0ðU0Þ þ R0ðcos�0 sinhqðU0Þ þ coshqðU0ÞÞ; (94)

�X ¼ R0 sin�0 cos�0; (95)

�Y ¼ R0 sin�0 sin�0; (96)

�Z ¼ Z0ðU0Þ þ R0ðcos�0 coshqðU0Þ þ sinhqðU0ÞÞ; (97)

where T0 ¼
R
coshqðU0ÞdU0, Z0 ¼

R
sinhqðU0ÞdU0, and

qðU0Þ ¼ R
�ðU0ÞdU0, where �ðU0Þ is the magnitude of

the acceleration. Under this transformation, gB maintains
the form in Eq. (93). ��� becomes the metric of flat

spacetime in retarded coordinates, given by

� ¼ �½ð1þ R0� cos�0Þ2 � R02�2�dU02 � 2dU0dR0

� 2R02� sin�0dU0d�0 þ R02d�02; (98)

while ‘� takes on a more complicated (and unenlighten-

ing) form. Note that in flat spacetime, this transformation
translates the spatial origin from �Z ¼ 0 to �Z ¼ Z0ðU0Þ.
And in the spacetime of gB, the same interpretation applies
at large distances from the black hole—that is, in the buffer
region. In other words, the new coordinates are not mass
centered: the center of mass is moving away from the
origin.
Although the metric takes on an inconveniently compli-

cated form in this non–mass-centered coordinate system,
in principle one could use it in constructing the inner
expansion gI. If one does so, then when gI is expanded
in the buffer region, it becomes gI�� ¼ ��� þOð"; R2Þ, as
we can infer immediately from the form of Eq. (92). But in
this expansion, ��� is the metric of flat spacetime centered

on an accelerating worldline, not on a geodesic. Therefore,
if we transform the metric to Fermi-type coordinates
ðT; XaÞ, we arrive at

gITT ¼ �1� 2R� cos�þOð"; R2Þ; (99)

gITa ¼ Oð"; R2Þ; (100)

gIab ¼ �ab þOð"; R2Þ: (101)

This metric agrees with the one in the outer expansion,
regardless of the value of the acceleration. We may identify

� cos� with að0Þi ni, and the matching procedure, even with
the refined matching condition, provides no information
whatsoever about the worldline.
We can readily see why the matching procedure has

failed: we have not insisted on any relationship between
the inner and outer expansions. In order for matching to be
successful, we must insist that the position of the black
hole in the inner expansion can be identified with the
position of the worldline in the outer expansion. To make
this identification mathematically precise, I insist that the
two expansions are to be expanded and matched in the
buffer region only when the outer expansion is evaluated in
a coordinate system centered on the worldline and the inner
expansion is evaluated in a mass-centered coordinate sys-
tem. If this condition is imposed, then the accelerating
coordinate system ðU0; R0;�AÞ is inadmissible, since it is
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not mass centered. Therefore, we can discount it and others
like it—and we can once again, now more confidently,
conclude that the acceleration of the worldline must vanish
in the limit " ! 0. Such a condition serves to implicitly
define the worldline, and it is necessary for the matching
procedure to be well defined and to yield unambiguous
results.

Based on the above analysis of the zeroth-order match-
ing procedure, I suggest the following matching condition:
if the inner expansion is written in a mass-centered coor-
dinate system and the outer expansion is written in a
worldline-centered coordinate system, then the two expan-
sions must be equal up to a small coordinate transformation
when expanded in the limit of small (outer) radial coor-
dinate distances. (Here, ‘‘outer’’ radial coordinate means a
coordinate that is formally of order 1 in the outer expansion
and of order 1=" in the inner expansion.) Making use of
this condition allows us to determine the acceleration of the
worldline at zeroth order. However, as we shall see in the
next subsection, it requires still more restrictions.

D. First-order matching

Comparing the expression for the external solution with
that for the internal solution, we find that the 1=r terms
agree if and only if we make the identification m ¼ M. In
order for the other terms to be made to agree, there must
exist a coordinate transformation, from the external coor-
dinates to the internal coordinates, that induces a gauge
transformation gE ! gE þ "�gE þOð"2Þ, where

�gEtt ¼ �Âð1;0Þ þ rð2að1Þi � Âð1;1Þ
i Þni þOðr2Þ; (102)

�gEta ¼ �Ĉð1;0Þ
a � 1

6r@tðÂð1;0Þ þ 3K̂ð1;0ÞÞna � rĈð1;1Þ
ai ni

� r�ai
jD̂ð1;1Þ

j ni þ 2mrEain
i þOðr2Þ; (103)

�gEab ¼ ��abK̂
ð1;0Þ � Ĥð1;0Þ

ab � r�abK̂
ð1;1Þ
i ni

� 3
10rðK̂ð1;1Þ

ha � Âð1;1Þ
ha þ 2@tĈ

ð1;1Þ
ha Þnbi � rĤð1;1Þ

abi n
i

� r�i
j
ðaÎ

ð1;1Þ
bÞj ni þ 12

7mrEihan̂bi
i þ 16

5mrEab

þ 2
3mrEijn̂ab

ij � 4
3mr�jkðaBk

bÞn
j þOðr2Þ: (104)

I remind the reader that ai is to be set to að0Þi ¼ 0 in the
explicit expressions for the uppercase script tensors.

This transformation is generated by a vector field sat-
isfying �gE�	 ¼ 2�ð�;	Þ. I assume the field can be ex-

panded as

�t ¼
X
n�0

rn�ðnÞ
t ; �a ¼

X
n�0

rn�ðnÞ
a ; (105)

where the coefficients �ðnÞ
t and �ðnÞ

a are decomposed as

�ðnÞ
t ¼ X

‘�0

�ðnÞ
L n̂L; (106)

�ðnÞ
a ¼ X

‘�1

ð	ðnÞ
aL�1n̂L�1 þ �ab

cn̂bL�1
ðnÞ
cL�1Þ þ

X
‘�0

�ðnÞ
L n̂a

L:

(107)

The Cartesian tensors �L, 	L, 
L, and �L are STF in L,
and they depend only on time.
Calculating 2�ð�;	Þ from the above expansion is straight-

forward. Demanding that the result of this calculation
agrees with Eqs. (102)–(104) at each order in r then

determines a sequence of equations for �ðnÞ. No Oð1=rÞ
terms appear in Eqs. (102)–(104), so from theOð1=rÞ terms

in 2�ð�;	Þ we find that @a�
ð0Þ
t ¼ 0 and @ða�

ð0Þ
bÞ ¼ 0. From

this we determine that �ð0Þ
� must be independent of angle:

�ð0Þ
t ¼ �ð0Þ and �ð0Þ

a ¼ 	ð0Þ
a .

From the Oðr0Þ terms, we find

@t�
ð0Þ ¼ �1

2Â
ð1;0Þ; (108)

ðna þ r@aÞ�ð1Þ
t ¼ �@t�

ð0Þ
a � Ĉð1;0Þ

a ; (109)

ðnða þ r@ðaÞ�ð1Þ
bÞ ¼ �1

2�abK̂
ð1;0Þ � 1

2Ĥ
ð1;0Þ
ab (110)

from the tt, ta, and ab component, respectively. The first of

these equations determines that �ð0Þ ¼ � 1
2

R
Âð1;0Þdt, the

second determines that �ð1Þ
a ¼ �Ĉð1;0Þ

a � @t	
ð0Þ
a , and the

last determines that �ð1Þ ¼ � 1
2 K̂

ð1;0Þ, 	ð1Þ
ab ¼ � 1

2 Ĥ
ð1;0Þ
ab ,

and 
ð1Þ
c is arbitrary. All other terms in �ð1Þ

� vanish.
Finally, from the OðrÞ terms, we find:

@t�
ð1Þ
t ¼ Ej

in
i	ð0Þ

j þ að1Þi ni � 1
2n

iÂð1;1Þ
i ; (111)

ð2na þ r@aÞ�ð2Þ
t ¼ �@t�

ð1Þ
a þ 2Eain

i�ð0Þ � 1
6@tðÂð1;0Þ

þ 3K̂ð1;0ÞÞna � Ĉð1;1Þ
ai ni � �ai

jD̂ð1;1Þ
j ni

� 2mEain
i � 2R0i

j
an

i	ð0Þ
j ; (112)

2ð2nða þ r@ðaÞ�ð2Þ
bÞ ¼ 4

3R0ðabÞini�ð0Þ � 4
3R

j
ðabÞin

i	ð0Þ
j

��abK̂
ð1;1Þ
i ni þ 12

7mEihan̂bi
i þ 16

5mEab

� Ĥð1;1Þ
abi n

i � 3
10ðK̂ð1;1Þ

ha � Âð1;1Þ
ha

þ 2@tĈ
ð1;1Þ
ha Þnbi þ 2

3mEijn̂ab
ij

� 4
3m�jkðaBk

bÞn
j � �i

j
ðaÎ

ð1;1Þ
bÞj ni: (113)

Again, these equations follow from the tt, ta, and ab
component, respectively. The first of them yields the equa-
tion of motion

@2t	
ð0Þ
i þ Ej

i	
ð0Þ
j ¼ 1

2Â
ð1;1Þ
i � @tĈ

ð1;0Þ
i � að1Þi ; (114)

the second of them yields

�ð2Þ ¼ � 1
12@tÂ

ð1;0Þ; (115)
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�ð2Þ
ab ¼ 5

16@tĤ
ð1;0Þ
ab þ 5

4Eab�
ð0Þ � 5

8Ĉ
ð1;1Þ
ab � 5

4mEab

þ 5
4�

j
ihaB

i
bi	

ð0Þ
j ; (116)

@t

ð1Þ
c ¼ �D̂ð1;1Þ

c þ 1
2�c

pq�ijpB
j
q	

ð0Þ
i ; (117)

and the last of them yields (after some algebra)

	ð2Þ
a ¼ �1

2E
j
a	

ð0Þ
j þ 3

16Â
ð1;1Þ
a � 3

8@tĈ
ð1;0Þ
a ; (118)

	ð2Þ
ab ¼ 6

5mEab; (119)

	ð2Þ
abc ¼ �1

4Ĥ
ð1;1Þ
abc ; (120)

�ð2Þ
a ¼ � 9

20 ðK̂ð1;1Þ
a þ 1

4Â
ð1;1Þ
a � 1

2@tĈ
ð1;0Þ
a Þ þ 1

2E
j
a	

ð0Þ
j ;

(121)

�ð2Þ
ab ¼ 1

3mEab; (122)


ð2Þ
ab ¼ �1

2Î
ð1;1Þ
ab � 2

3mBab � 2
3Bab�

ð0Þ þ 2
3�i

j
ðaE

i
bÞ	

ð0Þ
j :

(123)

All other terms vanish.
In summary, the first three terms in the expansion of the

gauge vector field are given by

�ð0Þ
t ¼ � 1

2

Z
Âð1;0Þdt; (124)

�ð0Þ
a ¼ 	ð0Þ

a ; (125)

where 	ð0Þ
a is a function of time satisfying the equation of

motion (114),

�ð1Þ
t ¼ ðĈð1;0Þ

i � @t	
ð0Þ
i Þni; (126)

�ð1Þ
a ¼ �a

ijni

�Z
D̂ð1;0Þ

j dtþ 1

2
�j

pq�‘kp

Z
Bk

q	
ð0Þ
‘ dt

�

þ 1

2
K̂ð1;0Þna þ 1

2
Ĥð1;0Þ

ai ni; (127)

and

�ð2Þ
t ¼ 5

8 ð � 1
2@tĤ

ð1;0Þ
ij þ 2Eij�

ð0Þ þ Ĉð1;1Þ
ij þ 2mEij

þ 2�kphiB
c
ji	

ð0Þ
k Þn̂ij þ 1

12@tÂ
ð1;0Þ; (128)

�ð2Þ
a ¼

�
1

2
	ð0Þ

j Ej
i þ

9

20

�
K̂ð1;1Þ

i þ 1

4
Âð1;1Þ
i � 1

2
@tĈ

ð1;0Þ
i

��
n̂ia

þ 1

3
mEijn̂ab

ij � 1

2

�
	ð0Þ

j Ej
a þ 3

8
Âð1;1Þ
a � 3

4
@tĈ

ð1;0Þ
a

�

� 6

5
mEain

i þ 1

4
Ĥð1;1Þ

abi n
i þ �aijn̂

ik

�
2

3
�cdðjEkÞc	

ð0Þ
d

þ 1

2
Îð1;1Þjk þ 2

3
mBjk � 1

3
Bjk

Z
Âð1;0Þdt

�
: (129)

This is the most general transformation that succeeds in
making the exterior solution identical to the interior solu-

tion, up to order "r. It has one free function of time: 	ð0Þ
a .

