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Brane f(R) gravity cosmologies
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By the application of the generalized Israel junction conditions we derive cosmological equations for

the fourth-order f(R) brane gravity and study their cosmological solutions. We show that there exists a
nonstatic solution which describes a four-dimensional de Sitter (dS,) brane embedded in a five-
dimensional anti-de Sitter (AdSs) bulk for a vanishing Weyl tensor contribution. On the other hand,
for the case of a nonvanishing Weyl tensor contribution, there exists a static brane solution only. We claim

that in order to get some more general nonstatic f(R) brane configurations, one needs to admit a

dynamical matter energy-momentum tensor in the bulk rather than just a bulk cosmological constant.
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I. INTRODUCTION

Similarly as in the standard general relativity, it is inter-
esting to consider generalizations of the brane universes
[1-3]. Some of such generalizations are the higher-order
brane gravity theories of which the simplest is f(R) gravity
[4] (for the most recent reviews see Refs. [5,6]). However,
the combination of brane models with higher-order theo-
ries is nontrivial, since, except for the Lovelock (or, in the
lowest order, the Gauss-Bonnet) densities [7,8], one faces
ambiguities of the quadratic delta function contributions to
the field equations. This problem was first challenged
successfully in our earlier works [9,10], in which we found
the ways to avoid ambiguities not only for f(R) brane
theories (see, e.g., [11,12]), but also for more general
actions which depend arbitrarily on the three curvature
invariants f(R, R, R, R ;p.aR*’¢?), although the linear
combination of these invariants was studied in Ref. [13].
One of the methods applied, was the reduction of the
fourth-order brane gravity to the second-order theory by
introducing an extra degree of freedom—the scalaron
[9,10]. Such a procedure leads to the second-order gravity
which is just the scalar-tensor Brans-Dicke gravity [14]
with a Brans-Dicke parameter @ = 0, and an appropriate
scalaron potential (with the scalaron playing the role of the
Brans-Dicke field). We then obtained the Israel junction
conditions [15] which generalized both the conditions
obtained in Refs. [16,17] for the Brans-Dicke field without
a scalar field potential, and also the conditions derived in
Refs. [18,19] for f(R) brane gravity. The junction condi-
tions which did not assume scalaron continuity, but for a
static brane, were presented in Ref. [20].

In this paper we apply the Israel junction conditions for
f(R) Friedmann-Robertson-Walker metric brane configu-
rations and study the set of their admissible cosmological
solutions. In Sec. II, we present f(R) brane models and
derive the set of field equations. In Sec. III, we apply the
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field equations to cosmology. In Sec. IV, we give our
conclusions.

IL. f(R) GRAVITY ON THE BRANE

Let us consider the f(R) gravity on the brane described
by the action [9]

S, = % f dx\J=gf(R) + Spui p» (2.1)
K3 M,
where R is the Ricci scalar, K% is a five-dimensional
Einstein constant, Sy, is the bulk matter action (p =
1, 2), and M, is the spacetime volume. The action (2.1)
gives fourth-order field equations. It is then advisable to
use an equivalent action

5,= [ EwTRI@®R- 0+ @) @)

where Q is an extra field (Lagrange multiplier), and
f(Q) = df(Q)/dQ. The equation of motion which comes
from (2.2) is just Q = R, provided that f(Q) # 0, so that
f'(Q) may be interpreted as an extra scalar field (called the
scalaron)

¢ = f'(Q) = f'(R),

and the action can be rewritten as

(2.3)

Sy,= fM dPxJ=g{dR — V($)} + Souic (2.4)

where V(¢) = —pR(p) + f(R(¢p)) [10]. The action (2.4)
is equivalent to a scalar-tensor Brans-Dicke gravity with a
Brans-Dicke parameter @ = 0. One of the ways to derive
the junction conditions for the theory described by the
action (2.4) is to append it with an appropriate Hawking-
Lutrell boundary term, which reads as [21]

