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String theory suggests the simultaneous presence of many ultralight axions, possibly populating each

decade of mass down to the Hubble scale 10�33 eV. Conversely the presence of such a plenitude of axions

(an axiverse) would be evidence for string theory, since it arises due to the topological complexity of the

extra-dimensional manifold and is ad hoc in a theory with just the four familiar dimensions. We

investigate how several upcoming astrophysical experiments will be observationally exploring the

possible existence of such axions over a vast mass range from 10�33 eV to 10�10 eV. Axions with

masses between 10�33 eV to 10�28 eV can cause a rotation of the cosmic microwave background

polarization that is constant throughout the sky. The predicted rotation angle is independent of the scale

of inflation and the axion decay constant, and is of order �� 1=137 –within reach of the just launched

Planck satellite. Axions in the mass range 10�28 eV to 10�18 eV give rise to multiple steps in the matter

power spectrum, providing us with a snapshot of the axiverse that will be probed by galaxy surveys–such

as BOSS, and 21 cm line tomography. Axions in the mass range 10�22 eV to 10�10 eV can affect the

dynamics and gravitational wave emission of rapidly rotating astrophysical black holes through the

Penrose superradiance process. When the axion Compton wavelength is of order of the black hole size, the

axions develop superradiant atomic bound states around the black hole nucleus. Their occupation number

grows exponentially by extracting rotational energy and angular momentum from the ergosphere,

culminating in a rotating Bose-Einstein axion condensate emitting gravitational waves. For black holes

lighter than�107 solar masses accretion cannot replenish the spin of the black hole, creating mass gaps in

the spectrum of rapidly rotating black holes that diagnose the presence of destabilizing axions. In

particular, the highly rotating black hole in the X-ray binary LMC X-1 implies an upper limit on the

decay constant of the QCD axion fa & 2� 1017 GeV, much below the Planck mass. This reach can be

improved down to the grand unification scale fa & 2� 1016 GeV, by observing smaller stellar mass black

holes.

DOI: 10.1103/PhysRevD.81.123530 PACS numbers: 98.80.Es, 11.25.Wx, 14.80.Va

The Principle of Plenitude: \This best of all possible
worlds will contain all possibilities, with our nite experi-
ence of eternity giving no reason to dispute nature’s per-
fection." Gottfried Leibniz, \Theodicee".

I. A PLENITUDE OFAXIONS

A. The QCD axion

The standard model (SM) QCD action can be appended
by the CP-violating topological interaction [1]

S� ¼ �

32�2

Z
d4x����� TrG��G��: (1)

This term is a total derivative and does not contribute to the
classical field equations. However, it affects physics at the
quantum level due to the existence of topologically non-
trivial field configurations. Under the shift � ! �þ 2� the
action (1) changes by 2�, indicating that � is a periodic
parameter, with a period equal to 2�. In the presence of

fermions, as a consequence of the chiral anomaly, the
actual physical parameter is not � itself, but ��—the sum
of � and the overall phase of the quark mass matrix

�� ¼ �þ argdetmq: (2)

Stringent bounds on the neutron electric dipole moment,
dn < 2:9� 10�26e cm [2], imply that ��, if nonzero, should
be tiny �� & 10�10. This is the strong CP problem—one of
the most tantalizing hints for physics beyond the SM. It
shares some important features with other more severe
fine-tuning problems of the SM—the cosmological con-
stant and the weak hierarchy problems. Just as its more
famous cousins, the strong CP problem requires an ex-
treme fine-tuning of apparently unrelated quantities, � and
argdetmq, to produce a tiny �� as required by observations.

Moreover, because of the observed CP-violation in the
quark sector no symmetry of the SM is restored as �� !
0. The important difference with the cosmological constant
and hierarchy problems is that the smallness of �� does not
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appear to be a necessary prerequisite for the existence of
life. Consequently, unlike these other mysteries there is no
ambiguity on whether the strong CP problem has an an-
thropic or a dynamical solution. The smallness of �� is a
clear call for a new dynamical mechanism.

An attractive solution to the strong CP problem is to
promote � to a dynamical field—the QCD axion a. At the
classical level the axion action is assumed to be invariant
under shifts a ! aþ const. In other words, at the classical
level the axion is a Nambu–Goldstone boson of a sponta-
neously broken global symmetry (Peccei–Quinn (PQ)
symmetry) [3–5]. This symmetry is preserved in the quan-
tum theory at the perturbative level. However, the PQ
symmetry is anomalous in the presence of topologically
nontrivial QCD field configurations, explicitly breaking
the shift symmetry and generating a periodic potential
for the axion. The resulting axion vacuum expectation
value (vev) then automatically adjusts itself to cancel ��,
solving the strong CP problem. The physical properties of
the QCD axion are to large extent determined by the scale
fa of the PQ symmetry breaking, similar to how the low
energy pion interactions are fixed by the pion decay con-
stant f�. In particular the axion mass ma is given by

ma � 6� 10�10 eV

�
1016 GeV

fa

�
: (3)

Apart from the coupling to gluons (1) the QCD axion may
have similar couplings to other gauge bosons, most notably
photons, and derivative couplings to fermions. The precise
numerical values of these couplings are model dependent,
but their overall scale is determined by the axion decay
constant fa. Laboratory searches and astrophysical con-
straints exclude values of fa below �109 GeV and, for
sufficiently large couplings to photons and, assuming dark
matter abundance for the QCD axion, a small region
around 1011 GeV [6].

It would be especially interesting to find a QCD axion
with fa � 1012 GeV. Indeed, in this case for typical initial
values of the axion field the relic abundance of axions
would be higher than the critical density leading to the
overclosure of the Universe [7–9]. This does not imply that
high fa’s are excluded—if the observed (quasi)homoge-
neous Universe were just a small patch of the inhomoge-
neous Multiverse, then the axion initial conditions may be
different from place to place and life can only develop in
rare regions with an atypically small axion density [10].
This anthropic argument is of a particularly mild form—
the post-inflationary probability distribution of the axion
field in the Multiverse is calculable since the axion prop-
erties are entirely encoded in a low-energy effective quan-
tum field theory and the axion is defined in the finite range
ð0; 2�faÞ [11]. Consequently, finding a high fa QCD axion
would not only explain the smallness of ��, but also provide
strong support to the idea of eternal inflation, which is a

natural way to create the Multiverse, and possibly the idea
of the string landscape more generally.

B. String theory axions

We see that the axion provides a potentially testable
dynamical solution to the strong CP problem and its dis-
covery may have even more profound implications.
However, at the effective field theory level it is hard to
judge how natural it is to have such a ‘‘fake’’ global PQ
symmetry which is explicitly broken exclusively by QCD.
Note, that in order not to spoil the solution to the strong CP
problem all other sources of explicit PQ symmetry break-
ing should be at least 10 orders of magnitude down with
respect to the potential generated by the QCD anomaly,
and one may be especially cautious about the viability of
such a proposal, given the common lore that global sym-
metries always get broken by quantum gravitational effects
[12–14]. This makes it natural to inquire whether axions
arise naturally in the most developed quantum theory of
gravity—string theory.
Pseudoscalar fields with axionlike properties generically

arise in string theory compactifications as Kaluza–Klein
(KK) zero modes of antisymmetric tensor fields [15,16].
Examples of such fields include, for instance, the Neveu–
Schwarz 2-form B2, present in all string theories, or the
Ramond–Ramond formsC0;2;4 of type IIB theory, orC1;3 of

type IIA theory. An interesting property of higher-order
antisymmetric tensor fields as opposed to scalar fields (0-
forms), is that upon compactification they typically give
rise to a large number of KK zero modes, determined by
the topology of the compact manifold M6. For instance,
the number of massless scalar fields resulting from a single
twoform BMN or CMN is equal to the number of (homo-
logically nonequivalent) closed two-cycles Ci in M6.
Namely, by taking both of the indices of the twoform along
a cycle one gets a massless (pseudo)scalar four-
dimensional field corresponding to that cycle. More for-
mally, the KK expansion for the twoform contains

B ¼ 1

2�

X
biðxÞ!iðyÞ þ . . . ; (4)

where x are noncompact coordinates, y are compact coor-
dinates, and !i form the basis of closed nonexact two-
forms (cohomologies) dual to the cycles Ci, i.e., satisfyingZ

Ci
!j ¼ 	ij: (5)

A similar argument applies to higher-form fields, for in-
stance the number of (pseudo)scalar zero modes corre-
sponding to C4 is equal to the number of homologically
nonequivalent four-cycles. Of fundamental importance to
what follows is the fact that in the vast majority of com-
pactifications the number of cycles is quite large, of order
several hundred, even up to 105 [17]. The basic reason for
this is simple combinatorics—it is natural to expect many
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nonequivalent embeddings of a closed two-surface into a
reasonably complicated six-dimensional manifold. For in-
stance, even the simplest Calabi–Yau manifold—the six-
torus—has ð6� 5Þ=2 ¼ 15 different two-cycles and the
same number of four-cycles. Of course, this example is
too simple to give rise to a realistic gauge and matter field
spectrum. Typically, even the simplest string compactifi-
cations incorporating the standard model gauge group and
chiral fermion content give rise to more than a hundred
two-cycles.

The four-dimensional scalar fields resulting from this
KK reduction are not only massless, but have zero potential
as a consequence of the higher-dimensional gauge invari-
ance of the antisymmetric tensor field action. This invari-
ance guarantees that no potential is generated at any order
of perturbation theory. However, antisymmetric tensor
fields have Chern–Simons couplings, which are crucial
for the Green–Schwarz mechanism for anomaly cancella-
tion. Upon KK reduction these terms can result in the
axionic couplings (1) to gauge fields [18]. In type IIB
theory this happens, for instance, for a C2 axion if there
is a D5 brane wrapped over the corresponding two-cycle,
or for a C4 axion if there is a D7 brane wrapped over the
corresponding four-cycle, both of which are natural occur-
rences in the string landscape. So we see that string theory
has a potential of providing many particles with the quali-
tative properties of the QCD axion.

Nevertheless, the above arguments do not suffice to say
that the QCD axion is predicted by string theory. First,
string axions can be at tree level completely removed from
the spectrum of light fields by the presence of fluxes,
branes and/or orientifold planes [17,19]. For instance, the
DBI action of a D5 brane depends on the NS twoformBMN ,
so that wrapping such a brane around a two-cycle makes
the corresponding axion heavy, with mass of order the
string scale. Similarly, the RR C2 axion can be lifted by
wrapping a NS5 brane over the corresponding two-cycle.
From now on we will focus exclusively on the axions that
escape such tree-level liftings.

Secondly, even if an axion does not become heavy due to
these tree-level effects its potential always acquires non-
perturbative contributions from one or more of a variety of
sources. These include, world sheet instantons [20], eucli-
dean D-branes wrapping the cycle [21], gravitational in-
stantons [14], and gauge theory instantons [1] if the axion
couples to a non-Abelian gauge group. In many cases these
corrections can be large enough to ruin the solution of the
strong CP problem.

We see, that one cannot really make a case that the QCD
axion is predicted by string theory, but rather the require-
ment for one of the string axions to be responsible for a
solution of the strong CP problem puts a restriction on
string theory model building. For instance, it disfavors the
possibility that all string moduli are stabilized by a super-
symmetry(SUSY)–preserving mechanism, as happens, for

instance, in the KKLT scenario [22]. Indeed, if that were
the case axions would receive large SUSY preserving
masses together with their superpartners—saxions. On
the other hand if not all of the moduli are stabilized in a
supersymmetric way, saxions (and axinos) receive masses
after SUSY breaking, while axions, being (pseudo)
Nambu–Goldstone bosons, are protected from these
contributions.
Note that SUSY breaking masses for moduli typically

come out in the 1 GeV–1 TeV range. This gives rise to the
infamous cosmological moduli problem—light scalar
moduli may overclose the Universe and/or their late decays
may destroy successful BBN predictions and introduce
nonthermal distortions into the cosmic microwave back-
ground (CMB) spectrum. The most straightforward way to
get around this problem is to assume that the expansion
rate during inflation was relatively low, such that the
moduli are heavy during inflation and not produced,
Hinfl & 0:1 GeV. The corresponding inflationary energy
scale is still quite high Einfl � 108 GeV, so that if reheating
is efficient the temperature is high enough for successful
baryogenesis. Such a cosmological scenario will be as-
sumed throughout this paper.1

As we will argue now, even though one cannot really
predict the existence of the QCD axion in string theory, the
assumption that the QCD axion does exist and is respon-
sible for the smallness of ��, combined with the facts about
string theory axions reviewed above, not only puts restric-
tions on string theory model building, but also strongly
suggests a rather predictive scenario with a distinctive set
of signatures for upcoming cosmological and astronomical
observations.
The point is, as we already stressed, there is no reason

for the solution to the strong CP problem to have an
anthropic origin. Consequently, neither the very existence
of the QCD axion, nor the extreme smallness of all non-
QCD contributions to its potential should be a result of a
fine-tuning. Instead, it has to be a natural dynamical con-
sequence of the properties of the compactification mani-
fold giving rise to the string theory vacuum where we live.
But given that string theory compactifications have a po-
tential of producing hundreds of axions it would be really
surprising in such a situation if only the QCD axion were
then light. Note also that of all axions only one linear
combination gets a mass from the explicit breaking due
to QCD. Consequently, we come to the conclusion that if
one takes seriously the QCD axion as a solution to the
strong CP problem then in string theory one expects to find
many light axions. As we will see, these axions, if they
exist, can be observed in a number of different ways.