Despite the refinement of the matching condition for-
mulated in the zeroth-order matching procedure, this co-
ordinate transformation has failed to uniquely identify the
acceleration of the worldline. Instead, it determines an

equation for 	ð0Þ
a , given by Eq. (114). Consider the mean-

ing of this equation. In the internal solution, the mass
dipole and all dipole perturbations have been set to zero,
and an acceleration term in the buffer region corresponds
to a dipole perturbation. Equation (114) thus tells us that

for any given acceleration að1Þi , we can perform a small,
angle- and r-independent spatial translation (in the buffer
region) that ensures the dipole perturbation vanishes.

In order to arrive at the correct equation, að1Þi ¼
1
2 Â

ð1;1Þ
i � @tĈ

ð1;0Þ
i , one must further restrict the matching

condition. Recall that the coordinate transformation must

be small, which implies that 	ð0Þ
i must remain of order

unity. If the right-hand side of Eq. (114) does not vanish,

then 	ð0Þ
i will generically grow large; more precisely, on a

time scale such as�1=", which becomes unbounded in the

limit " ! 0,	ð0Þ
i will generically become larger than order

unity. However, it will not necessarily grow large (e.g., if
the right-hand side of Eq. (114) is purely oscillatory). Thus,
we cannot conclude that the right-hand side must vanish
based on the refined matching condition of the previous
section. Instead, I propose a final version of the refined
matching condition: if the inner expansion is written in a
mass-centered coordinate system and the outer expansion
is written in a worldline-centered coordinate system, then
the two expansions must be equal up to a necessarily small
coordinate transformation when the inner expansion is
expanded in the limit of small (outer) radial coordinate
distances. In other words, the coordinate transformation
must not only be small, but must necessarily remain so on
all time scales of interest.
With this final refinement, we can conclude the follow-

ing: if on an unbounded time scale, (i) the exact metric
possesses inner and outer expansions, (ii) there exists a
local coordinate system in which the metric in the inner
expansion is given by that of a tidally perturbed black hole,
up to errors of order "3, (iii) there exists a global coordinate
system in which the metric in the outer expansion is that of
the external background g plus a point-particle solution to
the wave equation (45), up to errors of order "2, and (iii)
the exact solution satisfies the refined matching condition
presented above, then the worldline defining the point-
particle perturbation has an acceleration given by

að1Þi ¼ 1
2Â

ð1;1Þ
i � @tĈ

ð1;0Þ
i ; (130)

where Âð1;1Þ
i and Ĉð1;0Þ

i are obtained by setting ai ¼ að0Þi ¼ 0
in Table I. This is the MiSaTaQuWa equation.
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It may be that some or all of these assumptions can be
removed, even within the context of matched asymptotic
expansions. For example, if the inner and outer expansions
exist, then the solution to the wave equation (45) is neces-
sarily that with a point-particle source. Also, the inner
metric could correspond to a body other than a black
hole. If it were taken to be a tidally perturbed, otherwise
spherically symmetric neutron star, for example, then the
equation of motion would be unaffected: outside the star,
the metric would be altered only by the presence of in-
duced tidal moments, which scale as "2‘þ1 and hence
would not appear in the first-order matching procedure
[57,58]. It is also possible that matching the inner and

outer solutions to higher order in r would show that 	ð0Þ
a

must vanish, and that the refined matching condition is
needlessly strong; however, there is no obvious indication
of the order at which this would occur.

E. Interpretation and commentary

Let us interpret the above calculation. First, note that a
large part of the transformation consists of removing tail
terms. This can be understood as follows: In the Fermi
coordinates centered on the worldline in g, the spacetime
appears to be that of a singular monopole perturbation hS,
plus a regular homogeneous perturbation hR, plus the field
of the smooth background metric g expanded about some
worldline. But in the coordinates X�, at a large distance
R 
 " from the body, the spacetime appears to be simply a
singular monopole perturbation atop some smooth back-
ground field that is expanded around a geodesic. Therefore,
transforming between these coordinates can be understood
as transforming from the Fermi coordinates of g into the
Fermi coordinates of gþ hR, where hR is the Detweiler-
Whiting regular field. Reference [65] contains further dis-
cussion of this point.

For example, the angle- and r-independent monopole

term Âð1;0Þ ¼ htailtt is removed because proper time must be
measured in gþ hR, rather than in g. Similarly, the dipole
terms in the perturbation are removed because the body is
nonspinning and nonaccelerating in gþ hR, rather than in
g. And if we proceeded to order "r2 in the matching
procedure, we would find that the tidal fields appearing
in the inner expansion are those of gþ hR, rather than
those of g.

These general points are shared with the derivation in
Refs. [37,54]. Note, however, that my results differ con-
siderably from those of Refs. [25,37,54]. The first differ-
ence is that in those earlier calculations it was found that
the tetrad on the worldline is not parallel propagated in the
external background spacetime. This followed from the
fact that the spin dipole perturbation in the internal solution
had been set to zero via a choice of gauge; effectively, the
Fermi tetrad was required to rotate with the perturbed
gravitational field, to set the total spin to zero. However,
this is not necessary: transforming from the external, non-

rotating frame, to the internal, rotating frame (or to a
nonrotating frame in gþ hR), simply requires a gauge

transformation (specifically generated by 
ð1Þ
c ). There is

no reason to require the external, background Fermi tetrad
in g to spin.
More importantly, my analysis has shown that the weak

matching condition that is normally utilized is actually too
weak to yield unique results. In order to arrive at an
equation of motion, I have had to formulate a refined
matching condition in a somewhat ad hoc manner. But
even if that refinement is accepted, all of these derivations
rely on another strong assumption: the form of the inner
expansion, which fixes not only the background metric, but
also the form the perturbations. By assuming that the
metric in the inner expansion appears to that of a singular
monopole perturbation atop some smooth background field
that is expanded around a geodesic, the matching deriva-
tions of the self-force seem to implicitly assume a gener-
alized equivalence principle: they assume that in vacuum,
the black hole, as viewed from a distance, moves on a
geodesic of some smooth spacetime. Given that such a
geodesic exists, the matching procedure provides a means
of determining which smooth spacetime the geodesic lies
in—but it does not prove the existence of the geodesic.
If the inner expansion is to be sufficiently general for the

matching procedure to derive the generalized equivalence
principle, rather than assume it, then one must use a less
restricted inner expansion. For example, at linear order, no
accelerationlike dipole term (i.e. one behaving as�r in the
buffer region) can arise in the inner expansion without also
introducing a mass dipole. However, in the inner expansion

an acceleration term "rað1Þ corresponds to a second-order

perturbation "2 ~Rað1Þ, so in order to maintain that no such
term can arise in mass-centered coordinates, one must
solve the second-order EFE in generality. In addition, if
one uses the refined matching condition or some variant of
it, one must prove that an acceleration term cannot arise
from a generically small coordinate transformation in the
buffer region. It is not immediately clear that at second
order, being in mass-centered coordinates implies that any
accelerationlike term must vanish.9 Solving the EFE, in
full generality, at second order also requires one to include
potentially time-evolving shifts in the mass and spin of the
black hole. The time evolution, if any, of these parameters
would be determined at second order. Indeed, a time-
dependent correction to the mass was found in Ref. [28].
In that paper, I performed a second-order analysis, but of

a different sort than the one just suggested. Instead of
assuming that the small body is a black hole, and trying
to solve the second-order EFE in the whole of that black
hole’s spacetime, I allowed the body to be arbitrarily

9Kinnersley’s photon rocket is an example of an exact solution
to the EFE with accelerationlike dipole terms sourced by radia-
tion [66–68].
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structured, and I solved the second-order EFE in the outer
expansion, and only in the buffer region. (See Refs. [15,27]
for similar approaches at first order and in the case of a
regular expansion, respectively.) Given the weaknesses of
the method of matched asymptotic expansions, such a
calculation provides a much firmer conclusion. However,
if one is willing to accept the additional assumptions,
matched asymptotic expansions provide a much simpler
means of finding an equation of motion.

V. CONCLUSION

In this paper, I have discussed three types of general
expansions: dual expansions, multiscale expansions, and a
self-consistent expansion. Each of these can be used to
systematically overcome the unbounded errors of a regular
expansion, and at least two of them will likely be required
in any successful analytical approach to the problem of
motion for asymptotically small bodies. For example,
whether a multiscale expansion or a self-consistent expan-
sion is used to eliminate secular errors, it must be com-
bined with an inner expansion to eliminate errors near the
small body. And these expansions may need to be supple-
mented with a third expansion in the wave zone.

However, these expansions are not merely powerful
tools for finding asymptotic solutions to differential equa-
tions: they have a rich underlying geometrical structure,
which I have sketched, but which warrants further study.
This underlying structure allows us to, for example, easily
define and conceptualize the representative worldline of a
black hole. Careful consideration of the underlying formal-
ism can also reveal subtle yet important features of a
calculation. For example, in moving from the realm of
traditional perturbation theory to one with potentially mul-
tiple coordinate systems, two types of matching conditions
arise, and the condition that has been implicitly used in
previous derivations of the gravitational self-force is sig-
nificantly weaker than the condition used in applied mathe-
matics. In order to arrive at unique results with this
matching condition, additional assumptions must be
made, which weakens the conclusions of a matching
calculation.

It is my hope that this paper, by highlighting points such
as these, will spur further research into the foundations of
singular perturbation techniques in GR, in order to prom-
ulgate their utility, illuminate their underlying structure,
and put them on a more precise and deductive mathemati-
cal basis.
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APPENDIX A: ILLUSTRATIVE EXAMPLE OF
MATCHED ASYMPTOTIC EXPANSIONS

To illustrate the procedure of matched asymptotic ex-
pansions, I consider the following boundary value prob-
lem:

"
d2f

dr2
þ df

dr
þ f ¼ 0; fð0Þ ¼ 0; fð1Þ ¼ 1: (A1)

I assume that f possesses an outer expansion fout ¼
fð0ÞoutðrÞ þ "fð1ÞoutðrÞ þ . . . . Substituting this expansion into
Eq. (130) and equating coefficients of each power of " to

zero, we find
dfð0Þout

dr þ fð0Þout ¼ 0 and
dfð1Þout

dr þ fð1Þout ¼ � d2fð0Þout

dr2
; the

boundary conditions are fð0Þoutð0Þ ¼ fð1Þoutð0Þ ¼ 0, fð0Þoutð1Þ ¼
1, and fð1Þoutð1Þ ¼ 0. The general solution to the zeroth-order

differential equation is fð0ÞoutðrÞ ¼ Cð0Þe�r. This solution can

satisfy the boundary condition at r ¼ 1 (by setting Cð0Þ ¼
e), but it cannot satisfy the condition at r ¼ 0. Hence, we
guess that there is a boundary layer at r ¼ 0, and we
choose only to satisfy the boundary condition at r ¼ 1.

