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As observers of the universe we are quantum physical systems within it. If the universe is very large in

space and/or time, the probability becomes significant that the data on which we base predictions is

replicated at other locations in spacetime. The physical conditions at these locations that are not specified

by the data may differ. Predictions of our future observations therefore require an assumed probability

distribution (the xerographic distribution) for our location among the possible ones. It is the combination

of basic theory plus the xerographic distribution that can be predictive and testable by further

observations.
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I. INTRODUCTION

Theories of our universe are tested using the data that we
acquire. When calculating predictions, we customarily
make an implicit assumption that our data D0 occur at a
unique location in spacetime. However, there is a quantum
probability for these data to exist in any spacetime volume.
This probability is extremely small in the observable part
of the universe. However, in the large (or infinite) universes
considered in contemporary cosmology, the following pre-
dictions often hold:

(i) The probability is near unity that our data D0 exist
somewhere.

(ii) The probability is near unity that our data D0 is
exactly replicated elsewhere many times. An as-
sumption that we are unique is then false.

This paper is concerned with the implications of these two
statements for science in a very large universe. Some
implications of the first were discussed in [1]. We shall
return to these below, but we first focus on the implications
of the second.

II. THIRD-PERSON AND FIRST-PERSON
PREDICTION

It is useful to distinguish between first-person and third-
person predictions in cosmology. Third-person predictions
are made through the probabilities for alternative features
of the universe that it may exhibit. Examples are the
probabilities that the universe is homogeneous and iso-
tropic, that it had a certain number of inflationary e-folds
in the past, that it will end in a big crunch, or that it exhibits
a certain number of instances of our data D0. Familiar
quantum theories of the universe make such third-person
predictions by specifying a quantum state and a prescrip-
tion for dynamics (see e.g. [2]); such theories are denoted
by T. But to use and test theories we need predictions of
what we will measure or predict. These are first-person

predictions. Defining these is not trivial if there is more
than one instance of our data D0. We now discuss how to
do it.
As observers of the universe we are a subsystem within it

that we call the human scientific IGUS1 (HSI). Terms like
‘‘we,’’, ‘‘us,’’, ‘‘our,’’ refer to this specific subsystem. The
HSI can be described at various levels of coarse-graining.
Here it is assumed that a description is fixed at a classical
level.2 This description can be divided into two parts: First
the data D0 that the HSI has: every scrap of information
that the HSI possesses about the physical universe, includ-
ing every record of every experiment, every astronomical
observation of distant galaxies, every available description
of every leaf, etc., and necessarily every piece of informa-
tion about the HSI itself, its members, and its history.
Second, there are the quantities not included in the data
but which are necessary for a complete physical descrip-
tion of the HSI. Location in the universe is one example;
physical circumstances that have not yet been measured is
another. (The HSI is assumed to exist at a unique location
in the universe but its data D0 may be duplicated at many
other locations in a very large universe.)
First-person predictions are through the probabilities of

what our specific instance of an IGUS with data D0 will
observe or measure. But theories T of a quantum state and
dynamics do not make such predictions directly if the
chance is significant that our data D0 are replicated at
different places in the universe. Third-person probabilities
computed from T make no reference to ‘‘us’’ and contain
no information about which of several instances of D0 is
‘‘us.’’. A further assumption is therefore needed to connect
the third-person probabilities of theory with the first-
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1IGUS is an acronym for information gathering and utilizing
system.

2More precisely we assume that there is a description in terms
of the quasiclassical variables that describe the quasiclassical
realm of everyday experience in terms of a decoherent set of
coarse-grained alternative histories defined in terms of these
variables; see e.g. [3] for more detail.
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person probabilities for our observations. We call this
assumption the xerographic distribution and describe it
in the next section.

III. THE XEROGRAPHIC DISTRIBUTION

Consider a universe that contains N copies of D0 at
different locations in spacetime xA, A ¼ 1; . . . ; N. We are
one of these copies, but we have no information as to
which, since our data is replicated at each of these loca-
tions. Therefore, to predict what we will observe in our
future, we must choose a distribution that gives the proba-
bility �A that we (the HSI) are the copy located at xA. The
probabilities �A constitute the xerographic distribution.
Location is used here as an illustration; the xerographic
distribution could also refer to any other aspect of our
physical situation that is not specified by the data D0.