1In principle this can be relaxed if there is no low energy
SUSY. Note, that still there is a quite restrictive bound on the
inflation scale from isocurvature perturbations [23,24], if the PQ
symmetry is broken during inflation, which is the natural option
for the string theory axions.
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The two principal parameters characterizing a general
string theory axion are its mass m and decay constant fa.
Unlike for the QCD axion these two parameters are not
related by (3). What values for these parameters can one
expect? First, it is convenient to parametrize the effective
four-dimensional axion Lagrangian as

L ¼ f2a
2
ð@aÞ2 ��4UðaÞ; (6)

where Uð�Þ is a periodic function with a period equal to
2�. The overall scale of the potential �4 is related to fa
and m through

m ¼ �2=fa: (7)

Since it is nonperturbative effects that provide the potential
in cases where the axion escapes tree-level lifting, we write
the scale in the following form,

�4 ¼ �4e�S; (8)

where � is a UV energy scale. In general more than one
type of nonperturabtive effect contributes to the potential
so �4UðaÞ should be thought of

X
i

�4
i UiðaÞ (9)

where each of the dynamical scales �4
i has the form (8). If

the axion potential arises from the superpotential generated
by string instantons, then the UV scale � is the geometric
mean of the string/Planck scale (which sets the scale of
instanton physics in this case) and of the SUSY breaking

scale F1=2
susy,

�4 � FsusyM
2
Pl: (10)

In string theory constructions one finds, in many cases,
that fa and S are related by [16,25,26]

fa �MPl

S
: (11)

This relation has a simple geometrical origin. Namely, the
four-dimensional Planck mass is determined by the typical
size L of the compactification manifold as

M2
Pl � g�2

s L6l�8
s ; (12)

where ls and gs are the string length and the string cou-
pling. Similarly, the axion decay constant is also deter-
mined by these parameters and by the area A of the cycle.
For instance, for an axion coming from the RR twoform in
IIB theory integrated on a 2-cycle of area A� L2 one has

f2a � L6l�4
s A�2 � L2l�4

s ; (13)

where the two factors of A�1 came from the powers of the
inverse metric in the kinetic term of the twoform before

KK reduction. The action of the string instanton generating
the axion potential is given by the product of the tension of
the Euclidian D brane that wraps the cycle and the area of
the cycle,

S� g�1
s l�2

s L2; (14)

thus giving the relation (11).2 The value of fa can be
significantly lower than the estimate (11) if a compactifi-
cation manifold is significantly anisotropic, or, particu-
larly, if a large amount of warping is present. However,
in explicit examples fa never comes out parametrically
higher than (11) and it was argued that the inequality

fa &
MPl

S
(15)

follows from very basic principles of black hole physics
(‘‘gravity as the weakest force’’ conjecture) [27].
Throughout most of the discussion in this paper we assume
that the compactification manifold is not too anisotropic
and the amount of warping is limited, so that the relation
(11) is a good guide for the possible values of fa.
In the case of the QCD axion not only QCD nonpertur-

bative effects but also string instantons give contributions
to the potential. To solve the strong CP problem and not
lead to a too large ��, string instanton contributions to the
potential must be subdominant by a factor of 1010 com-
pared to QCD, implying, for intermediate scale supersym-
metry breaking, a string instanton action

S * 200: (16)

This discussion then suggests the following scenario for
the distribution of fa andm for different axions. The values
of fa are inversely proportional to the area of the corre-
sponding cycle, so they do not change much from one
axion to another. Given that the compactification is such
that S * 200 for string contributions to the QCD axion,
and no special fine-tuning is allowed, all axion decay
constants in this scenario are likely to be close to the
GUT scale MGUT ’ 2� 1016 GeV. On the other hand,
axion masses are exponentially sensitive to the area of
the cycles, so that we expect their values to be homoge-
neously distributed on a log scale. Given that, as argued
above, one can expect several hundred different cycles this
suggests that there may be several string axions per decade
of energy. It has also been argued recently that the mixing
of axions with vacuum energy cancelling 4-forms in the
Bousso-Polchinski landscape can yield axion mass scan-

2Similarly, if the axion potential is generated by the strong
dynamics of a gauge sector coming from a stack of D5 branes
wrapping the two-cycle, the gauge instanton contribution goes as
e�S with S� 2�=� where the inverse gauge coupling at the
compactification scale is given by 1=�� L2=gsl

2
s so that one

again arrives at (11). Clearly, all these relations hold up to order
one numerical factors.
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nings [28]. In Sec. II we show that there are a variety of
observational windows on such axions.

C. Wilsonian scanning of the cosmological constant

Interestingly, the same number—of order several hun-
dred cycles—is also suggested by the requirement that
there are enough different fluxes to implement the
Bousso–Polchinski mechanism for scanning the cosmo-
logical constant [29,30]. The famous 10500 estimate for
the number of different string vacua comes out exactly as a
result of having 500 different fluxes, corresponding to
different cycles. At this point one may wonder whether
the axion potential itself may be responsible for the scan-
ning of the cosmological constant in the presence of sev-
eral hundred axions.

Indeed, as explained in Ref. [31], in the presence of N
decoupled scalar fields with two or more nondegenerate
minima each with energies of order M4

GUT there are of

order 2N minima that scan the total vacuum energy down
to �2�NM4

GUT. In fact, there is no reason why the minima

of the individual fields should all be at the same scale
M4

GUT. For instance, the opposite extreme is to have at

each energy scale a field with several minima, which
cancels the vacuum energy at this particular scale. An
intuitive way to think about this kind of scanning is to
write the vacuum energy in the binary system. If each field
has two minima, the choice of the minima amounts to
putting either 0 or 1 at the corresponding digital place.
We will refer to this model of scanning as Wilsonian
scanning. Of course, in a generic case, instead of one of
these two extreme cases of either uniformly distributed
scalars or all scalars at the GUT scale, there could be
densely populated mass ranges with gaps in between
them. The general condition for successful scanning is
that the number of scalars above any energy E0 is larger
than � logðMPl=E0Þ.

In order that axions be responsible for such scanning, it
is necessary that the axion potential has nondegenerate
minima. If the axion potential is generated by a string
instanton it is dominated by a single contribution (because
the n-instanton action is nS) and the periodic functionUð�Þ
in (6) is simply Uð�Þ ¼ 1� cos� and there is only a single
minimum. On the other hand, if the potential is generated
by strong IR gauge theory dynamics there is no reason for a
strong suppression of the higher instanton contributions, so
Uð�Þ is a generic periodic function and it is natural for it to
have several nondegenerate minima. A simple toy example
of such a situation is when the one- and two-instanton
contributions enter with comparable coefficients, Uð�Þ �
2� ðcos�þ cos2�Þ.

Consequently, if light axions are (partially) responsible
for the scanning of the cosmological constant at low en-
ergies they should be accompanied by a large number of
strongly coupled QCD-like hidden sectors with low con-
finement scales. This both opens up interesting phenome-

nology associated to the presence of this ‘‘dark world’’ and
raises the question of how it managed to escape being
observed so far. We will touch on some of the issues
involved in the concluding Sec. III. For now we focus
upon the observational signatures of the light axions that
we have argued are generic to string theory once the strong
CP problem is solved.

II. COHOMOLOGIES FROM COSMOLOGY

A. Discovering the string axiverse

We now turn to the observational consequences of axi-
ons lighter than or around the QCD axion mass. For
simplicity, we keep fa fixed at MGUT and Hinfl �
0:1 GeV. The initial displacement of axions heavier than
�10�20 eV has to be tuned in order for them not to over-
close the universe and axions heavier than 0.1 GeV have
been diluted away by inflation. The observational conse-
quences of the string axiverse are outlined in Fig. 1.
We concentrate on three main windows to the axiverse.

First, as discussed in Sec. II B axions of masses between

10�33 eV and 4� 10�28 eV, if they couple to ~E � ~B, cause
a rotation in the polarization of the CMB by an angle of
order 10�3, which is close to the current bounds (� 10�2)
[32,33]. Future experiments, such as Planck and CMBPol
will be able to probe values of the rotation in the CMB
polarization down to 10�5 [34].
Second, as discussed in Sec. II C, axions with masses

higher than 10�28 eV can be a significant component of the
dark matter (DM) and suppress power in small scale den-
sity perturbations ð<1 MpcÞ. This is because the quantum
pressure scale originating from the uncertainty principle
and below which gravitational collapse is not possible, is
proportional to 1=

ffiffiffiffi
m

p
and thus for these light axions is a

cosmologically observable scale. Since the axiverse should
contain a plethora of string axions with masses homoge-
neously distributed on a log scale, the existence of multiple
steps in the small scale perturbation spectrum is a natural
expectation. The amount of the suppression—the step
height—is proportional to the fraction of the DM consti-
tuted by the particular axion. Such steps may be detectable
with the BOSS [35] and 21 cm line observations [36]. In
particular, the 21 cm line tomography will be sensitive to
masses up to 3� 10�18 eV that are well inside the an-
thropic regime.
Finally, axions of masses between 10�22 and 10�10 eV

can affect the dynamics of rotating black holes due to the
effect of superradiance. When a black hole rotates, a boson
with a Compton wavelength comparable to the black hole
size creates an exponentially growing bound state with the
black hole. This gravitational atom can be deexcited
through graviton emission that carries away the black
hole’s angular momentum. For black hole masses larger
than �107M�, or axion masses smaller than 10�18 eV,
accretion may still be efficient enough to support the
maximal rotation and sustain a ‘‘Carnot cycle’’ that turns
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the black hole into a gravity wave pulsar with possibly
detectable signal at future gravity wave experiments. For
lighter black holes (heavier axion masses) this effect leads
to a spindown of the black hole, resulting in gaps in the
mass spectrum of rapidly rotating black holes. With the
quality of data constantly improving, measurements of
the spin of stellar mass (� 2–10M�) black holes will be
able to probe also the QCD axion parameter space with
fa > 1016 GeV, well inside the region where the QCD
axion relic abundance is anthropically constrained. These
effects are discussed in Secs. II D and II E, and in the
appendix.

For axions in the range �10�9 to �108 eV, and assum-

ing the axions have couplings to ~E � ~B, decays to photons
can potentially lead to signatures. A companion paper will
discuss such decays, as well as the physics induced by
warping the axion decay constant to scales lower than
MGUT, and the many dark sectors implied by Wilsonian
scanning and/or highly warped throats.

B. Rotation of the CMB polarization

Axions much lighter than the QCD axion, when they

have an ~E � ~B coupling to electromagnetism (EM), change
the polarization of the CMB photons if they start oscillat-
ing anytime between recombination and today. These ax-
ions cannot couple to QCD, as 4d gauge coupling
unification implies, otherwise they would get large contri-
butions to their masses. A coupling to QCD, however, can
be easily avoided in the framework of orbifold GUTs [37–
40]. An example of such a theory is a scenario with one
extra dimension where SUð5Þ is preserved in the bulk and
the breaking down to SUð3Þc � SUð2ÞL �Uð1ÞY occurs on
the boundary of the extra dimension. The SM gauge cou-
plings are given by

1

g2c
¼ V

g25
þ 1

h2c
; with c ¼ 1; 2; 3 (17)

where V is the extra-dimensional volume, g5 is the 5d
SUð5Þ coupling and hc are the gauge couplings of the
SUð3Þ � SUð2Þ �Uð1Þ brane kinetic terms that are al-
lowed by the brane–localized breaking of SUð5Þ. When
the volume of the extra dimensions is parametrically large
(equivalently when the effective 4d coupling of the SUð5Þ
is much smaller than the brane-localized gauge couplings),
there is apparent SUð5Þ unification for the SM gauge
couplings,

1

g2c
� V

g25
; with c ¼ 1; 2; 3; (18)

with corrections that are parametrically of the same size as
traditional GUT-scale threshold corrections. In these sce-
narios, since gauge coupling unification is not true every-
where in the extra dimensions, axions that have brane-
localized couplings, naturally couple to SUð2ÞL or Uð1ÞY
without coupling to QCD.
Only a few ‘‘local’’ axions are able to couple to electro-

magnetism with full strength in this way. Most axions
resulting from antisymmetric forms are localized on cycles
far away from the position of the SM in the full compacti-
fication. On the other hand, axions from cycles intersecting
with ours have a kinetic mixing with our axion and could
be more weakly coupled to SUð2ÞL or Uð1ÞY . Specifically,
defining


ij ¼
Z
M
!i ^� !j; (19)

where !i is the basis of the closed two-forms dual to the
cycles Ci as in (4), the kinetic terms of the four-
dimensional axion fields are of the form

FIG. 1 (color online). Map of the axiverse: The signatures of axions as a function of their mass, assuming fa � MGUT and Hinf �
108 eV. We also show the regions for which the axion initial angles are anthropically constrained not to over-close the Universe, and
axions diluted away by inflation. For the same value of fa we give the QCD axion mass. The beginning of the anthropic mass region
(2� 10�20 eV) as well as that of the region probed by density perturbations (4� 10�28 eV) are blurred as they depend on the details
of the axion cosmological evolution (see Sec. II C). 3� 10�18 eV is the ultimate reach of density perturbation measurements with
21 cm line observations. The lower reach from black hole super-radiance is also blurred as it depends on the details of the axion
instability evolution (see Sec. II E). The region marked as ‘‘Decays,’’ outlines very roughly the mass range within which we expect
bounds or signatures from axions decaying to photons, if they couple to ~E � ~B. We will discuss axion decays in detail in a companion
paper.
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1

2

Z
d4x
ij@

�bi@�bj: (20)

The axions also receive a variety of contributions to their
potentials leading to spectrum of axion massesmi. The end
result after diagonalization is that the axions from inter-
secting cycles also acquire a coupling to electromagnetism,
which is suppressed, however, by the mixing angle �ij �
m2

i =m
2
j between the axions. This can be a significant

suppression for widely separated dynamical scales �i.
For axions that couple only to EM, interactions are

summarized by the following Lagrangian

L ¼ � 1

4
F2
�� þ 1

2
ð@��Þ2 ��4

aUð�=faÞ

þ C�

4�fa
������F��F��: (21)

Here a dimensionless constant C is of order one for an
axion that coupled to the photon directly. For instance, in
the four-dimensional SUð5Þ GUT it is equal to C ¼ 4=3.
When the photon wavelength is short compared to a typical
length scale of variation in the axion field, the combina-

tions ~D 	 ð ~Eþ 1
2

C�
�fa

� ~BÞ and ~H 	 ð ~B� 1
2

C�
�fa

� ~EÞ satisfy
free wave equations [41]. Consequently, a region of space
with an inhomogeneous axion field becomes optically
active [41–45]—a linearly polarized freely propagating
photon experiences a rotation of the polarization plane by
an angle �� equal to

�� ¼ C�

2�fa

Z
d _�; (22)

where  is the time along the photon trajectory. Because of
frequent Compton scatterings off electrons CMB photons
are not polarized before recombination, so the integration
in (22) goes from the time of recombination, rec, till today,
0.