Doing the same for fð1Þout, we find f
ð1Þ
out ¼ ð1� rÞe1�r, yield-

ing the first-order outer expansion

fout ¼ e1�r þ "ð1� rÞe1�r þ . . . (A2)

Now, in order to construct our inner expansion, we
require a choice of rescaled coordinate ~r. Suppose that
we choose ~r ¼ r="p. Substituting this into Eq. (A1) and
taking the limit " ! 0, we find that if 0< p< 1, then the

leading-order differential equation is
dfð0Þ

in

d~r ¼ 0. If p > 1,

then the equation becomes
d2fð0Þ

in

d~r2
¼ 0. And if p ¼ 1, then it

becomes
d2fð0Þ

in

d~r2
þ dfð0Þ

in

d~r ¼ 0. This is called a distinguished

limit (also known as a significant degeneration) of the
equation, because it contains within it all the terms appear-
ing in the other two limiting equations. We can intuit that a
distinguished limit will yield an approximation with maxi-
mal information. And although there is no guarantee that a
coordinate leading to a distinguished limit is the ideal
choice, it has proven to be the most reliable one.
So, proceeding with the rescaled variable ~r ¼ r=", I

rewrite Eq. (A1) as

d2f

d~r2
þ df

d~r
þ "f ¼ 0; fð0Þ ¼ 0; (A3)

where, technically, f stands in for c �f. I assume that fð~rÞ
possesses an inner expansion finð~r; "Þ ¼ fð0Þin ð~rÞ þ
"fð1Þin ð~rÞ þ . . . . After substituting this into Eq. (A3) and

solving order by order, we find

fin ¼ Dð0Þð1� e�~rÞ þ "½Dð1Þð1� e�~rÞ �Dð0Þ~rð1þ e�~rÞ�
þ . . . (A4)
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We can now make use of one of the matching conditions

to determine the integration constants Dð0Þ and Dð1Þ. Since
lim~r!1f

ð0Þ
in ð~rÞ ¼ Dð0Þ and limr!0f

ð0Þ
out ¼ e, the asymptotic

matching condition impliesDð0Þ ¼ e. In order to determine

Dð1Þ, I next make use of the coefficient-matching condition.
Rewriting fin as a function of r and expanding to order ",
we find

finðrÞ ¼ eþ "Dð1Þ � erþ . . . (A5)

Note that e�r=" ¼ oð"nÞ for all n > 0, so it vanishes in this
expansion. Dropping the ellipses, this yields the left-hand
side of Eq. (3):

�1
"c

��1
"c �f ¼ eþ "Dð1Þ � er: (A6)

Next, expanding fout to linear order in r, we find

fout ¼ eð1� rÞ þ "ð1� 2rÞeþ . . . (A7)

This expansion contains an order-"r term, which is smaller
than any term in Eq. (A5); such a term would be matched

by a term from fð2Þin , and so we can neglect it here. The extra

expansion on the right-hand side of Eq. (3) serves to
remove such terms, and so we have

�1
"c

��1
"c ��1

"f ¼ eð1� rÞ þ e": (A8)

Hence, the matching condition now determines thatDð1Þ ¼
e, and we have fully determined the inner expansion:

fin ¼ eð1� e�~rÞ þ "e½ð1� e�~rÞ � ~rð1þ e�~rÞ� þ . . .

(A9)

Using these results, we can construct the uniformly
accurate composite expansion

fcomp ¼ fe1�r þ "ð1� rÞe1�rg þ feð1� e�r=eÞ
þ "e½ð1� e�r=eÞ � r="ð1þ e�r="Þ�g
� feð1� rÞ þ e"g

¼ e1�r � ð1þ rÞe1�r=" þ "½ð1� rÞe1�r � e1�r="�;
(A10)

where the first equality should be compared to Eq. (6).
In this case, we can compare our results to the exact

solution to Eq. (A1), which is given by

f ¼ exp½�ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4"

p Þ 1
2"� � exp½�1ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4"
p Þ r

2"�
exp½�ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4"Þ 1

2"

q
� � exp½�ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4"
p

1
2"�

:

(A11)

Note that this function does not exist at " ¼ 0. Hence, the
regular series fout is not a Taylor series expansion of f.
However, the limit lim"!0f does exist, and fout is given byP "n

n! lim"!0
@nf
@"n . One can straightforwardly check that fin

(when written as a function of r) is a uniform, first-order
asymptotic approximation on an extended domain Din ¼

fr:0 � r 	 1g, and fout is a uniform, first-order approxi-
mation onDout ¼ fr:j" ln"j 	 r � 1g. So at first order, the
overlap region exists, and it is given by j" ln"j 	 r 	 1
(which is notably smaller than the buffer region). One can
also verify that fcomp is a uniform approximation on the

whole interval [0, 1]. Figure 5 shows a graphical compari-
son of the exact, inner, outer, and composite solutions.

APPENDIX B: ILLUSTRATIVE EXAMPLE OF
MULTISCALE EXPANSIONS

In this Appendix, I present an illustrative example of
multiscale expansions, along with a resultant discussion of
their utility. I consider the following differential equation,

FIG. 5 (color online). Comparisons of the exact solution f (the
solid black curve), the inner solution fin (dotted blue), the outer
solution fout (dot-dashed red), and the composite solution fcomp

(dashed black). The upper plot displays the solutions for " ¼
0:2; the lower, for " ¼ 0:1.
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adapted from the text by Kevorkian and Cole [44]

d2f

dt2
þ 2"

df

dt
þ f ¼ 0; fð0; "Þ ¼ 0;

df

dt
ð0; "Þ ¼ 1:

(B1)

Suppose we wish to solve this problem using a regular

power series fðt; "Þ ¼ P
n�0"

nfðnÞðtÞ. After substituting
this series and equating powers of ", we arrive at the
sequence of equations

d2fð0Þ

dt2
þ fð0Þ ¼ 0; fð0Þð0Þ ¼ 0;

dfð0Þ

dt
ð0Þ ¼ 1;

d2fð1Þ

dt2
þ fð1Þ ¼ �2

dfð0Þ

dt
; fð1Þð0Þ ¼ 0;

dfð1Þ

dt
ð0Þ ¼ 0:

(B2)

The solutions to these equations are easily found to be

fð0ÞðtÞ ¼ sint and fð1ÞðtÞ ¼ �t sint, so we have

f ðt; "Þ ¼ sint� "t sintþ . . . (B3)

Based on the unbounded growth of this solution, we sur-
mise that it fails to uniformly approximate the exact solu-
tion on any unbounded interval ½0; 1="p�, p > 0.

To improve on this solution, I adopt the following as-
sumption: there exists a function Fðt;~t; "Þ satisfying the
equality Fðt;~t ¼ "t; "Þ ¼ fðt; "Þ. Substituting this into
Eq. (B1) and making use of the chain rule d

dt ¼ @
@t þ " @

@~t ,

we arrive at

@2F

@t2
þ Fþ 2"

�
@2F

@~t@t
þ @F

@t

�
þ "2

�
@2F

@~t2
þ 2

@F

@~t

�
¼ 0:

(B4)

Now, the fundamental idea in a multiscale expansion is that
the function F satisfies this equation not just when ~t ¼ "t,
but also when ~t is treated as an independent coordinate.
This means that if one assumes a regular expansion

Fðt;~t; "Þ ¼ P
n�0"

nFðnÞðt;~tÞ, then the coefficient of each
power of " in Eq. (B4) must vanish; if we insisted on
solving the equation only at ~t ¼ "t, then the " dependence
embedded in ~t would prevent us from concluding that the
equation must be satisfied order by order in this way. (Of
course, we could always solve the equation by setting the
coefficient of each power of " to zero, but we could not
deduce that each coefficient must vanish.)

So, following this procedure, we arrive at a new se-
quence of equations,

@2Fð0Þ

@t2
þ Fð0Þ ¼ 0; (B5)

@2Fð1Þ

@t2
þ Fð1Þ ¼ �2

@Fð0Þ

@t
� 2

@2Fð0Þ

@~t@t
; (B6)

@2Fð2Þ

@t2
þ Fð2Þ ¼ �2

@Fð1Þ

@t
� 2

@2Fð1Þ

@~t@t
� @2Fð0Þ

@~t2
� 2

@Fð0Þ

@~t
;

(B7)

subject to the initial conditions FðnÞð0; 0Þ ¼ 0 for n � 0,
@Fð0Þ
@t ð0; 0Þ ¼ 1, and @FðnÞ

@t ð0; 0Þ ¼ � @Fðn�1Þ
@~t ð0; 0Þ for n > 0.

The solution to the first equation is

Fð0Þ ¼ Að0Þð~tÞ sintþ Bð0Þð~tÞ cost; (B8)

where the initial conditions on Fð0Þ do not fully determine

the slow evolution of Að0Þ and Bð0Þ, but only impose

Að0Þð0Þ ¼ 1 and Bð0Þð0Þ ¼ 0. The general solution to the
second equation is

Fð1Þ ¼ Að1Þð~tÞ sintþ Bð1Þð~tÞ cost�
�
Að0Þð~tÞ þ @Að0Þ

@~t
ð~tÞ
�

�ðcostþ 2t sintÞ �
�
Bð0Þð~tÞ þ @Bð0Þ

@~t
ð~tÞ
�
t cost:

(B9)

I now make a final assumption, called the no-secularity

condition: the ratio of successive terms, Fðnþ1Þ=FðnÞ, must
be bounded. This means that the terms t sint and t cost are
inadmissible, and so their coefficients must vanish. In this

case, we have dAð0Þ
d~t þ Að0Þ ¼ 0 and dBð0Þ

d~t þ Bð0Þ ¼ 0, subject

to Að0Þð0Þ ¼ 1 and Bð0Þð0Þ ¼ 0. Solving these equations, we

find Að0Þ ¼ e�~t and Bð0Þ ¼ 0. Hence, we have now fully

determine Fð0Þ to be

Fð0Þ ¼ e�~t sint: (B10)

And we have

Fð1Þ ¼ Að1Þð~tÞ sintþ Bð1Þð~tÞ cost; (B11)

where the initial conditions on Fð1Þ imply that Að1Þð0Þ ¼
Bð1Þð0Þ ¼ 0.
If we ceased our work here, there would be no signal that

our assumed expansion cannot, in fact, satisfy the non-
secularity condition. Following the same procedure for
Eq. (B7) as we did for Eq. (B6), we find that in order to

avoid secular growth in Fð2Þ, the functions Að1Þ and Bð1Þ

must satisfy the equations dAð1Þ
d~t þ Að1Þ þ 1

2 e
�~t ¼ 0 and

dBð1Þ
d~t þ Bð1Þ � e�~t ¼ 0, along with the initial conditions

Að1Þð0Þ ¼ Bð1Þð0Þ ¼ 0. The solutions to these equations

are the secularly growing functions Að1Þ ¼ ~te�~t and Bð1Þ ¼
� 1

2
~te�~t. Thus, in order to avoid secular growth in Fð2Þ, we

must introduce secular growth into Fð1Þ. In other words, the
expansion has failed.
In this case, we can determine the precise reason for the

failure. The exact solution to the original ODE is

f ðt; "Þ ¼ e�"tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p sinðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
Þ: (B12)
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If we expand this in a regular power series, we arrive at
fðt; "Þ ¼ sint� "t sintþ . . . , agreeing with the regular ex-
pansion given in Eq. (B3). But we find by inspection that
fðt; "Þ cannot be written as Fðt;~t; "Þ in such a way that a
regular expansion of F satisfies the no-secularity condition.

While e�"t can be written as e�~t to remove secular growth,

an expansion of sinðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
Þ will violate the condition.

However, we can write fðt; "Þ ¼ ~Fð�;~t; "Þ, where � ¼
�ð"Þt, �ð"Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
, and ~F is given by

~Fð�;~t; "Þ ¼ e�~t

�ð"Þ sin�: (B13)

This function possesses the regular expansion ~Fð�;~t; "Þ ¼
ð1þ 1

2"Þe�~t sin�þ oð"Þ, which, when expressed in terms

of t, is a uniform approximation to fðt; "Þ. One might
wonder if we could have discovered this expansion without
access to the exact solution. The answer, fortunately, is that

we could have: substituting f ¼ ~F ¼ P
"n ~FðnÞð�;~tÞ and

�ð"Þ ¼ P
n�0"

n�ðnÞ into Eq. (B1) and then solving for
arbitrary � and ~t yields a sequence of equations that

determine the ~FðnÞ and �ðnÞ [44].
There are several points to note from this example. First,

while an expansion method might appear to be working, it
might still fail at higher order. Second, although we cannot
be guaranteed that this failure will reveal itself in the
course of our perturbation calculation, that will typically
be the case, as it was here. Third, even though my assump-

tions about F proved to be false, and even though Fð0Þ þ
"Fð1Þ fails to provide a uniform first-order approximation

to f, the term Fð0Þ alone, the only term in F that was fully
determined without any obvious contradiction, does pro-
vide a uniform zeroth-order approximation. (This can
easily be checked by calculating the supremum norm of

jf� Fjð0Þ.)