V—h¢pKd*x,

SHL = _2(_1)p6
r M,

(2.5)

where K is the trace of the extrinsic curvature tensor K, h
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is the determinant of the induced metric h,, =
gup — €nynp, n is a unit normal vector to a boundary
OM,, and € =1 (e = —1) for a timelike (a spacelike)
brane, respectively. The total action of the theory is then

gtotl, = gp + SLHP' (26)
The variation of the action (2.6) leads to the following
junction conditions for f(R) gravity theory [10] (a, b, ... =
0,1,2,3,5):

[K]=0, 2.7
Sn,n, =0, (2.8)
Sh,.n, =0, 2.9

- hub[d),cnc] - [¢]Khub + [¢Kab] = €K§S6dhcahdh’
(2.10)

where for an arbitrary quantity A we have defined a dis-
continuity (a jump) of A as: [A] = A" — A™. Here S, is
the brane energy-momentum tensor. In particular, the con-
dition (2.7) comes from the requirement that the variation
of the Hawking-Lutrell boundary term (2.5) should vanish.

These junction conditions can be compared with those
previously obtained in Ref. [18] [see their Eqgs. (12) and
(13)] and in Ref. [19] [see their Eq. (3.11)]. The difference
is that we have not assumed the continuity of the scalaron
on the brane. If we do so, i.e., assume that [¢] = 0 which
due to the definition (2.3) implies [R] = 0, and additionally
impose the mirror symmetry g,, = g.,(|nl), where n is a
normal Gaussian coordinate originating at the brane, then
the junction conditions (2.7), (2.8), (2.9), and (2.10) take
the form

K =0, (2.11)
2
6. nt = =25y, 2.12)
K2 h,
K, = ﬁ{scdhwhd,, - 4b Sthcd}. (2.13)

We can now express the equations above in terms of the
Ricci scalar R instead of the scalaron ¢. Using the
Gaussian coordinate system we obtain

R=0, (2.14)
K =0, (2.15)
2
f"(RR, = — %S (2.16)
~ K2 ~
f'(RK,, = 7550”, (2.17)
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where we have used the definition of a traceless part of the
brane energy-momentum tensor S = S°h_.h,, —
(1/4)h,,S“h,,, the definition of the traceless part of the
extrinsic  curvature  tensor K% = K, hy, —
(1/4)h,,K“h,, and the definition of the trace of the brane
energy-momentum tensor S = S%h,,. The condition
(2.14) is a consequence of the definition (2.3). The junction
conditions (2.14), (2.15), (2.16), and (2.17) coincide with
those obtained in Ref. [19] [Eq. (3.11)].

Now we can apply the junction conditions (2.7), (2.8),
(2.9), and (2.10) for f(R) gravity in order to obtain the
effective Einstein equations on the brane. The manipula-
tion of the Gauss-Codazzi equation [22]

OR_,hen¢ = —D.K°, + DK, (2.18)
where D, means a four-dimensional covariant derivative
on the brane, leads to a standard decomposition of a four-
dimensional Einstein tensor ¥G_, in the form [23]

(4)Gub = KKy, — KKy — %hazb(l{2 - KCchd)
- (S)Eab + %[(S)chhcahdb

+ (DG ynn? —10G)], (2.19)
where E,;, is an electric part of the bulk Weyl tensor
projected onto the brane. We also assume that in the
neighborhood of the brane, the normal vector field n¢
fulfills the geodesic equations n“V,n’ =0 (geodesic
gauge). Using this last assumption, the following relations
are derived (see Appendix A):

O0¢ = W0O¢ + Kn*V,¢ + (n°V,)2p,  (2.20)

he,h?,N.Nyp = DDy + K, ,n°V, . 2.2
Here V. means the five-dimensional (bulk) covariant de-
rivative. Assuming that the matter in the bulk has the form
of the five-dimensional cosmological constant 7T,, =
—g.Y A, the variation of the action (2.6) gives the follow-
ing field equations in the bulk:

1 1
®G,, = - ﬁgabv(ﬁﬁ) + ggab(s)Ew)
1 2
g b+ %gab“)A, (2.22)
V()
Gp— _ —
R 7 W(o). (2.23)

Substituting (2.11), (2.12), (2.13), (2.20), (2.21), and (2.22)
to (2.19), one obtains the effective Einstein equations on
the brane as

123527-2



BRANE f(R) GRAVITY COSMOLOGIES

96, = (2¢> Qs = 1 o 222 L 00

¢ 3¢
21Dl)¢+ 5@Ah - OF (2.24)
37T 2 “
where
2 (. 2 .. N
Ou = ~3A(Twy = 3 Tha) + 37Ty ~ T, T,
+ = h( Ted — ”Tﬁ (2.25)
ab cd 24
and
b= Ay, + Sy (2.26)

This should be appended by the conservation law for the
matter energy-momentum tensor on the brane (see
Appendix B)

D,§¢, = 0. (2.27)

IIL. f(R) FRIEDMANN COSMOLOGY ON THE
BRANE

We restrict ourselves to the case of the matter in the bulk
in the form of the cosmological constant. This allows to
assume that the bulk spacetime is an Einstein space

G, = —OA g8 (3.1

where ®A ;. >0 is an effective cosmological constant.
The five-dimensional line element reads as

2

d
ds* = —b2%(n, t)dr* + a3(n, t)l:1 _r + rzdﬂz] + dn?,

3.2)

where k = 0, £ 1. The electric part of Weyl tensor E,_;, can
be expressed in the following form [23]:

(S)Eab = :F[uaub + %(hab + Maub)]'

In the case with vanishing F, we deal with a nonstatic
Friedmann-Robertson-Walker brane (3.2) embedded in an
AdSs bulk [24]. Moreover, the junction condition (2.12)
requires that the trace of the brane energy-momentum
tensor vanishes S =7 +4A =0 [the second bulk
Eq. (2.23) sets the scalaron to be a constant because of
the constancy of the curvature in the bulk]. The assumption
that the energy-momentum tensor of the matter on the
brane is a perfect fluid

(3.3)

Sab = (p + P)uaub + P8abs (34)

which fulfills the barotropic equation of state p = wp with
the four-velocity vector u® = §§, gives the effective f(R)
gravity Friedmann equations on the brane in the form
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B KS() V() k+ a? 7?
F - 2¢5A+—4¢ -3 o 2a¢
2
= (5= ¢) (p+ p)Op + p — 8A), (3.5)
F w2 V(g) k+a®> 4ad i 24
3 2N 9 @ T3ae fatigY
1( ¢) (p+ p)21p + 13p — 8A). (3.6)

Now the brane energy-momentum tensor conservation law
(2.27)

P — 3w+l 3.7)
p a

can be integrated to give
p = poa 3D, (3.8)

The requirement that the trace of the brane energy-
momentum tensor vanishes imposes a condition that the
energy density of the matter on the brane is constant, i.e.,
4)
(1+3w)
Multiplying (3.6) by three, and adding it to (3.5), we get
one cosmological equation to solve (for simplicity we
consider flat £ = 0 models only)

— 2x2 A+X@Q+6——+2f—

Y ¢ ap ¢
2
4\ 2 d)
The Eq. (2.23) forces the scalaron ¢ to be constant ¢ =
b, as well. On the other hand, the Eq. (2.22) leads to the
following relation:
Vidy) K3DA
2¢g on

The Eq. (3.11) shows that in the case of a constant scalaron,
the term ® A _; plays the role of a five-dimensional effec-
tive cosmological constant in the bulk. We can indepen-
dently fix the value of the ¢ by a choice of the shape of the
function W(¢) near the brane using (2.23) as

bo = W (=5 q). (3.12)
Now for a fixed value of V(¢y) = V,, Eq. (3.11) gives
Vo — 2k200A