3 As a result one obtains for the rotation angle

�� ¼ C�

2�fa
ð�ð0Þ ��ðrecÞÞ: (23)

Note that this result is only valid for sufficiently small
axion masses, m & 	t�1

rec , where 	trec � 10 kpc is the du-
ration of recombination. For larger masses rapid oscilla-
tions of the axion field on the time scale of recombination
lead to suppression of the rotation angle by a factor
e�m	trec . The rotation angle is maximum for axion masses
smaller than the expansion rate at recombination Hrec �

ð7� 105 yrÞ�1 and bigger than the current Hubble parame-
ter H0 � ð1010 yrÞ�1, while it is still substantial for masses
up to�10Hrec. In this regime the axion field has negligible
value today,�ðt0Þ � 0. On the other hand at recombination
axion oscillations had not yet started, so that the axion field

took its primordial value set during inflation, j�ðrecÞj �
�fa=

ffiffiffi
3

p
. As a result, the rotation angle from axions of

mass between 10�33 eV and 4� 10�28 eV becomes,

��� C�

2
ffiffiffi
3

p � 10�3: (24)

If N axions are present in this mass range, the rotation

angle gets enhanced by a factor of
ffiffiffiffi
N

p
. The remarkable

feature of this result is that the rotation angle (24) is
independent of both the PQ scale fa, and the scale of
inflation. As previously mentioned, we assume that Hinf �
0:1 GeV, so isocurvature fluctuations from the axion field
are extremely suppressed. Consequently, the rotation angle
�� is constant throughout the sky. As a result of this
rotation a part of the E-mode polarization gets converted
into the B-mode. Therefore, even though, as a consequence
of a low inflationary scale, we do not expect the gravita-
tional wave B-mode signal in the axiverse, B-mode can
nevertheless be generated through this effect. The two
sources of the B-mode are easily distinguishable, because
axions generate also EB and TB cross-corellations which
are forbidden by parity in the standard case.
Even though current limits [32,33] on the rotation angle

are at the level�� & 2
 ¼ 3:5� 10�2, i.e. above the level
of the expected signal for one axion, Planck will improve
this limit by an order of magnitude down to 0.1
 and will
be sensitive to (24). Moreover it is expected that CMBPol
will be sensitive to a signal as low as 0.005
 [34].
Consequently, in the future we will be sensitive to axions
even somewhat outside the optimal mass range, or to

smaller axion couplings to ~E � ~B, when the signal is sup-
pressed as compared to (24).

C. Steps in the power spectrum

A purely gravitational signature of light axions is the
presence of steplike features in the matter power spectrum.
The suppression of the CDM power spectrum at small
scales in the presence of ultralight scalar fields is well
known [46,47] and is very similar to the suppression due
to free-streaming of light massive neutrinos. In this section,
we review the origin of the effect and estimate the relevant
scales and the amount of suppression for string theory
axions.
The axion field starts oscillating when the expansion rate

drops below the axion mass at a time,

Hð�mÞ ¼ m: (25)

Before �m the axion is frozen at a constant value, while
afterwards it starts oscillating and its energy density red-
shifts away like ordinary CDM,

3Photons also experience Compton scattering during reioniza-
tion. To incorporate this effect one has to solve the appropriate
kinetic equations rather than just the Maxwell’s equations with
an axionic source. As soon as the axion mass is much larger than
the Hubble parameter of the Universe at reionization this effect
is unimportant and the integral in (22) is saturated at early times.
Also it affects the spectrum mainly at small l’s, where the cosmic
variance is large.
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�ð�Þ ¼ �0

�
am
að�Þ

�
3=2

cosm
Z �

�m

að�Þd�: (26)

A perturbation in the axion field, 	�, with comoving
momentum k satisfies

	 €�þ 2
_a

a
	 _�þ k2	�þm2a2	�

� 4 _� _�þ2m2a2�� ¼ 0; (27)

where � is the perturbation of the gravitational potential
(here we are working in Newtonian gauge and neglecting
the anisotropic stress tensor, so that � uniquely character-
izes scalar metric perturbations). At times later than �m

[and also such that the physical momentum of the mode is
smaller than the mass, cf. (33)] it is convenient to separate
the oscillatory part of the axion field solution by writing

	� ¼ 1
2ðeimtc þ e�imtc �Þ; (28)

where c is a slowly varying function of space and time.
Then the density perturbation in the axion field averaged
over times longer than the period of oscillation is given by

	a 	 	�a

�a

¼ ��þ
�
a

am

�
3=2 c þ c �

�0

; (29)

and the axion field equation translates in the following
equation for 	a in the large mass limit

€	 a þ _a

a
_	a þ

�
k2

2ma

�
2
	a ¼ �k2�þ 3 €�þ 3

_a

a
_�: (30)

This equation coincides with that for ordinary CDM apart
from the last term on the lhs, which indicates the presence
of a momentum dependent sound velocity,

c2s ¼ k2

4m2a2
: (31)

This ‘‘quantum pressure’’ is a manifestation of the uncer-
tainty principle for the axion particles and can be neglected
if the physical momentum of a mode is smaller than the

Jeans momentum
ffiffiffiffiffiffiffiffi
Hm

p
. Assuming that the initial axion

field is homogeneous, as implied by our choice of Hinf �
0:1 GeV, 	a satisfies adiabatic initial conditions and be-
haves just as CDM for scales larger than the Jeans scale.

The evolution of a density perturbation of momentum k
is ultimately determined by the time �c of horizon cross-
ing,

k

að�cÞ ¼ Hð�cÞ; (32)

and the time where the physical momentum becomes
smaller than the axion mass and the mode is no longer
relativistic,

k

að�rÞ ¼ m: (33)

Modes with comoving momentum

k < km 	 m1=2H1=2
0 �1=4

m

z1=4eq

� 0:01 Mpc�1

�
m

4� 10�28 eV

�
1=2

(34)

become nonrelativistic while still being superhorizon
(‘‘long modes’’), later the axion starts oscillating and fi-
nally the mode enters inside the horizon,

�r < �m < �c: (35)

Note, that in (34) we assumed that the axion is heavy
enough, such that the beginning of oscillations happens
in the radiation dominated era �m � �eq. For these modes

the additional term in Eq. (30) can be neglected and they
behave like ordinary CDM.
While the presence of an ultralight axion component

does not affect the CDM power spectrum at k < km, this is
no longer true for modes with k > km (‘‘short modes’’).
These modes enter the horizon while still being relativistic,
and they keep being relativistic at the moment �m, when
the homogeneous axion field starts oscillating, so that the
characteristic time scales are ordered as

�c < �m < �r: (36)

After �r density perturbations in the axion component can
be described by (30). The important difference with the
long-mode case is that one cannot neglect the sound speed
term in (30) until the even later time �J, when the physical
momentum of the mode becomes longer than the Jeans
momentum [see Fig. 2],

k

að�JÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hð�JÞm

q
: (37)

FIG. 2 (color online). Evolution of different physical momen-
tum scales as a function of the scale factor. The horizontal long-
dashed line corresponds to the axion mass. The short-dashed line
shows Hubble. The dash-dotted line shows the evolution of the
Jeans scale. Finally, three solid lines correspond to physical
momenta of long and short modes and of the mode with k ¼ km.
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As a result any perturbation in such a mode decays until the
moment �J. The Jeans momentum redshifts with the same
rate as the physical momentum of the mode during the
radiation epoch, so that condition (37) gets satisfied for
short modes only after matter–radiation equality. Since the
momentum dependent sound velocity prevents density
perturbations from growing, at any moment of time � an
axion behaves as a smooth homogeneous component of

dark matter at physical momenta larger than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hð�Þmp

.
When an ultralight axion constitutes only a subleading
fraction of the dark matter the dominant consequence of
such a behavior is a change in the growth rate of the
dominant heavy CDM component after matter–radiation
equality. Specifically, at this time the Poisson equation for
the gravitational potential at scales shorter than the Jeans
scale takes the following form

� k2� ¼ 4�Ga2	�h � 3

2

�m ��a

�m

a2H2	h; (38)

where the subscript h refers to the dominant heavy com-
ponent of the dark matter, and in the last equality we
neglected the radiation and vacuum energy contributions
to the energy density. Therefore the growth of the density
perturbation 	h is described by the equation

€	 h þ _a

a
_	h ¼ 3

2

�m ��a

�m

a2H2	h: (39)

During matter dominance the growing solution of this
equation evolves as

	h / ap; (40)

where

p ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 24 �a

�m

q
4

� 1� 3�a

5�m

: (41)

As a result, the presence of the ultralight axion results in a
steplike feature suppressing the dark matter power spec-
trum at small scales. The suppression starts at km, and at
shorter scales the suppression factor grows as

SðzJÞ ’
�
1þ zeq

1þ zJ

�
p�1 � 1� 3�a

5�m

log
1þ zeq

1þ zJ
(42)

where zeq � 3200 is the redshift at matter-radiation equal-

ity, and zJ is the redshift corresponding to the moment �J

when the physical momentum of the mode becomes longer

than the Jeans scale kJ ¼
ffiffiffiffiffiffiffiffi
Hm

p
,

1þ zJ � �mm
2H2

0

k4
: (43)

For modes with momenta higher than kJ at the redshift of
observation, zo, the effect saturates; the power spectrum for
such modes is suppressed relative to the usual�CDM case
by a factor SðzoÞ. Consquently, the presence of a subdo-
minant ultralight axion component exhibits itself as a step-

like feature in the power spectrum as shown in Fig. 3. The
width of the step is almost an order of magnitude in the

comoving momenta—the suppression shows up at km �
ðmH0Þ1=2ð�m=zeqÞ1=4 and saturates at around kJ �
ðmH0Þ1=2ð�mÞ1=4. As one might expect the magnitude of
the effect is controlled by the fraction�a=�m of the axion
density relative to the total CDM density, however there is
also an additional logarithmic enhancement,

log
1þ zeq

1þ zo
� 8� logð1þ zoÞ; (44)

due to the accumulation of the effect over a long period of
time. This discussion assumes zo � zeq, at zo � zeq the

suppression factor is simply ��a=�m.
It is straightforward to estimate the fractional abundance

�a=�m: An axion starts to oscillate when H ’ m, and at
this time the total energy density in the Universe is equal to

�tot ’ 3M2
Pl

�4
a

f2a
; (45)

while the axion density at the beginning of oscillations is of
order �4

a. As a result one finds that the axion fraction is of
order

�a

�m

¼ Pð�iÞ � f2a
3M2

Pl

� 1þ zm
1þ zeq

; (46)

where

zm � m1=2z1=4eq

H1=2
0 �1=4

m

� zeq

�
m

1:4� 10�28 eV

�
1=2

(47)

is the redshift at H ¼ m and Pð�iÞ is a statistical factor
depending on the initial axion angle �i ¼ �=fa. We see
that the size of the steps, which is the product of the
fraction (46) and a logarithmic factor (44), depends on
three parameters �i, fa and zm so we now discuss the

FIG. 3. Suppression of the power spectrum observed today as a
function of the comoving momentum. 	k has been normalized to

the value at large scales and we have assumed �a

�m
¼ 0:01.
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dependence and typical values we expect for each of them
in turn.

We illustrate the dependence on the initial axion angle in
Fig. 4 (cf. [48]). On the left panel we present solutions for
an axion field with different initial conditions in a radiation
dominated Universe as a function of a scale factor normal-
ized to one at H ¼ m. We see that increasing the initial
value of the axion gives rise to two effects. First, the
resulting axion amplitude is higher just because the initial
condition is higher. Second, the axion potential becomes
flatter close to � ¼ �, and as a result oscillations start later
also resulting in the increase of the axion abundance. We
illustrate this effect on the right hand panel of Fig. 4, where
we present a numerical result for the enhancement factor
Pð�Þ as a function of the probability ð�� �Þ=� to have an
initial axion misalignment higher than �.4

The crucial microscopic parameter that determines a
size of the effect is the ratio f2a=ð3M2

PlÞ. As discussed in

Sec. I B, it is widely believed that this ratio is necessarily
smaller than 1, and the relation fa=MPl & 1=S should hold,
where for the ultralight axions that we consider here the
instanton action should be quite big, S * 200. This favors
rather small values f2a=ð3M2

PlÞ � 10�5. On the other hand,

these estimates have an order one uncertainty in them, so
that values as high as f2a=ð3M2

PlÞ � 10�4 may be not
unreasonable.