APPENDIX C: GAUGE TRANSFORMATIONS IN
THE SELF-CONSISTENT EXPANSION

In the self-consistent expansion of Sec. III E, the outer
expansion is defined not only by holding x� fixed, but also
by demanding that the mass dipole of the body vanishes
when calculated in coordinates centered on �. If we per-
form a gauge transformation generated by a vector

�ð1Þ�ðx;�Þ, then the mass dipole will no longer vanish in
those coordinates. Hence, a new worldline �0 must be
constructed, such that in coordinates centered on that
new worldline, the mass dipole vanishes. In other words,
in the outer expansion we have the usual gauge freedom of
regular perturbation theory, so long as the worldline is
appropriately transformed as well: ðh; �Þ ! ðh0; �0Þ. The
transformation law for the worldline is well known [69]; it
will be worked out again presently. The only new feature of
this gauge freedom is that " dependence can be incorpo-
rated into the transformation, because the gauge vectors

can be functionals of the old worldline; this allows, for
example, a ‘‘first-order’’ gauge vector that is constructed
from the tail integral htail½��. However, to maintain the

form of the expansion, we must also insist that �ðnÞ ¼
Osð1Þ. Of course, in addition to this gauge freedom, one
can still perform global, "-independent background coor-
dinate transformations.
I first justify, to some extent, the assumption that the

Lorenz gauge condition can be imposed on the entirety of
h. If we begin with the metric in an arbitrary gauge, then
the gauge vectors "�ð1Þ½��, "2�ð2Þ½��, etc., induce the trans-
formation

h ! h0 ¼ hþ �h

¼ hþ "L�ð1Þgþ 1
2"

2ðL�ð2Þ þL2
�ð1ÞgÞ

þ "2L�ð1Þh
ð1Þ þ . . . : (C1)

If h0 is to satisfy the gauge condition L�½h0�, then � must

satisfy L�½�h� ¼ �L�½h�. After a trivial calculation, this
equation becomes

X
n>0

"n

n!
h��

ðnÞ ¼ �"L�½hð1Þ� � "2L�½hð2Þ�

� "2L�

�
1

2
L2

�ð1ÞgþL�ð1Þh
ð1Þ
�
þOð"3Þ:

(C2)

Assuming that this equation is solved for arbitrary �, we
can equate coefficients of powers of ", leading to a se-
quence of wave equations of the form

h��
ðnÞ ¼ W�

ðnÞ; (C3)

where W�
ðnÞ is a functional of �ð1Þ; . . . ; �ðn�1Þ and

hð1Þ; . . . ; hðnÞ. I seek a solution in the region � described
in Sec. III E. The formal solution reads

��
ðnÞ ¼ � 1

4

Z
�
G�

�0W�0
ðnÞdV

0 þ 1

4

I
@�

ðG�
�0r�0��0

ðnÞ

� ��0
ðnÞr�0G�

�0 ÞdS�0
; (C4)

where G��0 is the retarded Green’s function for the vector
wave equation. From this we see that the Lorenz gauge
condition can be adopted to any desired order of accuracy,
given the existence of self-consistent data on the worldtube
� of asymptotically small radius. I leave the question of
that data’s existence to future work.
I now turn to the question of how the worldline trans-

forms under a gauge transformation. I begin with the
equation of motion derived in Ref. [28], written in the
Lorenz gauge in Fermi coordinates centered on �:

@2t Ma þ EaiM
i ¼ �mað1Þa �BaiS

i

þm½12Âð1;1Þ
a � @tĈ

ð1;0Þ
a �a�¼0; (C5)

whereMi is the mass dipole of the small body, Si is its spin,
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and Âð1;1Þ
a and Ĉð1;0Þ

a are irreducible pieces of hð1Þ, specifi-
cally

Â
ð1;1Þ
a ¼ 3

4

Z
nah

ð1;1Þ
Ett d�; (C6)

Ĉ
ð1;0Þ
a ¼ hð1;0ÞEta : (C7)

They are given in terms of tail integrals in Table I.
The worldline is defined to be that of the body if Mi

vanishes for all time. Given that Miðt ¼ 0Þ ¼ @tM
iðt ¼

0Þ ¼ 0, this is possible if and only if the right-hand side of
Eq. (C5) vanishes. If, for simplicity, I neglect the
Papapetrou spin term, then the first-order acceleration of
� must be

að1Þa ¼ lim
r!0

�
3

4

Z na
2r

hð1ÞEttd�� @th
ð1Þ
Eta

�
; (C8)

¼ lim
r!0

1

4

Z �
1

2
@ah

ð1Þ
Ett � @th

ð1Þ
Eta

�
d�; (C9)

¼ lim
r!0

3

4

Z �
1

2
@ih

ð1Þ
Ett � @th

ð1Þ
Eti

�
niad�; (C10)

where it is understood that explicit appearances of the
acceleration are to be set to zero on the right-hand side.
The first equality follows directly from Eq. (C5) and the

definitions of Âð1;1Þ
a and Ĉð1;0Þ

a . The second and third equal-

ities follow from the STF decomposition of hð1Þ and the
integral identities (D17)–(D19). The form of the force in
the second line is the method of regularization used by
Quinn and Wald [26]; the form in the third line is used to
derive a gauge-invariant equation of motion, as was first
noted by Gralla [70].

Now, suppose that we had not chosen a worldline for
which the mass dipole vanishes, but instead had chosen
some ‘‘nearby’’ worldline. Then Eq. (C5) provides the
relationship between the acceleration of that worldline,
the mass dipole relative to it, and the first-order metric
perturbations (I again neglect spin for simplicity). The

mass dipole is given by Mi ¼ 3
8 limr!0

R
r2hð2Þtt nid�,

which has the covariant form

M�0 ¼ 3

8
lim
r!0

Z
g��0n�r

2hð2Þ��u�u�d�; (C11)

where a primed index corresponds to a point on the world-
line. Note that the parallel propagator does not interfere
with the angle-averaging, because in Fermi coordinates,
g�	0 ¼ ��

	 þOð"; r2Þ. One can also rewrite the first-order-

metric-perturbation terms in Eq. (C5) using the form given
in Eq. (C10). We then have Eq. (C5) in the covariant form

3

8
lim
r!0

Z
g��0

�
g�	

D2

d�2
þ E�	

�
n	r2hð2Þ��u�u�d�ja¼að0Þ

¼ � 3m

8
lim
r!0

Z
g��0 ð2hð1Þ	�;�

� hð1Þ��;	Þu�u�n	�d�ja¼að0Þ �mað1Þ
�0 : (C12)

Now consider a gauge transformation generated by

"�ð1Þ½�� þ 1
2"

2�ð2Þ½�� þ . . . , where �ð1Þ is bounded as r !
0, and �ð2Þ diverges as 1=r. More specifically, I assume the

expansions �ð1Þ ¼ �ð1;0Þðt; 
AÞ þOðrÞ and �ð2Þ ¼
1
r �

ð2;�1Þðt; 
AÞ þOð1Þ.10 This transformation preserves

the presumed form of the outer expansion, both in powers
of " and in powers of r. According to Eqs. (11) and (12),
the metric perturbations transform as

hð1Þ�� ! hð1Þ�� þ 2�ð1Þ
ð�;�Þ; (C13)

hð2Þ�� ! hð2Þ�� þ �ð2Þ
ð�;�Þ þ hð1Þ��;��ð1Þ� þ 2hð1Þ�ð��

ð1Þ�
;�Þ

þ �ð1Þ��ð1Þ
ð�;�Þ� þ �ð1Þ�

;��
ð1Þ
�;� þ �ð1Þ�

;ð��
ð1Þ
�Þ;�:

(C14)

Using the results for hð1Þ, the effect of this transformation

on hð2Þtt is given by

hð2Þtt ! hð2Þtt � 2m

r2
ni�ð1Þ

i þOðr�1Þ: (C15)

The order-1=r2 term arises from hð1Þ��;��ð1Þ� in the gauge

transformation. On the right-hand side of Eq. (C12), the
metric-perturbation terms transform as

ð2hð1Þ	�;� � hð1Þ��;	Þu�u�n	 ! ð2hð1Þ	�;� � hð1Þ��;	Þu�u�n	

þ 2n	

�
g�	

D2

d�2
þ E�

	

�
�ð1Þ
� :

(C16)

The only remaining term in the equation is mað1Þ� . If we
extend the acceleration off the worldline in any smooth
manner, then it defines a vector field that transforms as

a� ! a� þ "L�ð1Þa� þ . . . . Since að0Þ ¼ 0, this means

that að1Þ ! að1Þ—it is invariant under a gauge
transformation.
From these results, we find that the left- and right-hand

sides of Eq. (C12) transform in the same way:

LHS=RHS! LHS=RHS� 3

4
lim
r!0

Z
g��0n

	
�

�
g�	

D2

d�2
þ E�

	

�

� �ð1Þ
� d�: (C17)

Therefore, Eq. (C12) provides a gauge-invariant relation-
ship between the acceleration of a chosen fixed worldline,

10The dependence on � appears in the form of dependence on
proper time t. Each term could in addition depend on the
acceleration, but such dependence would not affect the result.
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the mass dipole of the body relative to that worldline, and
the first-order metric perturbations. So suppose that we
begin in the Lorenz gauge, and we choose the fixed world-
line � such that the mass dipole vanishes relative to it. Then
in some other gauge, the mass dipole will no longer vanish
relative to �, and we must adopt a different, nearby fixed
worldline �0. If the mass dipole is to vanish relative to �0,
then the acceleration of that new worldline must be given

by a� ¼ "að1Þ� þ oð"Þ, where

að1Þ
�0 ¼ � 3

8
lim
r!0

Z
g��0 ð2hð1Þ	�;� � hð1Þ��;	Þu�u�n	�d�:ja¼að0Þ :

(C18)

Hence, this is a covariant and gauge-invariant form of the
first-order acceleration. [By that I mean the equation is
valid in any gauge, not that the value of the acceleration is
the same in every gauge; under a gauge transformation, a
new fixed worldline is adopted, and the value of the accel-
eration on the new worldline is related to that on the old
worldline according to Eq. (C17).] An argument of this
form was first presented by Gralla [70] for the case of a
regular expansion of the worldline; it is now extended to
the case of a fixed-worldline expansion.

APPENDIX D: STF MULTIPOLE
DECOMPOSITIONS

This Appendix briefly reviews the use of STF decom-
positions and collects several useful formulas. Refer to
Ref. [52,71,72] for thorough reviews. All formulas in this
section are either taken directly from Refs. [71,72] or are
easily derivable from formulas therein.

Any Cartesian tensor field depending on two angles 
A

spanning a sphere can be expanded in a unique decom-
position in terms of symmetric trace-free tensors. Such a
decomposition is equivalent to a decomposition in terms of
tensorial harmonics, but it is sometimes more convenient.
It begins with the fact that the angular dependence of a
Cartesian tensor TSð
AÞ can be expanded in a series of the
form

TSð
AÞ ¼
X
‘�0

TShLin̂L; (D1)

where S and L denote multi-indices S ¼ i1 . . . is and L ¼
j1 . . . j‘, angular brackets denote an STF combination of
indices, na is a Cartesian unit vector, nL � nj1 . . .nj‘ , and

n̂L � nhLi. This is entirely equivalent to an expansion in
spherical harmonics. Each coefficient TShLi can be found

from the formula

TShLi ¼ ð2‘þ 1Þ!!
4‘!