As mentioned above, the xerographic distribution is not
fixed by usual candidates for the theory T, such as an initial
quantum state and a prescription for its evolution. The
xerographic distribution is a further assumption that must
be made (explicitly or implicitly) in order to make first-
person predictions. What is tested by observation is not just
the theory T, but rather the combination ðT; �Þ; such a
combination of a fundamental theory (including the initial
state) T and the xerographic distribution � will be called a
theoretical framework or framework for short.3

A natural assumption is that we are typical of the in-
stances of D0; this implies a uniform xerographic distribu-
tion �A ¼ 1=N. But it is also possible to assume that we are
atypical. We argued in [1] that typicality was no more
motivated by observation than atypicality.

More generally, the xerographic distribution can be used
to express typicality assumptions that involve data sets
other than D0. For instance, as we have defined it, D0

includes the results of our observations as well as the
conditions for them. But for some purposes it may be
useful to assume that our results are typical of all instances
of similar observational situations. Or it may be useful to
assume that observations are typical of those made by any
IGUS in the galaxy, or by any IGUS in the universe. Each
of these typicality notions corresponds to a xerographic
distribution that is uniform on the class involved. In the
following we will show that different assumptions about �

can be testable, and use this to address the issues raised by
the possibility of ‘‘Boltzmann brains.’’
It is important to note that the use of a xerographic

distribution does not constitute a modification of the laws
of the quantum mechanics of closed systems. The usual
laws, the usual rules for implementing them (including
Born’s rule), and the usual interpretation apply to third-
person probabilities. First-person probabilities are the new
feature. These are made necessary because we, like other
IGUSes, are quantum subsystems of the universe with a
nonzero probability of being replicated exactly elsewhere.
Quantum theory must be augmented by a prescription to
calculate the first-person probabilities. There is nothing
mysterious or even especially quantum about this prescrip-
tion because it operates at the classical level.4 Conversely
we cannot expect to derive the xerographic distribution
from the rules of quantum theory for third-person
probabilities.

IV. COMPARING THEORIES OF LARGE
UNIVERSES

Many different criteria can be used by physicists to
discriminate between competing theoretical frameworks
on the basis of the available data D0. Frameworks are
favored that are testable, simple, beautiful, precisely for-
mulable mathematically, economical in their assumptions,
comprehensive, unifying, explanatory, accessible to exist-
ing intuition, etc. Most importantly, scientists favor frame-
works that are successful in predicting new data beyond
what they have at the moment. That is, they favor frame-
works that are predictive. We will discuss this criterion
more fully in Sec. VI. In this section we discuss the simple
idea that theoretical frameworks can be distinguished by
the probabilities (likelihoods) that they give for the data
D0.
The process of distinguishing between frameworks by

likelihoods is formalized in the widely familiar Bayesian
schema for testing theories. While seldom applied in prac-
tice, this schema is useful to state the assumptions made in
the process clearly and quantitively. The process involves
computing posterior probabilities for frameworks from the
likelihoods for the data D0 and a set of prior probabilities
for the competing frameworks.5

For a very large universe there are different possibilities
for a Bayesian comparison of theoretical frameworks al-
lowed by the distinction between first-person and third-
person probabilities. We can seek to distinguish between
theories T on the basis of their third-person likelihoods for
the data D0 independent of any typicality assumption
represented by a xerographic distribution. Or, we can
seek to distinguish between different frameworks ðT; �Þ

3A good case can be made for calling the combination ðT; �Þ
the ‘‘theory,’’ as it is the collection of assumptions from which
testable predictions are made. But to do so would risk confusion
with the usual notion of a theory as consisting of fundamental
laws for dynamics and an initial state. Furthermore, the two parts
of the combination ðT; �Þ are of different character. The theory T
supplies third-person probabilities for features of the whole
universe. The xerographic distribution refers to assumptions
about a particular subsystem: the HSI. For these reasons, in
this paper ‘‘theory’’ is used in the usual way, and the combina-
tion ðT; �Þ is called a ‘‘theoretical framework.’’

4Indeed it would be equally necessary if the theory T were
classical [4].

5A brief review consistent with present notation is given in [1].
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on the basis of first-person probabilities that follow from an
assumption of a xerographic distribution. The question of
which to use is moot in a small universe where the data D0

are unique to a good approximation and first-person and
third-person probabilities agree. However, the question
becomes important in a large universe where the data D0

may be replicated many times.
First, consider applying the Bayes procedure to distin-

guish between theories just on the basis of their third-
person predictions for D0. As we emphasized in [1], all
we know for certain from our data D0 is that the universe
exhibits at least one instance of it. We do not know how
many times it is replicated or how frequently it occurs. A
theory T is consistent with our data if the probability for at
least one instance of our data is nonzero. But, as has been
stressed by many, in a large universe the likelihood that at
least one instance of our data exists somewhere approaches
unity for any theory that is consistent with our data. The
third-person Bayes procedure is therefore not effective for
discriminating between theories in a very large universe.