OA =35 A
eff 2¢O (3 3)

Combining (3.10) with (3.11), and assuming that w = —1,

we obtain
. 2 .
a a
(= +=2)=OA
(a2 a) eff

p=po=— = const. 3.9)

(3.10)

= OA . (3.11)

(3.14)
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The nonstatic solution of (3.14) takes the form
(3.15)

and it is consistent with the solution of (3.5) for F = 0. For
w # —1, the continuity Eq. (3.7) implies a constant scale
factor a(f) = ay, and the generalized Friedmann Egs. (3.5)
and (3.6) become inconsistent. The solution (3.15) de-
scribes an embedding of a de Sitter (dS,) brane in an
anti-de Sitter (AdSs) bulk provided that

Hy = \/(S)Aeff _ Vo~ 2k39A
0 6 126,

(note that because of the assumption that ©'A ;> 0, we
need V> 2«2 A). The Eq. (3.16) is a fine-tuning condi-
tion for the value of the bulk cosmological constant &) A
and the potential V(¢), which is responsible for the value
of ¢ and V,,. The special case with

V() = ZKg(S)A

a = dgexp(Hyt),

(3.16)

(3.17)

gives Hy = 0, and the solution (3.15) describes a static
Minkowski brane which is a flat analogue of the Einstein
static universe. In fact, the condition (3.17) is a special case
of the fine-tuning relation (3.16), and can be interpreted as
a necessary and a sufficient condition for the existence of a
static brane in the model with w = —1 and a vanishing
Weyl tensor contribution F = 0.

If the Weyl tensor contribution is nonvanishing, i.e., if
F # 0, it is then possible to embed a static Friedmann-
Robertson-Walker brane (3.2) in a bulk with the cosmo-
logical constant GA only [24]. In such a case, the solution
of (3.1) for the metric (3.2) has the form [24]

a*(n) = f(n),

where f(n) = 762Ho|nl + Se2Holnl
(3.18)

e*(n)

2(n) = £
b*(n) )

where e(n) = yeHolnl — §e=2Holnl

(3.19)

with the brane at n = 0. Using the transformation of the
metric components

)
v+ 68

e2(n) _ e(n) y+ 6
fn)  f(n) (y —8)*

which is equivalent to a rescaling of the coordinates, we
obtain a Minkowski brane (for n = 0). We then compute
the nonvanishing components of the electric part of the
Weyl tensor E“, and the corresponding term F at the brane
(n=0) as

f(n) and

(3.20)

_ 2¥8
(y + 82 Ay
(3.21)

For w # —1, the solution of Egs. (3.7), (3.5), and (3.6)
gives

E'\=E,=E,=-E=F
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_1-3m= 2JM
oMm—1
(3.22)
_ 2
where M = M >0,
3(k35A)
2 )\2
F = E("LA) JM. (3.23)
2\ ¢y

Note that (3.22) and (3.23) requires that ¢, > 0. The
solution above describes a flat static Minkowski brane
which is a flat analogue of the Einstein static universe. In
fact, from (3.21) and (3.23), we have

2y6 3 (K212
_2Y0 5)p =_(L) J
(y+68? " 2\é

The condition (3.24) means that to support a flat static
Minkowski brane one needs to fine-tuned the values of

the parameters ¢, Vy, @A, A, v, and 8.