Z
TSð
AÞn̂Ld�; (D2)

where !! is a double factorial (defined by x!! ¼
xðx� 2Þ . . . 1). These coefficients can then be decomposed
into irreducible STF tensors. For example, for s ¼ 1, we

have

TahLi ¼ T̂ðþ1Þ
aL þ �jahi‘ T̂

ð0Þ
L�1ij þ �ahi‘ T̂

ð�1Þ
L�1i; (D3)

where the T̂ðnÞ’s are STF tensors given by

T̂ ðþ1Þ
Lþ1 � ThLþ1i; (D4)

T̂ ð0Þ
L � ‘

‘þ 1
TpqhL�1�i‘i

pq; (D5)

T̂ ð�1Þ
L�1 �

2‘� 1

2‘þ 1
Tj

jL�1: (D6)

Similarly, for a symmetric tensor TS with s ¼ 2, we have

TabhLi ¼ STFLSTFabð�pai‘ T̂ðþ1Þ
bpL�1 þ �ai‘ T̂

ð0Þ
bL�1

þ �ai‘�
p
bi‘�1

T̂ð�1Þ
pL�2 þ �ai‘�bi‘�1

T̂ð�2Þ
L�2Þ

þ T̂ðþ2Þ
abL þ �abK̂L; (D7)

where

T̂ ðþ2Þ
Lþ2 � ThLþ2i; (D8)

T̂ ðþ1Þ
Lþ1 �

2‘

‘þ 2
STFLþ1ðThpi‘iqL�1�i‘þ1

pqÞ; (D9)

T̂ ð0Þ
L � 6‘ð2‘� 1Þ

ð‘þ 1Þð2‘þ 3Þ STFLðThji‘i
j
L�1Þ; (D10)

T̂ ð�1Þ
L�1 �

2ð‘� 1Þð2‘� 1Þ
ð‘þ 1Þð2‘þ 1Þ STFL�1ðThjpiq

j
L�2�i‘�1

pqÞ;
(D11)

T̂ ð�2Þ
L�2 �

2‘� 3

2‘þ 1
Thjki

jk
L�2 (D12)

K̂ L � 1
3T

j
jL: (D13)

These decompositions are equivalent to the formulas for
addition of angular momenta, J ¼ Sþ L, which results in
terms with angular momentum ‘� s � j � ‘þ s; the
superscript labels ð�nÞ in these formulas indicate by how
much each term’s angular momentum differs from ‘.
By substituting Eqs. (D3) and (D7) into Eq. (D1), we

find that a scalar, a Cartesian four-vector, and the symmet-
ric part of a rank-two Cartesian three-tensor can be decom-
posed as, respectively,

Tð
AÞ ¼ X
‘�0

ÂLn̂
L; (D14)

Tað
AÞ ¼
X
‘�1

½ĈaL�1n̂
L�1 þ �iajD̂iL�1n̂

jL�1�

þ X
‘�0

B̂Ln̂aL; (D15)
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TðabÞð
AÞ ¼ �ab

X
‘�0

K̂Ln̂
L þ X

‘�0

ÊLn̂ab
L

þ X
‘�1

½F̂L�1han̂bi
L�1 þ �ijðan̂bÞi

L�1ĜjL�1�

þ X
‘�2

½ĤabL�2n̂
L�2 þ �ijðaÎbÞjL�2n̂i

L�2�:

(D16)

Each term in these decompositions is algebraically inde-
pendent of all the other terms.

The unit vector ni satisfies the following integral iden-
tities:

Z
n̂Ld� ¼ 0 if ‘ > 0; (D17)

Z
nLd� ¼ 0 if ‘ is odd; (D18)

Z
nLd� ¼ 4

�fi1i2 . . .�i‘�1i‘g

ð‘þ 1Þ!! if ‘ is even; (D19)

where the curly braces indicate the smallest set of permu-
tations of indices that make the result symmetric. For
example, �fabncg ¼ �abnc þ �bcna þ �canb.

APPENDIX E: LINEAR PERTURBATION DUE TOA
POINT PARTICLE

In this Appendix, I present the solution to the wave
equation with a point-particle source. I also present the
Detweiler-Whiting decomposition [59] of the solution into
its singular and regular pieces.

1. Solution to the wave equation

The solution to the wave equation is11

hð1ÞE�	 ¼ 2m
Z
�
G�	�0	0 ð2u�0

u	
0 þ g�

0	0 Þdt0: (E1)

I seek an expansion of this equation in Fermi normal
coordinates, in the case that x is near to a point on �.
The domain of integration can be split into two: the points
in the convex normal neighborhood N ðxÞ—that is, the
points that are connected to x by a unique geodesic—and
the points in the complement of N ðxÞ. In the convex
normal neighborhood, the Green’s function can be decom-
posed as

G�	�0	0 ¼ U�	�0	0�ð�ðx; x0ÞÞ þ V�	�0	0
ð��ðx; x0ÞÞ:
(E2)

After performing a change of variables using dt0 ¼ d�

��0u
�0 to

evaluate the delta function, the metric perturbation be-
comes

hð1ÞE�	 ¼ 2m

rret
U�	�0	0 ð2u�0

u	
0 þ g�

0	0 Þ þ htail�	ðuÞ: (E3)

where primed indices now refer to the point on � con-
nected to x by a null geodesic; this point is given by z�ðuÞ,
where u is the retarded time; rret is the retarded distance

between x and z�ðuÞ, given by ��0u�
0
; and the tail integral

is given by

htail�	ðuÞ ¼ 2m
Z u

t<
V�	�0	0 ð2u�0

u	
0 þ g�

0	0 Þdt0

þ 2m
Z t<

�1
G�	�0	0 ð2u�0

u	
0 þ g�

0	0 Þdt0

¼ 2m
Z u�

�1
G�	�0	0 ð2u�0

u	
0 þ g�

0	0 Þdt0; (E4)

where t< is the first time at which the worldline enters
N ðxÞ. The two formulas for the tail are equivalent because
the upper limit of integration u� ¼ u� 0þ falls short of
the past light cone of x, avoiding the divergent behavior of
the Green’s function there.

The first term in hð1ÞE , sometimes called the ‘‘direct
term’’, can be expanded in powers of r using the following:

the near-coincidence expansion U�	�0	0 ¼ g�
0

� g	
0

	 ð1þ
Oðr3ÞÞ; the transformation between rret and the Fermi
radial distance r, given by

rret ¼ r½1þ 1
2rain

i � 1
8r

2aiajn
ij � 1

8r
2 _a ��u

�� � 1
3r

2 _ain
i

þ 1
6r

2Eijn
ij þOðr3Þ�; (E5)

and the coordinate expansion of the parallel-propagators,

obtained from the formula g�
0

� ¼ b�
0

I bI�, where the retarded
tetrad b�I is given in terms of the Fermi tetrad in
Eqs. (226)–(227) of Ref. [54], and the coordinate expan-
sion of the Fermi tetrad is given in Eqs. (123) and (124) of
the same reference. The tail integral can be similarly ex-
panded as follows: noting that u ¼ t� rþOðr2Þ, we can
expand htailðuÞ about t as htailðtÞ � r@th

tailðtÞ þ . . . ; each
term can then be expanded using the near-coincidence

expansions V�00	00
�	 ¼ g�

00
ð�g

�00
	ÞR

�00
�00	

00
�00 þOðrÞ and

htail�	ðtÞ ¼ g ��
�g

�	
	ðhtail�� �	

þ rhtail
�� �	 i

niÞ þOðr2Þ, where barred

indices correspond to the point �x ¼ zðtÞ, connected to x
by a spatial geodesic perpendicular to �, and htail

�� �	 ��
is given

by

htail
�� �	 ��

¼ 2m
Z t�

�1
r ��G �� �	�0	0 ð2u�0

u	
0 þ g�

0	0 Þdt0: (E6)

This yields the expansion

htail�	ðuÞ ¼ g ��
�g

�	
	ðhtail�� �	

þ rhtail
�� �	 i

ni � 4mrE �� �	Þ þOðr2Þ:
(E7)

11This is not the standard form presented in, e.g., Ref. [54];
however, one can easily show that it is equivalent to that form by
using the Green’s-function identities in Appendix A of Ref. [28].
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As with the direct part, the final coordinate expansion is
found by substituting g ��

� ¼ e ��
I e

I
�.

Combining the expansions of the direct and tail parts of
the perturbation, we arrive at the expansion in Fermi
coordinates:

hð1ÞEtt ¼
2m

r

�
1þ 3

2
rain

i þ 3

8
r2aiajn

ij � 15

8
r2 _a ��u

��

þ 1

3
r2 _ain

i þ 5

6
r2Eijn

ij

�
þ ð1þ 2rain

iÞhtail00

þ rhtail00in
i þOðr2Þ; (E8)

hð1ÞEta ¼ 4maa � 2
3mrR0iajn

ij þ 2mrEain
i � 2mr _aa

þ ð1þ rain
iÞhtail0a þ rhtail0ain

i þOðr2Þ; (E9)

hð1ÞEab ¼ 2m

r

�
1� 1

2
rain

i þ 3

8
r2aiajn

ij þ 1

8
r2 _a ��u

��

þ 1

3
r2 _ain

i � 1

6
r2Eijn

ij

�
�ab þ 4mraaab

� 2

3
mrRaibjn

ij � 4mrEab þ htailab þ rhtailabin
i

þOðr2Þ: (E10)

As the final step, each of these terms is decomposed into
irreducible STF pieces using the formulas (D1), (D3), and
(D7), to yield

hð1ÞEtt ¼
2m

r
þ Âð1;0Þ þ 3main

i þ r

�
4maia

i þ Âð1;1Þ
i ni

þm

�
3

4
ahiaji þ 5

3
Eij

�
n̂ij

�
þOðr2Þ; (E11)

hð1ÞEta ¼ Ĉð1;0Þ
a þ rðB̂ð1;1Þna � 2m _aa þ Ĉð1;1Þ

ai ni

þ �ai
jD̂ð1;1Þ

j ni þ 2
3m�aijB

j
kn̂

ikÞ þOðr2Þ; (E12)

hð1ÞEab ¼ 2m

r
�ab þ ðK̂ð1;0Þ �main

iÞ�ab þ Ĥð1;0Þ
ab

þ r

�
�ab

�
4

3
maia

i þ K̂ð1;1Þ
i ni þ 3

4
mahiajin̂ij

� 5

9
mEijn̂

ij

�
þ 4

3
mEi

han̂bii þ 4mahaabi � 38

9
mEab

þ Ĥð1;1Þ
abi n

i þ �i
j
ðaÎ

ð1;1Þ
bÞj ni þ F̂ð1;1Þ

ha nbi
�
þOðr2Þ;

(E13)

where the uppercase script tensors are specified in Table I.
The naming convention for those tensors follows that in
Eqs. (D14)–(D16).