Finally, the third factor in (46)—the redshift ratio—is
determined by the axion mass. Different types of observa-
tions will be sensitive to different values of masses. For
instance, CMB measurements are sensitive for the CDM
power at scales crossing the horizon around matter–radia-
tion equality. From the above discussion we see that there
is highly unlikely to be an effect at the level significantly
higher than 10�3 at these scales [note also, that in this case
zo � zeq so one looses the enhancement of (44)], so the

CMB is not a good probe of this effect.
At the shorter scales the limits on the CDM power

spectrum can be obtained from galaxy surveys and Ly-�
forest data. The steplike feature in the power spectrum due
to ultralight axion is very similar to the suppression of the
small-scale power due to a free-streeming neutrino com-
ponent (cf. [47]), so to estimate the sensitivity of the
currently available data we can translate the bounds on
the warm-plus-cold dark matter models involving sterile
neutrinos (see [49] for the up-to-date analysis). The bounds
are dominated by the SDSS Ly-� data, which are sensitive
for the comoving momenta in the range k� 0:1–10 Mpc�1

and correspond to the observation redshift zo � 2–4. For
axion masses close to the lower end of the above momen-
tum range this analysis allows admixture of an axion
component at the level �a=�m � 0:1, while for masses

corresponding to k * 4 Mpc�1 an order one fraction of an
ultralight axion component is allowed. Taking into account
that matter–radiation equality corresponds to keq �
0:01 Mpc�1, and that the characteristic comoving momen-
tum km scales linearly with zm we conclude from (46) that
these bounds are still not good enough to probe the most
interesting region f2a=ð3M2

PlÞ � 10�5.

On the other hand, the Baryon Oscillation Spectroscopic
Survey (BOSS—which is a part of SDSS III [35]) will have
a sensitivity at the level of few percent to the CDM power
spectrum at comoving momenta k� 0:1 Mpc�1, which
correspond to axion masses around 4� 10�26 eV [cf.
(34)]. Given that matter–radiation equality corresponds to
keq � 0:01 Mpc�1 the redshift ratio gives a factor �20 at

these scales (as follows from Fig. 4(a)] the axion starts
oscillating at a redshift at least half that of zm). For these
observations zo � 1 so the log enhancement (44) is maxi-
mal. Therefore, with a reasonable statistical factor, Pð�Þ �
20, BOSS will be able to observe the effect of axions down
to f2a=ð3M2

PlÞ � 10�5.

In the more distant future, a high precision measurement
of axion steps from 21 cm line measurements is possible.
Indeed, observations of the 21 cm line have a chance to
probe the power spectrum in the range k�
10�2–103 Mpc�1 [36]. These observations correspond to
zo � 30–200, so one loses slightly the enhancement factor
(44). However, this will be easily compensated by the
increase of zm and by the high accuracy that can be
achieved by 21 cm measurements. Also, unlike for the
Ly-� forest, this has an advantage of probing the power
spectrum in the linear regime. To appreciate the precision
one may hope to achieve, it is enough to note that the 21 cm
line will provide a total of N21 � 1016 independent modes
as opposed to Ncmb � 107 modes for the CMB.
Note, that axions with lower masses tend to produce

more pronounced steps, so that at the early stages when
only the low k data is available, rather than observing an
individual step one may discover an overall running of the
spectral index due to a joint effect of several axions with
different masses.
As follows from (46) an important scale is

k� 104–5keq—where axions with the corresponding

masses are expected to constitute an order one fraction of
the CDM for a typical initial misalignment. Axions with
heavier masses would overclose the Universe for a typical
misalignment, so their initial amplitudes are forced to be
fine-tuned to small values in our patch of the Multiverse.
On the other hand, there is no reason for initial values of
the lighter axions to be fine-tuned, so we expect that axions
with masses close to the anthropic boundary, i. e. of order

m�H0�
1=2
m z3=2eq

Pð�Þ2
�
3M2

Pl

f2a

�
2 � 1:4� 10�20 eV

1

Pð�Þ2

�
�
3M2

Pl=f
2
a

104

�
2

(48)

4Pð�Þ diverges at � ¼ � only in the classical limit—� ¼ � is
a maximum of the axion potential and the axion can classically
stay there forever. Quantum fluctuations of at least 	�� Hinfl

fa
will

push it away from that value making Pð�Þ finite as � ! �.
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to constitute an order one fraction of the CDM. The 21 cm
line measurements can probe part of the anthropic regime,
as they are sensitive to masses up to 3� 10�18 eV. The
level of the expected signal is uncertain though, and may
depend on the probability measure that determines the fine-
tuning of the initial axion amplitudes.

The value of the axion mass in (48) is also interesting as
it has been previously suggested [46] that the problem with
excessive small-scale structures predicted in the vanilla
�CDM model may be solved if dark matter is composed
of a Bose–Einstein condensate of ultralight particles with
masses of �10�22 eV. Of course, it may be that the prob-
lem will be resolved within conventional �CDM after
more precise N-body simulations including baryons be-
come available. Still, it is intriguing that a similar mass
scale appeared in the present context as the boundary
between anthropic and nonanthropic axions, so that one
expects an order one fraction of CDM to be composed of
axions in this mass range (recall that the statistical factor of
Pð�Þ � 10 has a probability 0.2 for a single axion). Note,
that this connection, if true, favors high f2a=ð3M2

PlÞ ratios
around 10�4. On a positive note this increases the like-
lihood of seeing light axions with BOSS, but it forces a
reconsideration of whether such a high ratio is achievable
for ultralight axions in explicit string theory constructions.

D. Extraction of black hole rotational energy by axions

Ultralight axions with Compton wavelengths compa-
rable to the size of astrophysical black holes can be sought
for in observations of rapidly spinning black holes. The key
reason for this is the Penrose process, which opens the
channel for the black hole spindown. Indeed, the spinning
black holes have the so-called ergoregion, a region outside
of the event horizon and therefore accessible to external
observers, inside which the inertial frame dragging due to
the black hole rotation is so fast that probes built of normal
causal matter, which can never move faster than light,

cannot remain at rest relative to an observer far away.
This opens the possibility for energy and spin loss by the
black hole [50,51], which happens when a particle falls
into the ergoregion such that it corotates with the black
hole. If after diving into the ergoregion the projectile
splinters up into two fragments, and one falls into the black
hole while the other recoils away and out of the ergoregion,
the escaping fragment can take out more energy and spin
than the original projectile.
To see this in a bit more detail, consider the geometry of

the spinning black hole given by the Kerr solution in
Boyer-Lindquist coordinates [52]

ds2 ¼ �
�
1� 2Rgr

�

�
dt2 � 4Rgarsin

2�

�
dtd�þ�

�
dr2

þ�d�2 þ ðr2 þ a2Þ2 � a2�sin2�

�
sin2�d�2;

� ¼ r2 þ a2cos2�; � ¼ r2 � 2Rgrþ a2;

a ¼ J

M
; Rg ¼ GNM; (49)

and where M and J are black hole’s mass and spin, re-
spectively. The roots of � ¼ 2Rgr define the ergosphere,

whose interior is the ergoregion, while the roots of � ¼ 0
are the black hole horizons, and the outer one, relevant for

our discussion, resides at rþ ¼ Rg þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
g � a2

q
. The spa-

tial location of the outer horizon never extends past the
ergosphere, reaching it only at the poles. The time at
asymptotic infinity is measured by t, and represents the
clock reading of an inertial Minkowskian observer far from
the black hole. The time evolution of a physical system is
therefore described by the flow generated by the vector
field H ¼ @t. Because this vector field is also a Killing
vector of the geometry (49), if we consider an inertial
particle of mass � in this background, the product of its
4-momentum p� ¼ dx�=d (where d2 ¼ �ds2) and of
the Hamiltonian is conserved, yielding the energy integral
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FIG. 4 (color online). A time evolution of the axion field for different initial conditions (left panel) and an enhancement factor Pð�Þ
for the axion abundance as a function of a probability for different initial axion values (right panel).
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of motion,

E ¼ �Hp: (50)

Similarly, since (49) is manifestly axially symmetric, and
the rotations around the z-axis are generated by the vector
field J ¼ @�, the product

L ¼ Jp (51)

will be the conserved particle’s angular momentum in the
z-direction.

The crucial property of the ergoregion is that particles
moving there may have a negative energy. Indeed, inside
the ergoregion the ðttÞ-component of the Kerr metric (49) is
negative, so that the Killing vector H is spacelike. The 4-
velocity of any physical observer should be timelike, im-
plying that all observers experience rotation inside the
ergosphere, d�=d > 0. The energy (50), being the prod-
uct of a timelike and a spacelike vectors, is not sign-
definite, and takes negative values for some of the
observers.

This observation is the key to the Penrose process of
black hole energy loss. Imagine a projectile falling toward
the black hole, initially coming in from afar where H is
timelike. Then its total conserved energy must be positive.
Allow it to dive beneath the ergosphere, but aim it such that
it misses the horizon. Then design a timer on the projectile
to set off a fragmentation process that will break the
projectile into two parts, but so that one fragment flies
off into the black hole along a trajectory on which the
conserved energy is negative, E < 0. Since the total 4-
momentum conservation governs the fragment dynamics,

the energy of the escaping fragment will be Ê ¼ E� E ¼
Eþ jEj, exceeding the energy of the initial projectile. Its
gain comes at black hole’s expense: the conservation of the
total energy of the system implies that

	M ¼ �ðÊ� EÞ ¼ E < 0: (52)

As a result of this process the rotation of the black holes
spins down. Indeed, the vector field G ¼ H þ!þJ is a
Killing vector that becomes null on the horizon. Here
!þ ¼ a=ð2RgrþÞ is the angular velocity of the horizon.

For later purposes, we note that as a function of the spin a
and the gravitational radius Rg, it is given by

!þ ¼ 1

2Rg

a=Rg

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða=RgÞ2

q (53)

Note, that in the extremal limit a=Rg ¼ 1 it saturates at

Rg!þðmaxÞ ¼ 0:5. Now, the product of the 4-momentum

P of the infalling fragment (which is a future-directed
timelike vector) and of the future-directed null vector G
must obey G � P < 0. Using the definition G and Eqs. (50)
and (51), this yields for the spin of the in-falling particle
L< E=!þ. Consequently, by total angular momentum
conservation, there will be a change of the black hole’s

spin as well,

	J ¼ �ðL̂� LÞ ¼ L<
E
!þ

< 0: (54)

Equations (52) and (54) show that for Penrose fragments,
both the energy E and the spin L are negative. Combining
these two equations we find that the black hole hair change
by

	J <
	M

!þ
; (55)

which in fact is an equation that hides in itself the second
law of black hole thermodynamics. Indeed, one can com-
pute the horizon area of the spinning black hole (49) to find

A ¼ 16�R2
g

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=R2

g

q
2

; (56)

such that

	A ¼ 8�
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
g � a2

q
�
	M

!þ
� 	J

�
:

By Eq. (55) this yields

	A > 0; (57)

precisely the area law. In principle, it is possible to fine-
tune the fragment trajectories in the Penrose process such
that 	A ¼ 0, and so mine out black hole energy stored in
the spin in the amount of

	E ¼ Mffiffiffi
2

p ð ffiffiffi
2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=R2

g

qr
Þ; (58)

which means the more energy will come out if there was
more spin to begin with. The extraction is maximized for
(near) extremal black holes, where it reaches 29% of the
total mass. Note that the energy stored in spin is a very
sensitive function of a=Rg: for example, for a=Rg � 0:8,

the energy is already significantly smaller, 	E=M� 0:106,
whereas for a slowly spinning black hole with a=Rg � 0:3,

it is 	E=M� 0:0116. This energy is essentially analogous
to the difference of the total ‘‘mc2’’ energy and rest energy
m0c

2 in special relativity, and shows that the black holes
with spins a=Rg > 0:9 are very relativistic, and so fast-

spinning, those with a=Rg � 0:8 or so are analogous to

‘‘warm’’ particles with kinetic energies comparable to the
rest mass, while those with smaller spins, e.g. a=Rg � 0:3

are already ‘‘slow.’’
The above discussion was presented in terms of point

particles, while we are interested in applying the Penrose
process to scalar fields—axions. One way to see that one
can use them to extract energy from the black hole is to
reverse the logic and note that the inequality (55) is a direct
consequence of the area law (57), which is nothing but the
second law of thermodynamics. Consequently the inequal-
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ity (55) should hold independently of what carries the
energy and spin into the black hole. Applied to the incom-
ing scalar wave of the form � ¼ e�i!tþim�fðr; �Þ with a
frequency in the range

0<!<m!þ (59)

this inequality implies that both energy and spin transfer
from such a wave into a black hole should be negative [53–
55]. A direct way to see this [52] is to consider a conserved
energy current for the scalar field � given by

P� ¼ �T��H � ¼ �@��@t�:

Let us now consider a space-time region between two
slices of constant time t. Conservation of the current P�

implies that the time-averaged energy flux at the infinity is
equal to the time-averaged energy flux through the black
hole horizon. The latter is equal to

hP�G�i ¼ �hð@t�þ!þ@��Þ@t�i ¼ !ð!�m!þÞf2
(60)

and is indeed negative in the frequency range satisfying the
superradiance condition (59), so that by scattering such
waves off the black hole one extracts the energy. Based on
this observation Press and Teukolsky [56,57] designed a
‘‘black hole bomb’’—a spinning black hole surrounded by
a spherical mirror. Such a device exhibits an exponential
classical instability—being confined by the mirror a small
initial scalar field perturbation inside the shell with a
frequency in the superradiant range (59) experiences a
repeated series of amplifications by scattering off the black
hole, until it extracts all of the black hole’s spin (or the
mirror blows up).