We therefore consider applying the Bayes schema to
frameworks ðT; �Þ. This involves the following elements:
First, prior probabilities PðT; �Þ must be chosen for the
different frameworks. Next, the first-person likelihoods

Pð1pÞðD0jT; �Þ must be computed. Finally, the first-person
posterior probabilities are given by

Pð1pÞðT; �jD0Þ ¼ Pð1pÞðD0jT; �ÞPðT; �ÞP
ðT;�Þ

Pð1pÞðD0jT; �ÞPðT; �Þ
(4.1)

The larger these are, the more favored are the correspond-
ing framework.

As already noted, the theory T and the xerographic
distribution � correspond to very different kinds of as-
sumptions. The theory consists of a fundamental quantum
state and a prescription for the dynamics of the universe.
These are the quantities that summarize the universal
regularities exhibited by all physical systems within the
universe. By contrast the xerographic distribution � con-
cerns a particular subsystem of the universe—the HSI—
and its relation to other subsystems with the same data D0.
Priors representing independent assumptions about T and �
are therefore natural; this implies a factorization

PðT; �Þ ¼ Pxdð�ÞPthðTÞ: (4.2)

With these kind of priors we can compete different theories
T with the same typicality assumption � and also compete
different typicality assumptions � with the same theory T.

There are those who are secure in the faith that the HSI
must be typical of all other IGUSes in the universe despite
the absence of any experimental evidence either for or
against the supposition. They will chose a prior Pxdð�Þ
that is unity for the � that is uniform over the class of
IGUSes, and zero elsewhere. Others, like the authors, who
see � as an assumption much like any other will allow

different typicality assumptions to be competed against
one another in the search for a successful framework for
the universe. The essence of science is to concede that
there is at least some chance that any assumption is in-
correct, and then check for that with experiment and ob-
servation. The next section illustrates how this works in a
simple model.

V. A SIMPLE COSMOLOGICAL MODEL

The ideas in the preceding section can be illustrated by
the simple red-blue model that we employed for illustrative
purposes in [1]. Consider a model universe which consists
of N cycles in time, k ¼ 1; . . . ; N. In each cycle the uni-
verse may have one of two global properties: red ðRÞ or
blue ðBÞ, which could, for example, be thought of as two
different possible values of the CMB temperature. In each
cycle, there is a probability pE for a physical system to
exist ðEÞ that is able to observe this global property. The
model assumes that the observations are perfectly accurate,
so that if red is observed in any cycle, then the universe is
red in that cycle. It is further assumed that whether the
universe is red or blue does not affect whether an observing
system exists or not.
Two competing theories of this model universe are

proposed. One, all red (AR), in which all the cycles are
red, and another, some red (SR), in which some number of
particular cycles are red and the rest are blue. Suppose that
we (the HSI) observe red. Our dataD0 is then ðE; RÞ and we
seek to discriminate between the two theories on the basis
of the likelihoods for this data. But as described above
there are several choices for these likelihoods.
The use of third-person likelihoods based on the theory

T alone was already discussed above and in [1]. All we
know about this universe in third-person terms is that it
exhibits at least one instance of a cycle with ðE; RÞ—the
one we are in. The third-person probability that there is at
least one cycle with ðE; RÞ is the same as one minus the
probability of the negation of this, which is probability that
no observing system exists in a cycle in which the universe
is red. Since the probability for an observing system not to
exist in any one cycle is 1� pE, the likelihoods are

PðE; RjTÞ ¼ 1� ð1� pEÞNRðTÞ; (5.1)

where NRðTÞ is the number of red cycles in theory T, equal
to N when T is AR. Our data do not discriminate between
the two theories when NR is large enough in both theories

to make ð1� pEÞNRðTÞ � 1. Then PðE;RjTÞ � 1 for both
theories. Even though there may be more many more red
cycles in the AR theory than the SR theory, the probability
that there is at least one red cycle with an observing
subsystem approaches one for both theories when NR

becomes large in both. The likelihoods are the same. Our
little bit of data is not enough to discriminate between the
two theories on the basis of third-person probabilities.
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The situation is different when we use first-person
likelihoods to discriminate between different frame-
works ðT; �Þ. To illustrate this, consider a variety of typi-
cality assumptions expressed as different xerographic
distributions.