2. Singular and regular pieces

The Detweiler-Whiting singular field is given by

hS�	 ¼ 2m
Z

GS
�	�0	0 ð2u�0

u	
0 þ g�

0	0 Þdt0; (E14)

where GS is the singular Green’s function. Using the
Hadamard decomposition

GS
�	�0	0 ¼ 1

2U�	�0	0�ð�Þ � 1
2V�	�0	0
ð�Þ; (E15)

we can write this as

hS�	 ¼ m

rret
U�	�0	0 ð2u�0

u	
0 þ g�

0	0 Þ

þ m

radv
U�	�00	00 ð2u�00

u	
00 þ g�

00	00 Þ

� 2m
Z v

u
V�	 �� �	

�
u ��u

�	 þ 1

2
g �� �	

�
d�t; (E16)

where primed indices now refer to the retarded point x0 ¼
zðuÞ, where u is the retarded time; double-primed indices
refer to the advanced point x00 ¼ zðvÞ, where v is advanced
time; radv is the advanced distance between x and z�ðvÞ,
given by ���00u�

00
; barred indices refer to points in the

segment of the worldline between zðuÞ and zðvÞ. The first
term in Eq. (E16) can be read off from the calculation of
the retarded field. The other terms are expanded using the
identities v ¼ uþ 2rþOðr2Þ and radv ¼ rretð1þ
2
3 r

2 _ain
iÞ; see Ref. [54] for details (though the expansion

therein is for hS�	;�, rather than hS�	). The final result is

hStt ¼ 2m

r
þ 3main

i þmr

�
4aia

i þ 3

4
ahiajin̂ij þ 5

3
Eijn̂

ij

�

þOðr2Þ; (E17)

hSta ¼ rð�2m _aa þ 2
3m�aijB

j
kn̂

ikÞ þOðr2Þ; (E18)

hSab ¼
2m

r
�ab �main

i�ab

þ r

�
�ab

�
4

3
maia

i þ
�
3

4
mahiaji � 5

9
mEij

�
n̂ij

�

þ 4

3
mEi

han̂bii þ 4mahaabi � 38

9
mEab

�
þOðr2Þ:

(E19)

The regular field could be calculated from the regular
Green’s function. But it is more straightforwardly calcu-

lated using hR�	 ¼ hð1Þ�	 � hS�	. The result is

hRtt ¼ Âð1;0Þ þ rÂð1;1Þ
i ni þOðr2Þ; (E20)

hRta ¼ Ĉð1;0Þ
a þ rðB̂ð1;1Þna þ Ĉð1;1Þ

ai ni þ �ai
jD̂ð1;1Þ

j niÞ
þOðr2Þ; (E21)
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hRab ¼ �abK̂
ð1;0Þ þ Ĥð1;0Þ

ab þ rð�abK̂
ð1;1Þ
i ni þ Ĥð1;1Þ

abi n
i

þ �i
j
ðaÎ

ð1;1Þ
bÞj ni þ F̂ð1;1Þ

ha nbiÞ þOðr2Þ: (E22)

APPENDIX F: METRIC OFATIDALLY
PERTURBED BLACK HOLE

In this Appendix, I present some general results for
perturbations of Schwarzschild in a light cone gauge.
Over the course of the calculation, I highlight the restric-
tions that must be imposed on the metric in order to arrive
at the usual result for a tidally perturbed black hole. In the
final section of the Appendix, I present that metric, along
with its expansion in the buffer region. The notation and
definitions in the first section mostly follows that of
Ref. [64].

1. Metric expansion, perturbation equations, and gauge
condition

The exact metric g is expanded as gIð ~X; "Þ ¼ gBð ~XÞ þ
Hð ~X; "Þ, where Hð ~X; "Þ ¼ "Hð1Þð ~XÞ þ "2Hð2Þð ~XÞ þ . . . ,
and ~X� ¼ ðU; ~R;�AÞ are (scaled) retarded Eddington-
Finkelstein coordinates adapted to the background metric
gB, where ~R � R=". As described in Sec. III E, the terms in
the inner expansion of g must satisfy the sequence of
Eqs. (60)–(62), which I rewrite here:

G
ð0Þ��
I ½gB� ¼ 0; (F1)

�Gð0Þ��
I ½Hð1Þ� ¼ �Gð1Þ��

I ½gB�; (F2)

�G
ð0Þ��
I ½Hð2Þ� ¼ ��2G

ð0Þ��
I ½Hð1Þ� � �G

ð1Þ��
I ½Hð1Þ�

�Gð2Þ��
I ½gB�;

..

.
(F3)

In these equations, GðnÞ
I and �kGðnÞ

I consist of the terms in
GI and �kGI that contain n derivatives with respect to U.
The first equation, (F1), is the ordinary Einstein equation
for gB, except that all derivatives with respect to U are
removed. As the solution to this equation, I take the
Schwarzschild metric

gB ¼ �fðU; ~RÞdU2 � 2dUdRþ R2d�2; (F4)

where f ¼ 1� 2MðUÞ
~R

, andMðUÞ is the Bondi mass of gB at

time U divided by the initial mass. The dependence on U
can not be determined at this stage, because time deriva-
tives appear only in the higher-order equations.

Rather than fully solving the perturbation Eqs. (F2) and
(F3), I will solve only certain parts of them, in order to
pinpoint several key points about the general solution.
First, I adopt the light cone gauge. This gauge choice

consists of setting HðnÞ
UR ¼ HðnÞ

RR ¼ HðnÞ
RA ¼ 0, which pre-

serves the geometrical meaning of the retarded coordinates

in the perturbed spacetime: U remains constant on each
outgoing light cone, and R remains an affine parameter on
outgoing light rays. Second, as a boundary condition, I
insist that the perturbations must be regular on the event
horizon.
Because of the spherical symmetry of the background, it

is convenient to expand the perturbations in tensorial har-
monics:

HðnÞ
ab ¼ X

‘m

PðnÞ‘m
ab Y‘m; (F5)

HðnÞ
aA ¼ R

X
‘m

ðJðnÞ‘ma Y‘m
A þH‘m

a X‘m
A Þ; (F6)

HðnÞ
AB ¼ R2

X
‘m

ðKðnÞ‘m�ABY
‘m þGðnÞ‘mY‘m

AB þHðnÞ‘m
2 X‘m

ABÞ;

(F7)

where I have split the coordinates into the two sets Xa ¼
ðU;RÞ and �A, the various harmonics will be defined
below, and the coefficients of the harmonics are functions
of U and ~R. In the context of this expansion, the light cone

gauge is imposed by setting PðnÞ‘m
UR ¼ PðnÞ‘m

RR ¼ PðnÞ‘m
RA ¼ 0.

I define the various harmonics as follows: The scalar
functions Y‘mð�AÞ are the usual orthonormal spherical
harmonics, which satisfy ½�ABDADB þ ‘ð‘þ 1Þ�Y‘m ¼
0, where �AB is the metric of a unit two-sphere, and DA

is the covariant derivative compatible with�AB. The even-
parity vector harmonics Y‘m

A and odd-parity vector har-
monics X‘m

A are defined as

Y‘m
A � DAY

‘m; X‘m
A � ��A

BDBY
‘m; (F8)

where �AB is the Levi-Civita tensor on the unit two-sphere.
The even-parity and odd-parity tensor harmonics Y‘m

AB and
X‘m
AB are defined as

Y‘m
AB ¼ ½DADB þ 1

2‘ð‘þ 1Þ�AB�Y‘m; (F9)

X‘m
AB ¼ �1

2ð�ACDB þ �B
CDAÞDCY

‘m: (F10)

In this Appendix, I will forgo any discussion of the odd-
parity terms, since the even-parity terms are sufficient for
my purpose of delineating the types of restrictions required
to arrive at the usual form of a tidally perturbed metric.
In order to determine the effect of a gauge transforma-

tion, I write an even-parity gauge vector �ð1Þ
� ¼

ð�ð1Þ
a ;�ð1Þ

A Þ as
�ð1Þ

a ¼ X
‘m

�ð1Þ‘m
a Y‘m; �ð1Þ

A ¼ R
X
‘m

�ð1Þ‘mY‘m
A : (F11)

This vector has the following first-order effects:

�Pð1Þ
UU ¼ � 2M

~R2
�ð1Þ
U þ 2Mf

~R2
�ð1Þ
R ; (F12)
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�Pð1Þ
UR ¼ � @

@ ~R
�ð1Þ
U þ 2M

~R2
�ð1Þ
R ; (F13)

�Pð1Þ
RR ¼ �2

@

@ ~R
�ð1Þ
R ; (F14)

�Jð1ÞU ¼ � 1
~R
�ð1Þ
U ; (F15)

�Jð1ÞR ¼ � @

@ ~R
�ð1Þ � 1

~R
�ð1Þ
R þ 1

~R
�ð1Þ; (F16)

�Kð1Þ ¼ � 2f
~R
�ð1Þ
R þ 2

~R
�ð1Þ
U þ ‘ð‘þ 1Þ

~R
�ð1Þ; (F17)

�Gð1Þ ¼ � 2
~R
�ð1Þ; (F18)

where for simplicity I have omitted the harmonic labels
‘m. I neglect U derivatives in the transformation, since
they are second-order effects in the present scheme.

Now, due to the spherical symmetry of the background
metric, each mode in the harmonic expansion decouples
from all the others in �GI. Likewise, the even- and odd-
parity sectors decouple. I write the even-parity terms in

�Gð0Þ
I as

Qab
‘m ¼

Z
�Gð0Þab

I Y‘md�; (F19)

Qa
‘m ¼ 2R2

‘ð‘þ 1Þ
Z

�Gð0ÞaA
I Y‘m

A d�; (F20)

Q[
‘m ¼ R2

Z
�Gð0ÞAB

I �ABY
‘md�; (F21)

Q]
‘m ¼ 4R4

ð‘� 1Þ‘ð‘þ 1Þð‘þ 2Þ
Z

�Gð0ÞAB
I Y‘m

ABd�: (F22)

Explicitly, these gauge-invariant quantities are given by
[64]

QUU ¼ � @2

@ ~R2
~K � 2

~R

@

@ ~R
~K þ f

~R

@

@ ~R
~PRR � 2

~R

@

@ ~R
~PUR

þ ‘ð‘þ 1Þ ~Rþ 4M

2 ~R3
~PRR; (F23)

QUR ¼ � ~R�M
~R2

@

@ ~R
~K þ 1

~R

@

@ ~R
~PUU þ 1

~R2
~PUU

� ‘ð‘þ 1Þ þ 4

2 ~R2
~PUR þ f

~R2
~PRR þ �

2 ~R2
~K; (F24)

QRR ¼ ð ~R�MÞf
~R2

@

@ ~R
~K � f

~R

@

@ ~R
~PUU þ� ~Rþ 4M

2 ~R3
~PUU

þ 2f
~R2

~PUR � f2

~R2
~PRR � �f

2 ~R2
~K; (F25)

QU ¼ � @

@ ~R
~PUR þ @

@ ~R
~K þ 2

~R
~PUR � ~R�M

~R2
~PRR; (F26)

QR ¼ @

@ ~R
~PUU � f

@

@ ~R
~K � 2ð ~R�MÞ

~R2
~PUR

þ ð ~R�MÞf
~R2

~PRR; (F27)

Q[ ¼� @2

@ ~R2
~PUU þ f

@2

@ ~R2
~K� 2

~R

@

@ ~R
~PUU þ 2ð ~R�MÞ

~R2

� @

@ ~R
~PUR � ð ~R�MÞf

~R2

@

@ ~R
~PRR þ 2ð ~R�MÞ

~R2

@

@ ~R
~K

þ ‘ð‘þ 1Þ
~R2

~PUR � ‘ð‘þ 1Þ ~R2 � 2�M ~R� 4M2

2 ~R4
~PRR;

(F28)

Q] ¼ 2 ~PUR � f ~PRR; (F29)

where� � ‘ð‘þ 1Þ � 2, and I have introduced the gauge-
invariant combinations

~PUU ¼ PUU � 2M
~R

JU þ 2Mf
~R

JR �Mf
@

@ ~R
G; (F30)

~PUR ¼ PUR � @

@ ~R
ð ~RJUÞ þ 2M

~R
JR �M

@

@ ~R
G; (F31)

~P RR ¼ PRR � 2
@

@ ~R
ð ~RJRÞ þ ~R2 @2

@ ~R2
Gþ 2 ~R

@

@ ~R
G;

(F32)

~K ¼ K þ 2JU � 2fJR þ ~Rf
@

@ ~R
Gþ 1

2
‘ð‘þ 1ÞG:

(F33)

I have omitted the indices ðnÞ‘m for simplicity.

2. First-order solution

The first-order equation reads �Gð0Þ�	
I ½Hð1Þ� ¼

�Gð1Þ
I ½gB�. The source term in this equation has a single

nonvanishing component,

Gð1ÞRR
I ½gB� ¼ 2

~R2

dM

dU
: (F34)

Thus, in the notation introduced above, the RR, ‘ ¼ 0
equation reads QRR

ð0Þ00 ¼ 4
ffiffiffiffi


p
~R�2 dM

dU , while all the other

equations are source-free. For ‘ � 2, the equations can be
solved for arbitrary ‘. However, because various quantities
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are defined only for ‘ � 2, the equations for the low multi-
poles ‘ ¼ 0 and ‘ ¼ 1 must be dealt with individually. I

will write undetermined functions of U as AðnÞ‘m
k ðUÞ.