An extremely interesting observation made already in
[58] is that the Nature itself may provide such a mirror if
the field has a nonzero mass. Indeed, unlike massless
particles, massive ones can rotate on stable orbits around
the black hole just like planets around the Sun.
Consequently, for a massive scalar field there should be a
set of bound states in the Kerr background corresponding
to wave packets rotating along these stable orbits.
However, unlike for the point particles, such a wave packet
will always have a tail going into the ergosphere region as
well. If the wave-packet contains frequencies in the super-
radiant range (59) they will be continuously amplified and
the amplitude of the field will be growing exponentially. In
other words, one expects to find an exponentially growing
bound states in the spectrum of scalar field perturbations in
the Kerr background. This intuition was proven to be
correct [59,60]. Let us see how unstable modes arise at a
more technical level. Rewriting ðh��2Þ� ¼ 0 in the
Kerr background (49) and using the separation of variables
� ¼ RðrÞ�ð�Þeim�e�i!t, one finds that � is an oblate
spheroidal harmonic, and that R must satisfy

�
d

dr

�
�
dR

dr

�
þ ða2m2 � 4Rgram!þ ðr2 þ a2Þ2!2

��2r2�ÞR ¼ ð�ml þ!2a2Þ�R; (61)

where �ml are oblate spheroidal eigenvalues, which depend
on m and l but in general cannot be written analytically in
terms of them. This equation can be cast in a more useful
form as a Schrödinger equation, by defining the tortoise
coordinate r� according to dr� ¼ ðr2 þ a2Þdr=�, and re-

scaling the wave function to u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
R. The resulting

equation is [59]

d2u

dr�2
þ ð!2 � Vð!ÞÞu ¼ 0; (62)

with the potential

Vð!Þ ¼ ��2

r2 þ a2

þ 4Rgram!� a2m2 þ�ð�ml þ ð!2 ��2Þa2Þ
ðr2 þ a2Þ2

þ�ð3r2 � 4Rgrþ a2Þ
ðr2 þ a2Þ3 � 3�2r2

ðr2 þ a2Þ4 : (63)

The potential approaches V ! V1 ¼ �2 far from the hole,
when r� ! 1, rising out of a potential well where V <�2

(see Fig. 5). Note, however, that it rises towards its asymp-
totic value at infinity already as soon as r * 1=�, and so
the effective spatial extent of the potential well is really
	r� 1=�. This ‘‘mass barrier’’ plays a role of the mirror
which reflects the runaway Penrose fragment back toward
the black hole, enabling it to undergo repeated Penrose
scatterings and gain more energy and spin from the black
hole. On the other side of the well is the centrifugal barrier,
peaking at r� ’ Rg. Beyond the centrifugal barrier is the

FIG. 5 (color online). The effective potential of Eq. (63).
Depicted are the ergoregion, to the left, with the horizon at r� !
�1, the centrifugal barrier (whose height depends on the
angular momentum of a mode), the potential well to the right
of it, and the asymptotic mass barrier which plays the role of the
mirror that reflects the escaping Penrose fragment back. The
relevant modes will be the states bound in the potential, and
leaking through the barrier towards the horizon.
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ergoregion, where the potential asymptotes to V ! Vþ ¼
2m!þ!�m2!2þ as r ! rþ (equivalently, as r� ! �1).

The crucial property of the Eq. (62) is that it is not a self-
adjoint eigenvalue problem—the potential (63) depends on
! in an essential way when a � 0 (equivalently !þ � 0).
This makes possible the existence of bound states with
complex frequencies. In particular, near the horizon the
terms in the parenthesis in (62) combine into !2 � Vþ ¼
ð!�m!þÞ2. As a result, the asymptotic form of the wave
function near the horizon is expð�ikþr�Þ, where

kþ ¼ !�m!þ:

The requirement of regularity at the horizon singles out
one of these waves, expð�ikþr�Þ [59]. The appropriate
boundary condition at infinity, given that we are looking
for bound states, is the exponential decay of u. Altogether,
the boundary conditions are

� ! �mlð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rgrþ

p e�ikþr�þim��i!t; for r� ! �1; (64)

� ! �mlð�Þ
r

e�
ffiffiffiffiffiffiffiffiffiffiffiffi
�2�!2

p
r�þim��i!t; for r� ! þ1: (65)

We see, that bound states with Rekþ > 0 satisfy ingoing
boundary condition at the horizon, i.e. being unable to
escape at the infinity, they still can be sucked into the black
hole. On the other hand, for Rekþ < 0, i.e. for frequencies
in the superradiant interval (59), the boundary condition
(64) describes an outgoing flux of particles from the black
hole. Of course, this is in a perfect agreement with the
previous derivation demonstrating that superradiant modes
get amplified as a result of scattering off the black hole.
This implies that if the real part of a frequency is smaller
than m!þ, the imaginary part should be positive, indicat-
ing the presence of an exponential classical instability. In
the appendix weworked out the details of how this happens
in a simple toy potential. The quantitative expressions for
the imaginary parts in the actual Kerr background were
calculated explicitly in the limit Rg� � 1 in [59] and in

the limit Rg� � 1 [60], and the numerical calculation in a

general case was performed recently in [61]. With the
notation ! ¼ !r þ i=, the explicit calculations find

 ¼ 107e1:84Rg�Rg; for Rg� � 1 and a ¼ 1; (66)

 ¼ 24

�
a

Rg

��1ðRg�Þ�9Rg; for Rg� � 1: (67)

For a < 1 the instability scale at large masses has the same
qualitative form (66), but the coefficient 1.84 in the ex-
ponent grows at smaller a. The following comments are in
order regarding the fastest instability channel. First, the
instability

(i) benefits from as large a as possible, being the fastest
for near extremal black holes with a=Rg ¼ 1.

benefits from as large a as possible, being the fastest for
near extremal black holes with a=Rg ¼ 1. Since for the

unstable modes !r < m!þ, and !þ  1=ð2RgÞ [see

Eq. (53)], we find that !r < m=ð2RgÞ. Now, the rate of

the instability is controlled by the tunneling of such modes
through the centrifugal barrier, which is higher at larger l.
Hence, among the available modes the fastest growing one
will be the one which tunnels most easily, i.e.
(i) has the smallest total angular momentum l;
(ii) has the largest projection on the black hole’s axis of

rotation, m ¼ l.
The first condition implies that it has the lowest possible
barrier, and the second ensures that it is the highest level in
the well, probing the thinnest available section of the
barrier. Now, the specific frequencies that can be used
depend on the value of � as well. If Rg� � 1, then � �
!þ, and the fastest instability is due to the mode with m�
l��=!þ, resulting in the exponential suppression due to
the fact that the potential well is very narrow and the
centrifugal barrier high and thick. In the opposite limit,
Rg� � 1, the fastest instability is in the sectorm ¼ l ¼ 1,

which is now available, and is suppressed mostly due to the
fact that the fastest mode is spread out through the potential
well becoming wider near its top. This results in the power
law suppression of the instability rate.
Numerical results of [61] show that the instability peaks

around Rg�� 0:42 (for a=Rg � 0:99), where

sr � 0:6� 107Rg; (68)

In this regime the instability is due to the mildly non-
relativistic (the real frequency is !r � 0:98�) l ¼ m ¼ 1
level.

E. Axionic sirens and precision black hole physics

Black holes are believed to be abundant in our
Universe;,, in particular, there is a 4� 106 solar mass
(M�) black hole at the center of our Galaxy. Current black
hole candidates are primarily found in X-ray binaries and
active Galactic nuclei (AGN) and clustered in two mass
ranges, 3M�–30M� for stellar mass black holes, and
106M� � 109M� for supermassive black holes [62].
There is currently an evidence also for intermediate mass
black holes [63] as well as for black holes heavier than
1010M� [64].
In the past few years, a lot of progress has been made in

measuring the properties of these black holes including
their spin. There is evidence for rotating stellar mass black
holes as well as a rotating black hole candidate at 107M�
[62]. In the next decade X-ray observations, in combina-
tion with a better understanding of black hole environ-
ments, will solidify and extend black hole spin
measurements. In the not-so-near future gravity wave ob-
servatories such as LISA and AGIS [65] will provide even
more precise probes of black hole properties. The natural
question arises what implications the axion superradiance
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may have for the fate of astrophysical black holes and
whether observations of astrophysical black holes may
provide evidence for ultralight axions.

To address this question the analysis of Sec. II D has to
be extended in several directions. First, one may worry that
the instability may be significantly inhibited or even totally
disappear in a realistic astrophysical environment. Apart
from the exponentially unstable superradiant modes Kerr
metric also supports bound states in the nonsuperradiant
regime, whose frequencies have negative imaginary parts.
Physically, these bound states get damped rather than
amplified by the black hole and eventually get sucked
behind the horizon. Some of these modes may have imagi-
nary parts much larger than the maximum value �1

sr �
10�7R�1

g for the rate of the superradiance instability [61].

Consequently, one may worry that perturbations to the Kerr
metric which are always present in a realistic astrophysical
situation may lead to the mixing between superradiant and
nonsuperradiant modes and damp the instability.

Second, if the superradiant instability survives these
perturbations and develops, at some point the linearized
approximation breaks down, and the backreaction of the
axion cloud has to be taken into account to deduce the
observational consequences.

1. Superradiance in realistic environments

Let us start with checking that the superradiant insta-
bility persists also in a realistic astrophysical environment.
We will see that the black hole vicinity is a very clean
astrophysical enviroment—as exemplified by no-hair the-
orems—the black hole itself cleans up the space around its
horizon.

One source of perturbations on the Kerr metric comes
from the presence of accreting matter. A reasonable esti-
mate (in fact, an upper bound in most cases) for the
accretion rate is provided by the Eddington limit [66]—
the accretion rate, such that the radiation pressure on free
electrons balances gravity. In the Eddington regime the
black hole mass M grows according to

_M ¼ M

accr
; (69)

where the Eddington accretion time accr is equal to

accr ¼
�Thompson

4�GNmproton

� 4� 108 years: (70)

From this we can estimate the amount of matter in the
vicinity of the black hole horizon as

	M ’ M
Rg

accr
� 4� 10�22M

�
M

M�

�
: (71)

The shifts of the imaginary parts one can expect from such
a perturbation are of order R�1

g 	M=M, which is comfort-

ably smaller than the positive imaginary part due to super-

radiance, if the axion mass is not too far from the optimal
regime.
Another source of potentially dangerous distortions is a

tidal force due to a companion star rotating around the
black hole. For instance, stellar mass black holes are
observed in X-ray binaries, so such a star is always present.
The physical (gauge invariant) part of the metric perturba-
tion due to tidal forces caused by a companion star with a
gravitational radius rg at a distance L is of order

	g�� � R�����x
��x�;

where the Riemann curvature created by the companion
star is of order R���� � rg=L

3 and �x� Rg is the size of

the axion cloud. Consequently, the tidal force correction to
the imaginary part of the superradiant modes is at the level

	!� rgR
2
g

L3
R�1
g : (72)

To get an idea of how big this correction is let us estimate it
for the X-ray binary LMC X-1, supposedly harboring a
10M� black hole with spin a=Rg � 0:91 [67] (the motiva-

tion for this choice is that, as we discuss in Sec. II E 3, at
the moment LMC X-1 provides the best reach for the QCD
axion). The companion star in the LMC X-1 is quite
heavy—around 30M� [68], and its orbital period is
�3:9 days, which corresponds to the distance L� 2:5�
1012 cm. Altogether, this gives rise to a tiny frequency shift
of order �10�18R�1

g , which is not dangerous for the

superradiance.
As an example of a galactic black hole let us consider

Sgr A*—a �4� 106M� black hole at the center of the
Milky Way. For a number of years Keplerian orbits of
around 30 stars around Sgr A* were monitored [69], with
the fastest period being equal to 15 yr, which corresponds
to the distance of order 104Rg, again being safe for super-

radiance instability. It follows from (72) that for relatively
light galaxies, M & 107M�, a compact stellar size object
(such as a neutron star, or a black hole) within�10Rg from

the horizon may be dangerous for the superradiance insta-
bility. However, such occurences are likely to be quite rare,
as follows from the estimates for the rate of extremal mass
ratio inspirals (EMRI), �few� 100 Gyr�1 [70] and are
likely not to last long, as the objects get swallowed by the
black hole. Given that the time (68) to build up the axion
cloud is only �104 yr even for the largest (1010M�) black
holes, EMRI’s effect on the superradiance is also
negligible.
Another potential source for the superradiance shut-

down, could be the presence of a magnetic field around
the black hole if the axion has a coupling to EM

C�

4�fa
������F��F��; (73)

where C is a constant that is 4
3 in SUð5Þ GUTs. As the axion

instability develops around the black hole, there will be

STRING AXIVERSE PHYSICAL REVIEW D 81, 123530 (2010)

123530-15



conversion of axions to photons due to the presence of a
strong magnetic field and energy will be carried away from
the axion field. A strong enough magnetic field may lead to
a total dissipation of the axion cloud.