(3.24)

IV. CONCLUSIONS

In this paper we have studied brane universes within the
framework of the fourth-order f(R) gravity theory. We
applied the junction conditions obtained in our earlier
papers [9,10] in order to get the set of the field equations
which were applicable to cosmology. We conclude that for
the matter with a barotropic equation of state p = wp on
the nonstatic Friedmann-Robertson-Walker brane (3.2)
embedded in a five-dimensional anti-de Sitter (AdSs)
bulk (with vanishing Weyl tensor contribution F = 0),
and the matter in the bulk having the form of a cosmologi-
cal constant (5)A, there is only one case with w = —1 that
possesses the solution in the form of the exponential evo-
lution (3.15) which is a four-dimensional de Sitter (dS,)
brane embedded in a five-dimensional anti-de Sitter
(AdSs) bulk. The case with the Friedmann-Robertson-
Walker brane (3.2) embedded in a bulk with the cosmo-
logical constant ©A and nonvanishing Weyl tensor con-
tribution F # 0 allows the solution in the form of the flat
static Minkowski universe (3.22) only. The cosmological
constant A in the bulk implies the constant curvature and
whence the vanishing of the trace of the brane energy-
momentum tensor S. This is an extremely strong condition
that makes the energy density constant. In conclusion, we
claim that more nonstatic configurations on the brane are
possible if we assume a dynamical matter energy-
momentum tensor in the bulk.
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APPENDIX A: DERIVATION OF USEFUL
GEOMETRIC FORMULAS FROM SEC. 1I

The formula (2.20) can be obtained as follows:
O0¢ = gV, V, ¢ = h**V,V,¢d + nn’V,V,d
= h*D,Dyp + h*"Kp,(nVo)p + (n°V.)*

= @0 + K(n°V,) e + (n°V,)2¢, (Al
J
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where we have used

n‘n?V.Vyh = nV (n'VH) = n(V.n) (V)

=1V (n'V ) = (n°V,)* . (A2)

The formula (2.21) can be obtained as follows:

hcahdbvcvd¢ = hcahdbvc(gedved)) = hcahdbvc[(hed + nend)ve(f)]
= hcahdbvc(hedve(rb) + hcuhdb(vcne)nd(ved)) + hcahdb(vcnd)(neve¢) + hcahdbnendvc've¢
= Da(hebve¢) + hcahdbvcnd(neve(ﬁ) = Dand) + Kadhdb(ncvc)d) = Dath) + Kab(ncvc)d)- (A3)

It is also useful to prove that

hdancvdvcd) = hdavd(ncvc¢) - hda(vdnc)(vcd)) = hdavd(ncvc)¢ - Kucvc¢ = Da(ncvc)d) - Kaegecvcd)
= Da(ncvc)¢ - Kae(hec + nenc)vc¢ = Da(ncvc)¢ - Kaehecvc¢ - Kaenencvc¢

= Da(ncvc¢) - KaeDe¢'

APPENDIX B: DERIVATION OF THE BRANE
ENERGY-MOMENTUM TENSOR CONSERVATION

The conservation law for the brane energy-momentum
tensor can be obtained as follows. We take the covariant
derivative of the left hand side of the Eq. (2.13) multiplied

by ¢ and get
D,¢$K*,)) =K* D, + ¢D,K°,. (B1)

Next, we use the Gauss-Coddazzi Eq. (2.18) together with
the condition (2.7) gives

D,(pK?,) = K D,¢p — pO'R_ h?, ne.

Contracting (2.22) with the induced metric h“, and the
normal vector n¢ one obtains

(B2)

1
OR i n¢ = ——h?np....

¢
After substitution of (B3) to (B2) one gets

(B3)

(A4)

Da(d)Kab) = KabDad) + hdbncd);cd'
Applying (A4) to (B4) we have
Da(d)Kab) = KabDa¢ + Db(ncvc¢) - KabDa¢~ (BS)

(B4)

Substituting (2.12) into (BS5), we obtain the relation

D(¢K",) = =D,

Now taking the covariant derivative of the right-hand side
of the Eq. (2.13) multiplied by ¢, we have

(B6)

X 1 X X
DAx(se, —~he, S)t=2D s« —2L DS (BT
“{4( by b)} 479 b 167 (B7)

Comparison of (B6) with (B7) gives the conservation law
of the brane energy-momentum tensor
D, S, =0, (B8)

as required.
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