I begin by solving the ‘ ¼ 0 equations. For ‘ ¼ 0, the
quantities Ja, G, Q

a, and Q] are undefined. So the only

equations are QUU
ð0Þ00½Hð1Þ� ¼ QUR

ð0Þ00½Hð1Þ� ¼ Q[
ð0Þ00½Hð1Þ� ¼

0 and QRR
ð0Þ00½Hð1Þ� ¼ 4

ffiffiffiffi


p ~R�2 dM
dU , in which Ja and G are

set to zero. Given the gauge condition, the only functions

appearing in these equations are Kð1Þ00 and Pð1Þ00
UU . I first

solve QUU
ð0Þ00½Hð1Þ� ¼ 0, which reads explicitly � @2Kð1Þ00

@ ~R2 �
2
~R
@Kð1Þ00
@ ~R

¼ 0. The solution to this equation is

Kð1Þ00 ¼ Að1Þ00
1 þ 1

~R
Að1Þ00
2 : (F35)

Substituting this into QUR
ð0Þ00½Hð1Þ� ¼ 0 yields an equation

for Pð1Þ00
UU that can be readily solved to find

Pð1Þ00
UU ¼ Að1Þ00

1 � M
~R2

Að1Þ00
2 þ 1

~R
Að1Þ00
3 : (F36)

Substituting these results intoQ[
ð0Þ00½Hð1Þ� andQRR

ð0Þ00½Hð1Þ�,
we find that both quantities are identically zero. Hence,

from the equation QRR
ð0Þ00½Hð1Þ� ¼ 4

ffiffiffiffi


p
~R�2 dM

dU we can con-

clude

dM

dU
¼ 0; (F37)

that is, the mass of the internal background is constant. The

functions Að1Þ00
k , k ¼ 1, 2, 3, can be be determined only by

solving the second-order EFE.
Next, I proceed to the ‘ ¼ 1 equations. For ‘ ¼ 1, the

quantities G and Q] are undefined, and the field equations

read Qab
ð0Þ1m½Hð1Þ� ¼ Qa

ð0Þ1m½Hð1Þ� ¼ Q[
ð0Þ1m½Hð1Þ� ¼ 0, in

which G is set to zero. Solving QUU
ð0Þ1m ¼ 0 yields

Kð1Þ1m ¼ Að1Þ1m
1 þ 1

~R
Að1Þ1m
2 : (F38)

Substituting this into QU
ð0Þ1m ¼ 0 and solving then yields

Jð1Þ1mU ¼ � 1

2 ~R
Að1Þ1m
2 þ 1

~R2
Að1Þ1m
3 þ ~RAð1Þ1m

4 : (F39)

Substituting these results into QR
ð0Þ1m ¼ 0 and solving then

yields

Pð1Þ1m
UU ¼ �M

~R2
Að1Þ1m
2 þ 1

~R2
Að1Þ1m
3 � 2 ~RAð1Þ1m

4 þ Að1Þ1m
5 :

(F40)

Two of the remaining equations,QUR
ð0Þ1m ¼ 0 ¼ QRR

ð0Þ1m fixes

several of the free functions in these solutions: Að1Þ1m
4 ¼ 0

and Að1Þ1m
5 ¼ 0. The final equation, Q[

ð0Þ1m ¼ 0, yields no

further information. Putting these results together, we find

Pð1Þ1m
UU ¼ �M

~R2
Að1Þ1m
2 þ 1

~R2
Að1Þ1m
3 ; (F41)

Jð1Þ1mU ¼ � 1

2 ~R
Að1Þ1m
2 þ 1

~R2
Að1Þ1m
3 ; (F42)

Kð1Þ1m ¼ Að1Þ1m
1 þ 1

~R
Að1Þ1m
2 : (F43)

Finally, I proceed to the ‘ � 2 equations. As with ‘ ¼ 0,
1, the equation QUU

ð0Þ‘m ¼ 0 can be immediately solved to

find

Kð1Þ‘m ¼ Að1Þ‘m
1 þ 1

~R
Að1Þ‘m
2 : (F44)

Using this result and QR
ð0Þ‘m ¼ 0, we can express Pð1Þ‘m

UU in

terms of Gð1Þ‘m and Jð1Þ‘mU ; next, we can use QU
ð0Þ‘m ¼ 0 to

express Gð1Þ‘m in terms of Jð1Þ‘mU ; finally, substituting these

results into Q]
ð0Þ‘m ¼ 0, we can solve for Jð1Þ‘mU to find

Jð1Þ‘mU ¼� 1

2 ~R
Að1Þ‘m
2 þ 4Mþ� ~R

~R2
Að1Þ‘m
4

þAð1Þ‘m
5

~R‘ð�fÞ‘�1
2F1

�
2� ‘;1� ‘;�2‘;�2M

~Rf

�

þ Að1Þ‘m
6

~R‘þ1ð�fÞ2þ‘ 2F1

�
2þ ‘;3þ ‘; 2þ 2‘;�2M

~Rf

�
;

(F45)

where 2F1 is a hypergeometric function. The term next to

Að1Þ‘m
6 diverges at the unperturbed event horizon, ~R ¼ 2M,

violating the boundary condition. Therefore, we have

Að1Þ‘m
6 ¼ 0.12 Next, I make my first restriction of the solu-

tion: if Jð1Þ‘mU is expressed in terms of R ¼ " ~R, then the

term next to Að1Þ‘m
5 behaves as "�‘. Since Hð1Þ is accom-

panied by a factor of " in the metric, this term behaves as
"1�‘. If I assume that R� r, where r is, for example, the
Fermi radial coordinate centered on the body’s worldline in
the external spacetime, then these negative powers of "
would also appear in the outer expansion. By assumption,
no negative powers do appear in the outer expansion;

therefore, I set Að1Þ‘m
5 ¼ 0. So Jð1Þ‘mU simplifies to

Jð1Þ‘mU ¼ � 1

2 ~R
Að1Þ‘m
2 þ 4Mþ� ~R

~R2
Að1Þ‘m
4 : (F46)

Recall that we had expressed Pð1Þ‘m
UU and Gð1Þ‘m in terms

of Jð1Þ‘mU . With Jð1Þ‘mU determined, we now have

12The term next to Að1Þ‘m
6 corresponds to an induced multipole

moment. The fact that it must vanish agrees with the no-hair
theorem.
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Pð1Þ‘m
UU ¼ �M

~R2
ðAð1Þ‘m

2 � 2‘ð‘þ 1ÞAð1Þ‘m
4 Þ þ Að1Þ‘m

3 ;

(F47)

Gð1Þ‘m ¼ � 4
~R
Að1Þ‘m
4 þ Að1Þ‘m

7 : (F48)

Substituting these results into QUR
ð0Þ‘m ¼ 0 and then

QRR
ð0Þ‘m ¼ 0, we determine

Að1Þ‘m
7 ¼ � 2Að1Þ‘m

1

‘ð‘þ 1Þ ; Að1Þ‘m
3 ¼ 0: (F49)

The sole remaining equation, Q[
ð1Þ‘m ¼ 0, yields no new

information. Hence, the first-order calculation is now com-

plete. We have found that dMdU ¼ 0; the ‘ ¼ 0modes in Hð1Þ

are given by Eqs. (F35) and (F36); the ‘ ¼ 1 modes are
given by Eqs. (F41)–(F43); and the ‘ � 2 modes are given
by

Pð1Þ‘m
UU ¼ �M

~R2
ðAð1Þ‘m

2 � 2‘ð‘þ 1ÞAð1Þ‘m
4 Þ; (F50)

Jð1Þ‘mU ¼ � 1

2 ~R
Að1Þ‘m
2 þ 4Mþ� ~R

~R2
Að1Þ‘m
4 ; (F51)

Kð1Þ‘m ¼ Að1Þ‘m
1 þ 1

~R
Að1Þ‘m
2 ; (F52)

Gð1Þ‘m ¼ � 4
~R
Að1Þ‘m
4 � 2Að1Þ‘m

1

‘ð‘þ 1Þ : (F53)

These results can be simplified by a refinement of the

light cone gauge. For ‘ ¼ 0, the function Að1Þ00
2 can be

removed via

�ð1Þ00
R ¼ �ð1Þ00

R ðUÞ; (F54)

�ð1Þ00
U ¼ f�ð1Þ00

R � 1
2A

ð1Þ00
2 ; (F55)

leaving

Pð1Þ00
UU ¼ Að1Þ00

1 þ 1
~R
Að1Þ00
3 ; (F56)

Kð1Þ00 ¼ Að1Þ00
1 : (F57)

Although this does not exhaust the residual freedom within
the light cone gauge, since �RðUÞ is arbitrary, the remain-

ing freedom cannot be used to remove either Að1Þ00
1 or

Að1Þ00
3 . However, if we were to transform out of the light

cone gauge, Að1Þ00
1 could be removed, leaving only a 1= ~R

mass monopole term, corresponding to a time-dependent
correction to the mass.

For ‘ � 1, we can removed all Að1Þ‘m
k via

�ð1Þ1m
U ¼ � 1

2
Að1Þ1m
2 þ 1

~R
Að1Þ1m
3 ; (F58)

�ð1Þ1m
R ¼ � 1

2M
Að1Þ1m
3 ; (F59)

�ð1Þ1m ¼ � 1

2
~RAð1Þ1m

2 � 1

2M
� 1

2
Að1Þ1m
3 ; (F60)

and

�ð1Þ‘m
U ¼ � 1

2
Að1Þ‘m
2 þ

�
�þ 4M

~R

�
Að1Þ‘m
4 ; (F61)

�ð1Þ‘m
R ¼ �2Að1Þ‘m

4 ; (F62)

�ð1Þ‘m ¼ �2Að1Þ‘m
4 � ~RAð1Þ‘m

1

‘ð‘þ 1Þ : (F63)

This exhausts the residual freedom in the gauge condition.
In order to arrive at the usual form of a tidally perturbed

metric, we must go beyond these gauge refinements by

setting the entirety ofHð1Þ to zero. That is, we must choose

Að1Þ00
1 ¼ Að1Þ00

3 ¼ 0. If the odd-parity calculation had been

performed, we would find that ‘ ¼ 1 terms, corresponding
to time-dependent spin terms, must be set to zero. (Recall
also that I have restricted the possible perturbations by
disallowing terms that would contain negative powers of
" in the unscaled coordinates.) Hence, we can conclude
that to arrive at the usual metric of a tidally perturbed black
hole, we must restrict the perturbation by setting numerous
functions to zero, without any evident justification.

3. Second-order solution

With Hð1Þ set to zero, and with M determined to be a
constant, the second-order EFE becomes the homogene-
ous, linear equation

�Gð0Þ�	
I ½Hð2Þ� ¼ 0: (F64)

This equation is solved in the same manner as the first-
order equation. The calculation of the low multipoles ‘ ¼
0 and ‘ ¼ 1 proceeds just as at first order, yielding

Pð2Þ00
UU ¼ Að2Þ00

1 �M
~R
Að2Þ00
2 þ 1

~R
Að2Þ00
3 ; (F65)

Kð2Þ00 ¼ Að2Þ00
1 þ 1

~R
Að2Þ00
2 ; (F66)

and

Pð2Þ1m
UU ¼ �M

~R2
Að2Þ1m
2 þ 1

~R2
Að2Þ1m
3 ; (F67)
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Jð2Þ1mU ¼ � 1

2 ~R
Að2Þ1m
2 þ 1

~R2
Að2Þ1m
3 ; (F68)

Kð2Þ1m ¼ Að2Þ1m
1 þ 1

~R
Að2Þ1m
2 : (F69)

For ‘ � 2, the calculation proceeds just as at first order,
up until the point marked by Eq. (F45). When the term that
diverges on the event horizon is removed, the analogue of
that equation reads

Jð2Þ‘mU ¼� 1

2 ~R
Að2Þ‘m
2 þ 4Mþ� ~R

~R2
Að2Þ‘m
4

þAð2Þ‘m
5

~R‘ð�fÞ‘�1
2F1

�
2� ‘;1� ‘;�2‘;�2M

~Rf

�
:

(F70)

At first order, this solution was simplified by setting the
coefficient of ~R‘ to zero, because it led to negative powers
of " when written in terms of R. However, at second order,
this term will be multiplied by "2 in the metric, so it will
scale as "2�‘. Hence, the term is acceptable for ‘ ¼ 2, but
must be set to zero for ‘ > 2. I will hence deal with these
two cases separately.