In the presence of nonzero magnetic B and axion fields
the coupling (73) gives rise to the source term in the
Maxwell’s equations

@�F
�� ¼ C�

2�fa
�����F��@��� C�

�fa
�B�;

where we took into account that the axion field oscillates
with a frequency of order m. This source produces photons
with an energy density of order

�
 �
�
C�

�fa

�
2
B2�2

that take away the energy from the axion field with a
characteristic time scale


 �
�
�fa
C�

�
2 �

3B2
:

In order for the superradiance instability to be effective 

should be longer than the characteristic superradiance time
sr (68) or, equivalently,

B & 2� 10�4 �

C�
�2; (74)

where � ¼ ffiffiffiffiffiffiffiffiffi
mfa

p
, assuming �� ðGNMÞ�1.

For the QCD axion the bound (74) corresponds to a
magnetic field of order 5� 1016 G, which is much larger
as compared to what the black hole accretion disk can
support (Eq. (75), [66])

B� 4� 108 G

�
M

M�

��1=2
: (75)

Hence the superradiance instability is definitely present,
and the magnetic field does not affect the range of fa’s
probed. Similarly, (75) implies that (74) is satisfied for
supermassive galactic black holes as well for fa �MGUT.

However, magnetic fields may shut down the superra-
diance for fa � MGUT. An example is the ultralight axion
which can affect supernovae luminosities by photon-axion
mixing [71], and which operates at the mass scale ��
few� 10�16 eVwith the effective coupling C�=ð4�faÞ �
ð4� 1011 GeVÞ�1. This field could be in the regime of the
fastest instability of the smallest supermassive black holes
on the record, with M� 105M�, which are able to support
magnetic fields B� 106 G, while the critical B-field value
for them, by Eq. (74), is �102 G. Thus the instability may
be turned off in this case.

2. The fate of the axionic instability

Let us discuss now what happens with superradiance at
late stages of the instability development. As always with a
linear instability, at a certain point the backreaction of the

axion cloud has to be taken into account and the problem
becomes nonlinear. Naively, one may think that at this
stage the problem becomes very complicated and hardly
tractable. However, the important property of the super-
radiant instability is that it is always very slow—the in-
stability time scale is at least 7 orders of magnitude longer
than a natural dynamical time scale of the system Rg, see

(68). As a result, second order effects have a chance to
compete with the superradiance instability when the axion
cloud is still a small perturbation to the black hole, and the
whole process can be under control. Still, as we will see, a
black hole surrounded by an axionic cloud is an extremely
rich dynamical system, and our purpose here is just to
provide a basic intuition of what one can expect from it.
A dedicated quantitative analysis of different regimes will
appear in a separate publication [72].
A rotating black hole surrounded by an axionic cloud is

essentially a huge quantum mechanical system similar to
an atom, with a crucial difference that particles populating
its levels are bosons, rather than fermions. As a result,
some of the levels become highly populated. Moreover, a
nucleus—the central black hole—continuously creates
particles on some of the levels and destroys them on the
others with the rate proportional to the occupation number
of the level. A model independent source of back-reaction
is related to the possibility for an axion in the growing
superradiant cloud to emit a graviton and to jump onto a
nonsuperradiant level, from where it eventually gets
sucked inside the black hole horizon. The whole system
is fueled by the inflow of accreting matter, and, if the
accretion is efficient enough, it acts as a giant gravitational
wave siren, see Fig. 6.

FIG. 6 (color online). The Carnot cycle of the axionic insta-
bility: The black hole ‘‘feeds’’ the superradiant state forming an
axion Bose-Einstein condensate. Axions from that state
quantum-mechanically transition through graviton emission to
a lower-energy nonsuperradiant state. The nonsuperradiant state
decays into the black hole. Accreting matter around the black
hole replenishes the rotational energy lost to gravitons and
sustains this cycle.

ASIMINA ARVANITAKI et al. PHYSICAL REVIEW D 81, 123530 (2010)

123530-16



To gain some intuition about different regimes of the
axionic siren it is instructive to write a simplified set of
kinetic equations, describing the evolution of the black
hole, accretion disc and axionic cloud. Namely, let us
characterize the siren by the total number of axions on
the superradiant levelsNþ, nonsuperradiant levels N�, and
the black hole spin J ¼ a

Rg
. The evolution of the occupa-

tion numbers Nþ, N� can be approximated by the follow-
ing couple of kinetic equations,

dNþ
dt

¼ �1þ Nþ � �1
GWNþðN� þ 1Þ (76)

dN�
dt

¼ ��1� N� þ �1
GWNþðN� þ 1Þ (77)

Here,

� ¼ ��1� Rg (78)

are the superradiance and dumping time, and the graviton
emission time GW is

GW ’ M2
PlR

3
g; (79)

assuming the axion mass is close to the optimal value,��
R�1
g . This two-level approximation becomes literally true

in the low mass limit � & R�1
g , when the axion cloud is

dominated by 2p states. The pair of kinetic equations (76)
and (77) has a stationary point, at which

N� ¼ GW
�

’ ��M2
PlR

2
g ¼ ��MRg: (80)

As we expected, in this stationary regime the total mass of
the axion cloud Ma ’ �ðNþ þ N�Þ is small compared to
the black hole mass. In order to establish this regime, the
accretion of matter into the black hole should be efficient
enough, otherwise the black hole would simply loose its
spin and the siren would not start. To see when the sta-
tionary regime (80) can be established for a rapidly rotating
black hole, let us consider the following kinetic equation
describing the evolution of the black hole spin,

dJ

dt
¼ �1

accrJ � _JGW; (81)

where we assumed the Eddington regime for the spin
accretion, so that the accretion time is given by (70). The
spindown rate due to gravitational wave emission _JGW at
the stationary point (80) is determined by the number of
gravitons emitted per unit time (each graviton carries away
two units of the angular momentum)

_J GW � 2�1
GWNþN� ’ MRg

�þ��
Rg

¼ ���1
sr : (82)

Consequently, the axionic siren can operate in a stationary
regime provided

sr > ��accr: (83)

Note, that this condition is different from the naive one
sr > accr, the reason being that the axion cloud is small,
so that less accretion is needed to support it. In the opposite
regime, sr < ��accr the accretion is not efficient enough
to support the siren, and the black hole spins down.
Consequently, in the presence of light axions we expect
to see gaps in the spectrum of rotating black holes at the
masses close to the optimal. We illustrated this effect in
Figs. 7 and 8. In Fig. 7 we show the regions in the black
hole mass/axion mass parameter space, where the condi-
tion (83) cannot be satisfied for a maximally spinning black
hole and, consequently, black holes cannot sustain maxi-
mal rotation. The dark shaded region arises for Eddington
limited accretion, see (70), while the light shaded region
for an accretion time of order the age of the Universe, i.e.
currently nonaccreting black holes. In this plot we assumed
that �� ¼ �þ and that sr given by (66) and (67) for the
heavy and light axion mass regime, respectively. This plot
should be considered only as an indicative one and the
more refined analysis will be presented in [72]. In particu-
lar, the estimate (79) for the graviton emission time should
be considered as a lower bound, as it does not take into
account nonrelativstic suppression. Taking this suppres-
sion into account will result in the stronger bounds on
the axion masses than the conservative estimates presented
here. We checked, however, that setting �� ¼ 1 in (83)
affects the allowed axion masses in the heavy region only
by a factor of order two (while the lower boundary of the
spindown region in Fig. 7 is more sensitive to such a
change).
In Fig. 8 we illustrated how the black hole Regge plane

(the parameter space of black hole masses and spins) may
look like after precision measurements of spins and masses
for many black holes will become available. Namely, in the

FIG. 7 (color online). The parameter space in the plane of
axion and black hole masses where the superradiance leads to the
black hole spindown assuming Eddington accretion (dark shaded
region), and no accretion, i.e. the superradiance time scale is
required to be faster than the age of the Universe (light shaded
area). In both cases the upper bound has been calculated from
(66) and the lower bound from (67).
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presence of two axions with masses 1:7� 10�11 eV and
3� 10�17 eV black holes will populate only the shaded
region in this plot (there could be rare exceptions due to
black holes experiencing a short period of super-Eddington
accretion). This figure should be considered as indicative,
and is meant to illustrate that the dip in the spectrum of
rotating black holes becomes narrower and less pro-
nounced with increasing black hole mass.

Heavy enough black holes may satisfy the condition (83)
and operate in the siren regime. The graviton flux (82)
corresponds to the gravitational wave signal at the Earth of
the strength

!h2 � _JGW
M2

PlR
2
g

�
Rg

L

�
2 ¼ �þ��Rg

L2
; (84)

where L is the distance to the siren. For �� ¼ 10�7 this
translates into

h� 3� 10�22

�
10�2 Hz

�

�
1=2

�
M

107M�

�
1=2

�
100 Mpc

L

�
;

(85)

which is above LISA sensitivity.
We should stress, that the stationary point (80) is the

simplest possible regime for the axionic siren. However,
the siren is a very rich and complicated dynamical system
that may exhibit other even more colorful periods during
its lifetime. For instance, if we deviate from the stationary
point (80) of Eqs. (76) and (77), we find cyclic solutions
with the axion population oscillating between the super-
radiant and the nonsuperradiant level. These solutions
would give rise to a gravitational pulsar with a period of
order the superradiance time (10 years for a 107M� black
hole), with a maximum amount of radiation during the
periods when the population of both levels are comparable.

A cyclicity of such a pulsar is a direct manifestation of the
quantum origin of the axionic siren.
We should mention that the above discussion ignores a

number of important physical effects, such as the back-
reaction from self-interactions in the axion cloud, and one
graviton annihilation of two axions in the same level, but
they do not change the qualitative picture presented above.
These effects will be discussed in an upcoming paper [72].

3. Superradiance and the QCD axion

For fa �MPl the QCD axion mass is 5� 10�13 eV;
given that the smallest stellar size black holes may have
masses down to �2M�, their spin measurements may
probe axion masses up to 3� 10�10 eV, exploring the
parameter space of the QCD axion deep in the anthropic
regime. In terms of the QCD axion decay constant this
translates into

fa > 2� 1016 GeV; (86)

i.e. down to the GUT scale—the natural scale for the PQ
symmetry breaking. Note that this reach is in a region
where all electromagnetic couplings are suppressed and
is also independent of the axion’s cosmological abundance.
From the already existing spinning black hole candidates,
the best bound is provided by LMC X-1—a 10M� black
hole with spin a=Rg � 0:91 [67]. These values suggest a

bound for fa at the level

fa & 2� 1017 GeV;

which is significantly below the Planck scale.
Again, both these numbers should be considered as

indicative (and conservative) estimates. Our preliminary
results including the effects mentioned in the previous
section and not accounted here, indicate that the actual
bounds are likely to be stronger by a factor �2.
To conclude, it is worth noting that one could use the

superradiance effect to place bounds on the photon and
graviton masses. In the photon case, though, an electro-
magnetic field resulting from the instability will interact
strongly with the matter in the black hole accretion disk
and is most likely to dissipate. For the graviton, only the
largest galactic black holes have a chance to compete with
a limit from the binary pulsar timing. It was already
suggested that these can be used to probe massive gravity
models by gravitational wave measurements sensitive to
the presence of black hole hair [73]; in order to exploit the
superradiance effect it is necessary to observationally con-
firm the presence of an ergosphere region, which is not
automatic in massive gravity, where the Kerr metric gets
modified. An interesting consequence of a nonvanishing
graviton mass would be that in the heavy mass regime
graviton emission becomes impossible, and does not pre-
vent the graviton cloud from becoming an order one
perturbation.
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FIG. 8 (color online). The maximum allowed spin for a black
hole as a function of its mass assuming there are two axions with
mass ma1 and ma2 corresponding roughly to black hole masses
of 2M� and 106M�. This plot has been created using (66) (and
the dependence of the superradiance rate on the black hole spin
for heavy masses from [59]) and (67) and is indicative.
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III. DISCUSSION AND FUTURE DIRECTIONS

We see that taking seriously the QCD axion as a solution
to the strong CP problem together with generic properties
of axions in string theory leads to a rather unconventional
set of predictions for forthcoming cosmological and astro-
nomical observations. Of course, it would be exciting to
observe any of the signatures discussed in the current
paper—rotation of the CMB polarization, a step in the
CDM power spectrum or a gap in the mass spectrum of
rotating black holes. However, a really distinctive property
of the presented scenario is the expectation of many light
axion fields. This multiplicity can reveal itself by giving
rise to all of the above signals simultaneously. Even more
interestingly, precision measurements of the CDM power
spectrum and spectroscopy/gravity wave signals from ro-
tating black holes are capable not only of providing the
evidence for the presence of many light axions but also to
measure values for many parameters of the same physical
origin, such as axion masses/PQ breaking scales, and initial
misalignments angles. With large enough number of axi-
ons this may allow to make quantitative tests of different
scenarios for the statistical distribution of these parameters
in the landscape and/or of inflationary measures.

As discussed in the Introduction, if many ultralight
scalar fields were to be observed, it is tempting to suggest
that they may be responsible for the scanning of the
vacuum energy—at least at low scales. Indeed, in the
current framework there are at least three natural sources
for the scanning. First, the vacuum energy can be scanned
at the high scale by fluxes, as in the Bousso–Polchinski
scenario. Second, we expect a large number of real scalar
moduli �i; their potential is generated as a result of SUSY
breaking and depends on the SUSY breaking vev F and the
string scale Ms in the following way,

Vð�iÞ ¼ F2
susyfð�i=MsÞ:

This potential may provide a possibility to scan the vacuum
energy below the SUSY breaking scale. Note, that unlike in
the toy field theory landscape of [31], the maximum scale
of scanning in this case is parametrically above the mass
scale F=Ms for these fields. Finally, the scanning can be
done by axions. In this case the masses of the fields are also
parametrically below the overall scale of the potential. The
difference with the scanning by real moduli is that the
axion masses are exponentially sensitive to the parameters
of compactification, and likely to be distributed over many
orders of magnitude rather than being concentrated around
one particular scale, giving rise to the situation close to the
Wilsonian scanning.