For ‘ ¼ 2, we have

2F1

�
2� ‘; 1� ‘;�2‘;� 2M

~Rf

�
¼ 1; (F71)

and so

Jð2Þ2mU ¼ � 1

2 ~R
Að2Þ2m
2 þ 4Mþ 4 ~R

~R2
Að2Þ2m
4 � Að2Þ2m

5
~R2f:

(F72)

As at first order, this determines Pð2Þ2m
UU and Gð2Þ2m:

Pð2Þ‘m
UU ¼ �M

~R2
ðAð2Þ2m

2 � 12Að2Þ2m
4 Þ þ Að2Þ2m

3

þ 3 ~Rð ~R� 4MÞAð2Þ2m
5 ; (F73)

Gð2Þ‘m ¼ � 4
~R
Að2Þ2m
4 þ ~R2Að2Þ2m

5 þ Að2Þ2m
7 : (F74)

As at first order, we determine Að2Þ2m
3 and Að2Þ2m

7 from

QUR
ð0Þ‘m ¼ 0 and then QRR

ð0Þ‘m ¼ 0, which yield

Að2Þ2m
7 ¼ �1

3A
ð2Þ2m
1 � 2M2Að2Þ2m

5 ; (F75)

Að2Þ2m
3 ¼ 12M2Að2Þ2m

5 : (F76)

Putting these results together, we have the solution

Pð2Þ2m
UU ¼ 3 ~R2f2Að2Þ2m

5 � M
~R2

Að2Þ2m
2 þ 12M

~R2
Að2Þ2m
4 ; (F77)

Jð2Þ2mU ¼ � 1

2 ~R
Að2Þ2m
2 þ 4

~R

�
1þM

~R

�
Að2Þ2m
4 � ~R2fAð2Þ2m

5 ;

(F78)

Kð2Þ2m ¼ Að2Þ2m
1 þ 1

~R
Að2Þ2m
2 ; (F79)

Gð2Þ2m ¼ � 1

3
Að2Þ2m
1 þ ~R2

�
1� 2M2

~R2

�
Að2Þ2m
5 � 4

~R
Að2Þ2m
4 :

(F80)

For ‘ > 2, the calculation is proceeds just as at first
order, leading to the solution

Pð2Þ‘m
UU ¼ �M

~R2
Að2Þ‘m
2 þ 2M

~R2
‘ð‘þ 1ÞAð2Þ‘m

4 ; (F81)

Jð2Þ‘mU ¼ � 1

2 ~R
Að2Þ‘m
2 þ� ~Rþ 4M

~R2
Að2Þ‘m
4 ; (F82)

Kð2Þ‘m ¼ Að2Þ‘m
1 þ 1

~R
Að2Þ‘m
2 ; (F83)

Gð2Þ‘m ¼ � 2

‘ð‘þ 1ÞA
ð2Þ‘m
1 � 4

~R
Að2Þ‘m
4 : (F84)

Just as at first order, with an appropriate gauge refine-

ment, we can remove the functions Að2Þ00
2 , Að2Þ1m

k , Að2Þ‘m
1 ,

Að2Þ‘m
2 , and Að2Þ‘m

4 , where ‘ � 2, thereby exhausting the
freedom within the light cone gauge. In order to arrive at
the usual form of the tidally perturbed black hole metric,

we must then set Að2Þ00
1 ¼ Að2Þ00

3 ¼ 0. (And I again remind

the reader that I have disallowed terms that would possess a
negative power of " when expressed in unscaled coordi-

nates.) This leaves only one undetermined function: Að2Þ‘m
5 .

Although I do not show the odd-parity calculation, it yields
an analogous result: to yield the usual form of the metric,
all but one of the possible undetermined functions must be
set to zero, leaving a single quadrupole term. After impos-
ing these restrictions, the only nonvanishing components of
the metric perturbation are

Hð2Þ
UU ¼ X

m

3 ~R2f2Að2Þ2m
5 Y2m; (F85)

Hð2Þ
UA ¼ �R

X
m

ð ~R2fAð2Þ2m
5 Y2m

A þ ~R2fBð2Þ2mX2m
A Þ; (F86)

Hð2Þ
AB ¼ R2

X
m

�
~R2

�
1� 2M2

~R2

�
Að2Þ2m
5 Y2m

AB þ ~R2Bð2Þ2mX2m
AB

�
:

(F87)
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4. Tidally perturbed black hole metric and its expansion
in the buffer region

After the metric perturbations have been restricted as
described in the preceding two sections, the inner expan-
sion has the following form:

gIUU ¼ �fþ "2
X
m

3 ~R2f2Að2Þ2m
5 Y2m þOð"3Þ; (F88)

gIUA ¼ �R

�
"2 ~R2f

X
m

Að2Þ2m
5 Y2m

A

þ "2 ~R2f
X
m

Bð2Þ2mX2m
A þOð"3Þ

�
; (F89)

gIAB ¼ R2

�
�AB þ "2 ~R2

�
1� 2M2

~R2

�X
m

Að2Þ2m
5 Y2m

AB

þ "2 ~R2
X
m

Bð2Þ2mX2m
AB þOð"3Þ

�
; (F90)

along with the exact results gIUR ¼ �1 and gIRR ¼
gIRA ¼ 0. Although it is written in a slightly different
form, this is the usual metric of a tidally perturbed black
hole. It is characterized by (i) having only quadrupole
perturbations, and (ii) those perturbations scaling as ~R2

for large ~R.

To write this metric in terms of a pair of tidal fields ~Eab

and ~Bab, I follow Appendix A of Ref. [73]; I also make use
of notation and simple identities from the Sec. 3.3.7 of
Ref. [54]. First, I define the quantities

~E � � �3
X
m

Að2Þ2m
5 Y2m; (F91)

~B � � �3
X
m

Bð2Þ2mY2m: (F92)

Next, I define the derived quantities

~E �
A � 1

2DA
~E�; (F93)

~B �
A � �1

2�A
BDB

~B�; (F94)

and

~E �
AB � ðDADB þ 3�ABÞ~E�; (F95)

~B �
AB � �1

2ð�ACDB þ �B
CDAÞDC

~B�: (F96)

Using the definitions of ~E�, ~B�, Y‘m
A , Y‘m

AB , X
‘m
A , and X‘m

AB,
we can express the derived quantities as

~E �
A � � 3

2

X
m

Að2Þ2m
5 Y2m

A ; (F97)

~B �
A � � 3

2

X
m

Bð2Þ2mX2m
A ; (F98)

and

~E �
AB � �3

X
m

Að2Þ2m
5 Y2m

AB; (F99)

~B �
AB � �3

X
m

Bð2Þ2mX2m
AB: (F100)

In terms of these quantities, we can write the metric as

gIUU ¼ �f� "2 ~R2f2~E� þOð"3Þ; (F101)

gIUA ¼ R½23"2 ~R2fð~E� þ ~B�Þ þOð"3Þ�; (F102)

gIAB ¼ R2

�
�AB � 1

3
"2 ~R2

�
1� 2M2

~R2

�
~E�
AB

� 1

3
"2 ~R2 ~B�

AB þOð"3Þ
�
: (F103)

This is the usual form of the metric of a tidally perturbed
black hole.

Now, because ~E� and ~B�
a are, respectively, even- and

odd-parity quadrupole terms, they can be written in terms
of an STF decomposition:

~E � ¼ ~Eab�
habi; ~B�

a ¼ �acd
~Bd
b�

hbci: (F104)

By applying the definitions (F93) and (F95), we find

~E �
A ¼ �a

A
~Eab�

b; ~B�
A ¼ �a

A�acd
~Bd
b�

hbci; (F105)

and

~E �
AB ¼ 2�a

A�
b
B
~Eab þ�AB

~Eab�
habi; (F106)

~B �
AB ¼ �a

A�
b
B�acd

~Bd
b�

c þ�a
A�

b
B�bcd

~Bd
a�

c: (F107)

When written in more explicit form, these expressions
agree with those in Ref. [54]. In order to arrive at these
results, one requires the identities

�AB ¼ �abc�
a
A�

b
B�

c; (F108)

�A
B�b

B ¼ ��a
A�ac

b�c; (F109)

DADB�
a ¼ ��a�AB: (F110)

Finally, I convert to Cartesian coordinates ðU; YaÞ,
adapting the identities of Sec. 3.3.7 of Ref. [54]. The result
is

gIUU ¼ �f� "2f2 ~R2~E� þOð"3Þ; (F111)

gIUa ¼ ��a þ 2
3"

2 ~R2fð~E�
a þ ~B�

aÞ þOð"3Þ; (112)

gIab ¼ �ab ��ab � 1

3
"2 ~R2

�
1� 2M2

~R2

�
~E�
ab �

1

3
"2 ~R2 ~B�

ab

þOð"3Þ: (F113)
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where ~E�
a ¼ ~E�

A�
A
a ,

~B�
a ¼ ~B�

A�
A
a , ~E

�
ab ¼ ~E�

AB�
A
a�

B
b , and

~B�
ab ¼ ~B�

AB�
A
a�

B
b . When this is expanded in the buffer

region, by rewriting it in terms of the unscaled radial
function R and then re-expanding for small ", it becomes

gIUU ¼ �1þ "
2M

R
� R2E� þ 4"MRE�

þOð"2; "R2; R3Þ; (F114)

gIUa ¼ �Na þ 2
3R

2ðE�
a þB�

aÞ � 4
3MRðE�

a þB�
aÞ

þOð"2; "R2; R3Þ (F115)

gIab ¼ �ab � Nab � 1
3R

2ðE�
ab þB�

abÞ þOð"2; "R2; R3Þ:
(F116)

In order to agree with the external Lorenz gauge, I
switch to harmonic coordinates via the transformation

Ya ¼ Xa0 þ "MNa0 , where Na0 ¼ Xa0=R0 (note that, in
the buffer region at first order in ", this transformation to
harmonic coordinates cannot be distinguished from a trans-
formation to isotropic coordinates). I then switch from
retarded coordinates to Fermi-type coordinates ðT; XaÞ
via the transformation

U ¼ T � R� 2"MðlnRþ 1
6R

2EijN
ijÞ þ 1

6R
3EijN

ij;

(F117)

Xa0 ¼ Xa � 1
3R

3Ra
b0cN

bc þ 1
6R

3Ea
bN

b; (F118)

where Na ¼ Xa=R. After performing these transforma-
tions and decomposing the result into irreducible STF
pieces, we arrive at

gITT ¼ �1þ "
2M

R
þ 5

3
"MR~EijN̂

ij � R2~EijN̂
ij

þOð"2; "R2; R3Þ; (F119)

gITa ¼ 2"MR~EaiN
i þ 2

3"MR�aij
~Bj
kN̂

ik þ 2
3R

2�aik
~Bk
jN̂

ij

þOð"2; "R2; R3Þ; (F120)

gIab¼�ab

�
1þ"

2M

R
�5

9
"MR~EijN̂

ij�1

9
R2~EijN̂

ij

�

þ64

21
"MR~EihaN̂bi

i�46

45
"MR~Eab�1

9
R2~Eab

þ2

3
"MR~EijN̂ab

ijþ2

3
R2~EihaN̂i

bi �
4

3
"MR�jkða ~B

k
bÞNj

þOð"2;"R2;R3Þ: (F121)
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