The latter possibility raises a number of theoretical and
phenomenological issues. First, as we already discussed,
the scanning is only possible, provided individual axion
potentials have nondegenerate minima. This implies that
axions responsible for the scanning are associated with a
gauge sector strongly coupled at low energies. Note, that

by itself this does not guarantee the presence of multiple
axion vacua. For instance, the axion potential in pure
gluodynamics is quadratic in the large N limit [74], so
that there is a single axion vacuum.
Note that in this example the strongly coupled sector

itself, even in the absence of the axion, possess N non-
degenerate metastable vacua. These vacua are useless for
the scanning, however. First, not all of them are extrema of
the axion potential. Moreover, even if in a more compli-
cated setup, this kind of vacua become local minima of the
axion potential, they still do not allow to scan the vacuum
energy if the strong coupling scale � of the gauge sector is
lower then the expansion rate of the Universe during
inflation, Hinf . Indeed, at the moment when at the FRW
stage the expansion rate drops below �, the gauge sector
experiences the (de)confinement phase transition (assum-
ing it was not reheated, otherwise it happens later) and a
network of domain walls separating different vacua is
formed. Afterwards, bubbles of the lowest energy vacuum
expand at the expense of the other vacua and the Universe
always ends up being in the lowest energy state. This has to
be contrasted with the axion vacua that exist only in the
presence of a dynamical axion. Those are separated by a
large distance of order fa in the field space. So if Hinf �
fa (but, possibly, Hinf � �) the axion fluctuations are
negligible compared to the distance between vacua and
the network of domain walls does not form. We see that an
important theoretical issue that has to be understood is
what are the conditions for developing nondegenerate va-
cua in the axion potential and how generic such a situation
is.
If axions scan a significant fraction of the vacuum

energy in the Wilsonian way, there should be several
hidden gauge sectors per decade of energy at low-energy
scales. How is it possible that they avoided being detected
so far? The natural answer to this question would be that
these sectors are well separated from us along extra di-
mensions, so that locality sequesters them away. For in-
stance, if inflation were due to some well-localized process
in extra-dimensions (such as the brane inflation) this would
explain why only the visible sector was reheated.
On the other hand, for some purposes a large separation

along extra dimensions may not be enough to realize
sequestering at the desired level. For instance, it is con-
ceivable that some of the hidden sectors posses massless
Uð1Þ gauge factors and have light (with masses smaller
than �10 keV) fermions charged under these gauge bo-
sons. In this case, there are extremely strong bounds from
star cooling on the kinetic mixing coefficient � between the
photon and an extra massless gauge boson � & 10�14 [75].
On the other hand, it was argued [76] that even if the extra
Uð1Þ is separated from our sector by a large distance in
string units, this mixing can be mediated by light (com-
pared to the string scale) closed string modes at the unac-
ceptable level. Consequently, the smallness of such kinetic
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mixings requires a separate explanation. For instance, it
might be a consequence of a large mass for the closed
string modes capable of mediating such a mixing. It would
be enough if such a mass were generated just in the vicinity
of where the photon is localized.

Note, that similar to the logic in the Introduction that led
us to the expectation thatmany light axions may be present,
one can also make the case for extra hidden gauge sectors.5

Consequently, these phenomenological issues remain even
if axions are not responsible for the scanning.

Another feature that can be generic in the compactifica-
tion manifold is the existence of warped throats [77–79]
which generate hierarchically small mass scales by the
Randall-Sundrum mechanism [80]. Warping can naturally
lower the value of fa belowMGUT—fa can now vary over a
large range of mass scales, affecting the phenomenology of
these axions. For example, the predicted suppression in
matter perturbations due to light axions changes, or, as
explained in Sec. II E 3, the effect of superradiance can be

inhibited due to the larger possible coupling to ~E � ~B. In
addition, the scale of gauge sectors in warped throats can
naturally be well below the string scale and may be giving
rise to new ultralight fields. These ultralight fields can also
include higher spin excitations gravitationally coupled to
us. The phenomenology of axions with varying fa below
the GUT scale, as well as possible implications from the
existence of ultralight hidden sectors will be the subject of
a companion paper.
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APPENDIX: SUPERRADIANCE AS
ANTITUNNELING

In Sec. II D we have introduced the description of the
exponential superradiant instability as a tunneling phe-
nomenon, based on the Schrödinger problem (62) and
(63). Here we will discuss a simplified version of the
problem which clearly demonstrates how the superra-
diance sets in. Let us for this purpose consider the 1D
Schrödinger problem

�00 þ ð!2 � Vðx;!ÞÞ� ¼ 0; (A1)

where the potential is given by (see Fig. 9)

Vðx;!Þ ¼
�1; x > 0;
�	ðxþ LÞ � ð2m!þ!�m2!2þÞð1��ðxþ LÞÞ x < 0:

(A2)

The potential (A2) faithfully represents (63); it has: a
mirror at large distances from the black holes, here mod-
eled by the infinite potential barrier at the origin; the
centrifugal potential at distances of the order of black
hole’s gravitational radius, represented by the strongly
repulsive 	-function at x ¼ �L, with �=! � 1; the po-
tential well in between, with a negligible influence on the
modes near the top of the well, reflected in our choice of
V ¼ 0 in the well of (A2); and the potential V ¼
2m!þ!�m2!2þ on the horizon’s side of the 	-barrier,
which is chosen to encode the dispersion relation of a wave
with angular momentumm in the near-horizon limit, where
the wave vectors obey k2 ¼ ð!�m!þÞ2. Note, that albeit
this problem is straightforward to solve, it is not of the
usual self-adjoint form as commonly encountered in quan-
tum mechanics on Hilbert space. Instead, the potential
itself depends on the eigenvalue, which as we will now
see has dramatic consequences for the existence of the
instability.

Let us now solve this equation. Away from the barriers,
the solutions are given by linear combinations of free

waves e�iqx, with q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � V

p
in the corresponding

region. At x ¼ 0, where the wave function enters the
barrier, we set � ¼ 0 since the barrier is infinite both in
height and in width, and penetration depth therefore van-
ishes. Far to the left of the 	-barrier, as we noted in
Sec. II D, the regularity at the horizon picks the wave
with the momentum dependence expð�ikþxÞ as the correct
asymptotic form of the eigenmodes of (62) and (63) [59],
where kþ is formally the positive root of q2 ¼ !2 � V ¼
ð!�m!þÞ2; thus kþ ¼ !�m!þ. Note, that when !<
m!þ, this root is negative: it describes a wave which is
incident on the 	-barrier from the left. Nevertheless, the
group velocity of this wave is still positive, vg ¼ d!

dk ¼ 1,

implying that any wave packet composed of such modes
moves away from the 	-barrier, even if the phase velocity
of the wave changed sign. This is of course the first hint of
the superradiant behavior in our simple toy model prob-
lem: the waves carrying away negative energy to the left
leak into the potential well on the right, and amplify the
state bound up in there. In fact, for the modes 0<!<
m!þ we see that this boundary condition really represents

5One difference is that unlike for the QCD axion it is possible
to argue that the existence of at least one gauge sector is required
anthropically.
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the exact opposite of the usual textbook examples of
tunneling, since the ‘‘free’’ wave impinges into the barrier,
and so we can dub it ‘‘antitunneling.’’

What remains is to complete the determination of the
spectrum of (A1) and (A2) by matching the waves in the
well and out in the ergoregion across the 	-barrier. There,
the solutions obey

�Ljx¼�L ¼ �Rjx¼�L;

�0
Rjx¼�L ��0

Ljx¼�L ¼ ��jx¼�L: (A3)

Substituting

�L ¼ Be�ið!�m!þÞx; �R ¼ A sinð!xÞ; (A4)

where these functions are picked to satisfy the boundary
conditions far to the left and at the origin, respectively, we
get a secular equation for the eigenvalues !:

! cotð!LÞ þ � ¼ ið!�m!þÞ: (A5)

Two comments are in order here. First: the secular equation
(A5) should come as no surprise, as we are dealing with a
problem that involves three modes and four boundary
conditions, thanks to the horizon ingoing condition and
infinite barrier cutoff enforcing (A3) and (A4) relating their
parameters at the 	-barrier. Physically, this merely means
that the potential well of Fig. 9 can only accommodate
states which have right phases to fit inside it, as it enforces

two-sided boundary constraints. This is expected, as any
bound state spectrum is indeed discrete. Second: the eigen-
frequencies all have imaginary parts. This is because the
	-barrier is not impenetrable, unlike the infinite barrier at
the origin, but allows leakage which links the bound states
with the continuum of outgoing waves to the left. This is
indeed familiar from the usual tunneling problems, and
reflects the fact that under time evolution the bound states
can evolve into free states that escape to infinity. In the
standard tunneling problems, however, the imaginary parts
of the eigenfrequencies are all negative, which means that
the bound states decay as time goes on. That is again a
natural consequence of a setup which one adopts, which is
that a quantum state is prepared in a surrounding vacuum
and allowed to fall apart by the emission of a wave through
a partially transparent barrier.
The unusual feature of (A5) is that many of the eigen-

modes have positive imaginary parts. This can be readily
seen by setting

! ¼ !r � i�; (A6)

and solving (A5) in the limit !L * 1 (which means that
the well has many closely populated bound states, but that
we look for ones near the top) and �=! � 1 (so that the
	-barrier is strongly repulsive, and the bound states are
long-lived, allowing for an adiabatic approach to the prob-
lem). These approximations directly follow from the black
hole instability considerations, which we are principally
interested in. Then, the secular equation (A5) splits into
two,

!r cotð!rLÞ þ �þOð�Þ ¼ 0; (A7)

� cotð!rLÞ ¼ �ð!r �m!þÞ þOð�!rLÞ: (A8)

When �=! � 1 the standard magic of cotangents in the
tunneling eigenequations comes to the rescue: the eigen-
mode real parts are determined by the limiting form of the
Eq. (A7), cotð!rLÞ ’ ��=!r, and are approximately

!r � n�

2L
þ . . . : (A9)

This implies that the solutions of the other secular equation
(A8) are

� ’ !rð!r �m!þÞ
�

þ . . . : (A10)

This is the key equation for understanding the super-
radiant instability. We see immediately that the modes in
the regime 0<!r <m!þ have �< 0, which from
Eq. (A6) implies that these modes have positive imaginary
contributions to the eigenfrequency. This means that, as
time goes on, these modes grow exponentially. They are
unstable, absorbing energy and spin from the black hole,
rather than the other way around. For them, indeed, the
‘‘transmitted’’ wave is really incident as kþ ¼ !�
m!þ < 0, and so they antitunnel, as we anticipated above.

V = 0

V = 

V = (x+L)

V = 2m +   - m2
+

2

V = 2m +  - m2
+

2

Decaying modes

Superradiant modes

V = m2
+

2

FIG. 9 (color online). A toy model potential encapsulating all
the salient features of the superradiant instability: infinite po-
tential barrier, representing the mass mirror; a potential well with
V ¼ 0, a reasonable approximation for the modes near its top; a
strongly repulsive Dirac 	-function potential simulating the
centrifugal barrier; and a potential V ¼ 2m!þ!�m2!2þ, mod-
eling the dispersive properties of the waves far in the ergoregion
as they approach the horizon, where they satisfy k2 ¼ ð!�
m!þÞ2, such that the net potential there is much larger than
m2!2þ for large eigenvalues, (!0 on the figure), but is smaller
than m2!2þ for superradiant modes (denoted by ! on the figure).
The key is that the superradiant modes have larger momentum
outside the well than inside it.

STRING AXIVERSE PHYSICAL REVIEW D 81, 123530 (2010)

123530-21



Finally, we also see that the instability scale � peaks at
!r ’ m!þ=2, as that is the extremal value of � in
Eq. (A10). This of course presumes that the 	-barrier is
independent of the eigenfrequency !, as well as that the
mirror barrier is fully impenetrable, as modeled by our
infinite barrier at the origin. In the real black hole problem,
neither is true. The real centrifugal barrier depends on the
eigenmode, through the respective value of l. And the

mirror is not completely impenetrable, being eventually
completely transparent to the modes with !>�. All of
this will modify the precise formulas for the superradiant
eigenfrequencies and the instability time scales.
Nonetheless, we believe the above toy model is instructive
and accurately reproduces the essential features of the
instability.

[1] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976).
[2] C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006).
[3] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440

(1977).
[4] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
[5] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
[6] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1

(2008).
[7] J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. 120B,

127 (1983).
[8] M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983).
[9] L. F. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983).
[10] A. D. Linde, Phys. Lett. B 201, 437 (1988).
[11] M. Tegmark, A. Aguirre, M. Rees, and F. Wilczek, Phys.

Rev. D 73, 023505 (2006).
[12] M. Kamionkowski and J. March-Russell, Phys. Lett. B

282, 137 (1992).
[13] R. Holman, S. D.H. Hsu, T.W. Kephart, E.W. Kolb, R.

Watkins, and L.M. Widrow, Phys. Lett. B 282, 132
(1992).

[14] R. Kallosh, A. D. Linde, D. A. Linde, and L. Susskind,
Phys. Rev. D 52, 912 (1995).

[15] M.B. Green, J. H. Schwarz, and E. Witten, Cambridge
Monographs On Mathematical Physics (Cambridge
University Press, Cambridge, England, 1987).

[16] P. Svrcek and E. Witten, J. High Energy Phys. 06 (2006)
051.

[17] M.R. Douglas and S. Kachru, Rev. Mod. Phys. 79, 733
(2007).

[18] E. Witten, Phys. Lett. 149B, 351 (1984).
[19] L. McAllister, E. Silverstein, and A. Westphal,

arXiv:0808.0706.
[20] M. Dine, N. Seiberg, X. G. Wen, and E. Witten, Nucl.

Phys. B278, 769 (1986).
[21] K. Becker, M. Becker, and A. Strominger, Nucl. Phys.

B456, 130 (1995).
[22] S. Kachru, R. Kallosh, A. Linde, and S. P. Trivedi, Phys.

Rev. D 68, 046005 (2003).
[23] P. Fox, A. Pierce, and S.D. Thomas, arXiv:hep-th/

0409059.
[24] M. P. Hertzberg, M. Tegmark, and F. Wilczek, Phys. Rev.

D 78, 083507 (2008).
[25] T. Banks, M. Dine, P. J. Fox, and E. Gorbatov, J. Cosmol.

Astropart. Phys. 06 (2003) 001.
[26] P. Svrcek, arXiv:hep-th/0607086.
[27] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa,

J. High Energy Phys. 06 (2007) 060.
[28] N. Kaloper and L. Sorbo, Phys. Rev. D 79, 043528 (2009);

Phys. Rev. Lett. 102, 121301 (2009).
[29] R. Bousso and J. Polchinski, J. High Energy Phys. 06

(2000) 006.
[30] J. Polchinski, arXiv:hep-th/0603249.
[31] N. Arkani-Hamed, S. Dimopoulos, and S. Kachru, arXiv:

hep-th/0501082.
[32] E. Komatsu et al. (WMAP Collaboration), Astrophys. J.

Suppl. Ser. 180, 330 (2009).
[33] E. Y. Wu et al. (QUaD Collaboration), Phys. Rev. Lett.

102, 161302 (2009).
[34] A. P. S. Yadav, R. Biswas, M. Su, and M. Zaldarriaga,

Phys. Rev. D 79, 123009 (2009).
[35] http://www.sdss3.org/cosmology.php.
[36] A. Loeb and M. Zaldarriaga, Phys. Rev. Lett. 92, 211301

(2004).
[37] Y. Kawamura, Prog. Theor. Phys. 105, 999 (2001).
[38] G. Altarelli and F. Feruglio, Phys. Lett. B 511, 257 (2001).
[39] L. J. Hall and Y. Nomura, Phys. Rev. D 64, 055003 (2001).
[40] A. Hebecker and J. March-Russell, Nucl. Phys. B613, 3

(2001).
[41] D. Harari and P. Sikivie, Phys. Lett. B 289, 67 (1992).
[42] S.M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D 41,

1231 (1990).
[43] A. Lue, L.M. Wang, and M. Kamionkowski, Phys. Rev.

Lett. 83, 1506 (1999).
[44] M. Pospelov, A. Ritz, and C. Skordis, Phys. Rev. Lett. 103,

051302 (2009).
[45] G. C. Liu, S. Lee, and K.W. Ng, Phys. Rev. Lett. 97,

161303 (2006).
[46] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85,

1158 (2000).
[47] L. Amendola and R. Barbieri, Phys. Lett. B 642, 192

(2006).
[48] K. J. Bae, J. H. Huh, and J. E. Kim, J. Cosmol. Astropart.

Phys. 09 (2008) 005.
[49] A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel,

J. Cosmol. Astropart. Phys. 05 (2009) 012.
[50] R. Penrose, Riv. Nuovo Cimento Soc. Ital. Fis. 1, 252

(1969); Gen. Relativ. Gravit. 34, 1141 (2002).
[51] D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970).
[52] R.M. Wald, General Relativity (University of Chicago

Press, Chicago, 1984), p. 491.
[53] Ya. B. Zeldovich, JETP Lett. 14, 180 (1971).
[54] C.W. Misner, Phys. Rev. Lett. 28, 994 (1972).

ASIMINA ARVANITAKI et al. PHYSICAL REVIEW D 81, 123530 (2010)

123530-22

http://dx.doi.org/10.1103/PhysRevLett.37.8
http://dx.doi.org/10.1103/PhysRevLett.97.131801
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/0370-2693(83)90637-8
http://dx.doi.org/10.1016/0370-2693(83)90637-8
http://dx.doi.org/10.1016/0370-2693(83)90639-1
http://dx.doi.org/10.1016/0370-2693(83)90638-X
http://dx.doi.org/10.1016/0370-2693(88)90597-7
http://dx.doi.org/10.1103/PhysRevD.73.023505
http://dx.doi.org/10.1103/PhysRevD.73.023505
http://dx.doi.org/10.1016/0370-2693(92)90492-M
http://dx.doi.org/10.1016/0370-2693(92)90492-M
http://dx.doi.org/10.1016/0370-2693(92)90491-L
http://dx.doi.org/10.1016/0370-2693(92)90491-L
http://dx.doi.org/10.1103/PhysRevD.52.912
http://dx.doi.org/10.1088/1126-6708/2006/06/051
http://dx.doi.org/10.1088/1126-6708/2006/06/051
http://dx.doi.org/10.1103/RevModPhys.79.733
http://dx.doi.org/10.1103/RevModPhys.79.733
http://dx.doi.org/10.1016/0370-2693(84)90422-2
http://arXiv.org/abs/0808.0706
http://dx.doi.org/10.1016/0550-3213(86)90418-9
http://dx.doi.org/10.1016/0550-3213(86)90418-9
http://dx.doi.org/10.1016/0550-3213(95)00487-1
http://dx.doi.org/10.1016/0550-3213(95)00487-1
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://arXiv.org/abs/hep-th/0409059
http://arXiv.org/abs/hep-th/0409059
http://dx.doi.org/10.1103/PhysRevD.78.083507
http://dx.doi.org/10.1103/PhysRevD.78.083507
http://dx.doi.org/10.1088/1475-7516/2003/06/001
http://dx.doi.org/10.1088/1475-7516/2003/06/001
http://arXiv.org/abs/hep-th/0607086
http://dx.doi.org/10.1088/1126-6708/2007/06/060
http://dx.doi.org/10.1103/PhysRevD.79.043528
http://dx.doi.org/10.1103/PhysRevLett.102.121301
http://dx.doi.org/10.1088/1126-6708/2000/06/006
http://dx.doi.org/10.1088/1126-6708/2000/06/006
http://arXiv.org/abs/hep-th/0603249
http://arXiv.org/abs/hep-th/0501082
http://arXiv.org/abs/hep-th/0501082
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1103/PhysRevLett.102.161302
http://dx.doi.org/10.1103/PhysRevLett.102.161302
http://dx.doi.org/10.1103/PhysRevD.79.123009
http://dx.doi.org/10.1103/PhysRevLett.92.211301
http://dx.doi.org/10.1103/PhysRevLett.92.211301
http://dx.doi.org/10.1143/PTP.105.999
http://dx.doi.org/10.1016/S0370-2693(01)00650-5
http://dx.doi.org/10.1103/PhysRevD.64.055003
http://dx.doi.org/10.1016/S0550-3213(01)00374-1
http://dx.doi.org/10.1016/S0550-3213(01)00374-1
http://dx.doi.org/10.1016/0370-2693(92)91363-E
http://dx.doi.org/10.1103/PhysRevD.41.1231
http://dx.doi.org/10.1103/PhysRevD.41.1231
http://dx.doi.org/10.1103/PhysRevLett.83.1506
http://dx.doi.org/10.1103/PhysRevLett.83.1506
http://dx.doi.org/10.1103/PhysRevLett.103.051302
http://dx.doi.org/10.1103/PhysRevLett.103.051302
http://dx.doi.org/10.1103/PhysRevLett.97.161303
http://dx.doi.org/10.1103/PhysRevLett.97.161303
http://dx.doi.org/10.1103/PhysRevLett.85.1158
http://dx.doi.org/10.1103/PhysRevLett.85.1158
http://dx.doi.org/10.1016/j.physletb.2006.08.069
http://dx.doi.org/10.1016/j.physletb.2006.08.069
http://dx.doi.org/10.1088/1475-7516/2008/09/005
http://dx.doi.org/10.1088/1475-7516/2008/09/005
http://dx.doi.org/10.1088/1475-7516/2009/05/012
http://dx.doi.org/10.1007/BF02752493
http://dx.doi.org/10.1007/BF02752493
http://dx.doi.org/10.1023/A:1016578408204
http://dx.doi.org/10.1103/PhysRevLett.25.1596
http://dx.doi.org/10.1103/PhysRevLett.28.994


[55] A. A. Starobinskii, Sov. Phys. JETP 37, 28 (1973).
[56] W.H. Press and S.A. Teukolsky, Astrophys. J. 185, 649

(1973).
[57] W.H. Press and S. A. Teukolsky, Nature (London) 238,

211 (1972).
[58] T. Damour, N. Deruelle, and R. Ruffini, Lett. Nuovo

Cimento Soc. Ital. Fis. 15, 257 (1976).
[59] T. J.M. Zouros and D.M. Eardley, Ann. Phys. (N.Y.) 118,

139 (1979).
[60] S. Detweiler, Phys. Rev. D 22, 2323 (1980).
[61] S. R. Dolan, Phys. Rev. D 76, 084001 (2007).
[62] J. E. McClintock and R.A. Remillard, arXiv:0902.3488.
[63] R. Schodel, A. Eckart, C. Iserlohe, R. Genzel, and T. Ott,

Astrophys. J. 625, L111 (2005).
[64] M. J. Valtonen et al., Nature (London) 452, 851 (2008).
[65] S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A.

Kasevich, and S. Rajendran, Phys. Rev. D 78, 122002
(2008).

[66] M. J. Rees, Annu. Rev. Astron. Astrophys. 22, 471 (1984).
[67] L. Gou et al., Astrophys. J. 701, 1076 (2009).
[68] J. A. Orosz et al., Astrophys. J. 697, 573 (2009).
[69] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R.

Genzel, F. Martins, and T. Ott, Astrophys. J. 692, 1075
(2009).

[70] C. Hopman, Classical Quantum Gravity 26, 094028
(2009).

[71] C. Csaki, N. Kaloper, and J. Terning, Phys. Rev. Lett. 88,
161302 (2002); Phys. Lett. B 535, 33 (2002).

[72] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,
and J. March-Russel (work in progress).

[73] S. Dubovsky, P. Tinyakov, and M. Zaldarriaga, J. High
Energy Phys. 11 (2007) 083.

[74] E. Witten, Phys. Rev. Lett. 81, 2862 (1998).
[75] S. Davidson, S. Hannestad, and G. Raffelt, J. High Energy

Phys. 05 (2000) 003.
[76] S. A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze, and A.

Ringwald, J. High Energy Phys. 07 (2008) 124.
[77] H. L. Verlinde, Nucl. Phys. B580, 264 (2000).
[78] S. Dimopoulos, S. Kachru, N. Kaloper, A. E. Lawrence,

and E. Silverstein, Phys. Rev. D 64, 121702 (2001).
[79] A. Hebecker and J. March-Russell, Nucl. Phys. B781, 99

(2007).
[80] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370

(1999); 83, 4690 (1999).

STRING AXIVERSE PHYSICAL REVIEW D 81, 123530 (2010)

123530-23

http://dx.doi.org/10.1086/152445
http://dx.doi.org/10.1086/152445
http://dx.doi.org/10.1038/238211a0
http://dx.doi.org/10.1038/238211a0
http://dx.doi.org/10.1007/BF02725534
http://dx.doi.org/10.1007/BF02725534
http://dx.doi.org/10.1016/0003-4916(79)90237-9
http://dx.doi.org/10.1016/0003-4916(79)90237-9
http://dx.doi.org/10.1103/PhysRevD.22.2323
http://dx.doi.org/10.1103/PhysRevD.76.084001
http://arXiv.org/abs/0902.3488
http://dx.doi.org/10.1086/431307
http://dx.doi.org/10.1038/nature06896
http://dx.doi.org/10.1103/PhysRevD.78.122002
http://dx.doi.org/10.1103/PhysRevD.78.122002
http://dx.doi.org/10.1146/annurev.aa.22.090184.002351
http://dx.doi.org/10.1088/0004-637X/701/2/1076
http://dx.doi.org/10.1088/0004-637X/697/1/573
http://dx.doi.org/10.1088/0004-637X/692/2/1075
http://dx.doi.org/10.1088/0004-637X/692/2/1075
http://dx.doi.org/10.1088/0264-9381/26/9/094028
http://dx.doi.org/10.1088/0264-9381/26/9/094028
http://dx.doi.org/10.1103/PhysRevLett.88.161302
http://dx.doi.org/10.1103/PhysRevLett.88.161302
http://dx.doi.org/10.1016/S0370-2693(02)01765-3
http://dx.doi.org/10.1088/1126-6708/2007/11/083
http://dx.doi.org/10.1088/1126-6708/2007/11/083
http://dx.doi.org/10.1103/PhysRevLett.81.2862
http://dx.doi.org/10.1088/1126-6708/2000/05/003
http://dx.doi.org/10.1088/1126-6708/2000/05/003
http://dx.doi.org/10.1088/1126-6708/2008/07/124
http://dx.doi.org/10.1016/S0550-3213(00)00224-8
http://dx.doi.org/10.1103/PhysRevD.64.121702
http://dx.doi.org/10.1016/j.nuclphysb.2007.05.003
http://dx.doi.org/10.1016/j.nuclphysb.2007.05.003
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://dx.doi.org/10.1103/PhysRevLett.83.4690