The simplest assumption we can make is that we are
typical in the class of other instances of our data D0. In the
context of the present model that is the assumption that we
are equally likely to be any of the instances of ðR; EÞ—
observers that exist in a red cycle. If there are nR such
systems than the probability that we are the Ath instance is
1=nR and the corresponding xerographic distribution is

�typD ¼ 1

nR
; (5.2)

where the superscript ‘‘typD’’ means typical in the class
with data D0. The first-person likelihoods for our data are

then denoted by Pð1pÞðE; RjT; �typDÞ.
In Appendix B wework through the transition from third

to first-person probabilities using an explicit example of a
typicality assumption and its associated xerographic dis-
tribution. That is instructive, but this model is so simple
and symmetric that the results for the likelihoods follow
from a few simple arguments.

The xerographic distribution �typD is nonzero only on
instances of D0 in red cycles. The probability that we see

red, Pð1pÞðRjE; T; �typDÞ, is thus unity trivially and the
probability that we see blue is zero. But then, from the
definition of conditional probabilities,

1 ¼ Pð1pÞðRjE; T; �typDÞ � Pð1pÞðE; RjT; �typDÞ
Pð1pÞðEjT; �typDÞ : (5.3)

The first-person probability that we exist given that we are
in a red cycle is the same as the third-person probability
that at least one observing system (us) exists in a red cycle.
That is, from (5.1)

Pð1pÞðEjT; �typDÞ ¼ 1� ð1� pEÞNRðTÞ: (5.4)

Thus the first-person likelihoods are given by

Pð1pÞðE; RjT; �typDÞ ¼ 1� ð1� pEÞNRðTÞ: (5.5)

The likelihoods for R and B correctly sum to unity. These
first-person likelihoods are unchanged from the third-
person ones (5.1), and no more able to discriminate be-
tween theories than they were.

We now turn our attention to other possible typicality
assumptions represented by different xerographic distribu-
tions. First let us consider the assumption that we are
typical of all the observing systems that exist (E) in the
model universe—not just the ones that have our data D0.
Equivalently the assumption is that we are equally likely to
be any of the observing systems that the universe exhibits.
If there are nO observing systems, then the probability that
we are the Ath instance is 1=nO, and that defines the xero-
graphic distribution

�typO
A ¼ 1

nO
: (5.6)

The first-person likelihoods for our data are then denoted

by Pð1pÞðE; Rj�typO; TÞ.
We are equally likely to exist in any cycle since they are

all the same. The probability that we see red is therefore the
probability that our cycle is red. This is NRðTÞ=N. Thus

Pð1pÞðRjE; �typO; TÞ ¼ NRðTÞ=N: (5.7a)

Similarly the probability that we see blue is

Pð1pÞðBjE; �typO; TÞ ¼ NBðTÞ=N: (5.7b)

We can now proceed as we did above from (5.3) to (5.5).
The result for the first-person likelihoods is

Pð1pÞðE; Rj�typO; TÞ ¼ NRðTÞ
N

½1� ð1� pEÞN�: (5.8)

The ratio of the likelihoods for the two theories is

Pð1pÞðE;Rj�typO; ARÞ
Pð1pÞðE; Rj�typO; SRÞ ¼ N

NRðSRÞ> 1: (5.9)

Thus, assuming equal priors for the two theories, AR is
always favored even if NRðSRÞ becomes arbitrarily large
provided there are at least some blue cycles.
In the above examples the two theories AR and SR are

competed with the same typicality assumption. But it is
also possible to compete different typicality assumptions
for the same theory. Suppose we assign unit prior proba-
bility to the theory SR and equal priors to �typO and �typD.
From (5.8) and (5.5) we find

Pð1pÞðE;Rj�typO; SRÞ
Pð1pÞðE;Rj�typD; SRÞ ¼ NRðSRÞ

N

1� ð1� pEÞN
1� ð1� pEÞNRðSRÞ < 1:

(5.10)

Thus an assumption of typicality in the class of our dataD0

does a better job of explaining our data (trivially).
Certain theoretical models may imply that the number of

instances of our data N is infinite. An example is provided
by the infinite number of Hubble volumes on a surface of
homogeneity inside a Coleman-De Luccia bubble of false
vacuum [5]. The results above are well defined provided
that the fractions fRðTÞ and fBðTÞ of red and blue Hubble
volumes are well defined in the competing theories T. For
instance (5.7) becomes

Pð1pÞðRjE; �typO; TÞ ¼ fRðTÞ;
Pð1pÞðBjE; �typO; TÞ ¼ fBðTÞ

(5.11)

and similarly with the other formulae. Indeed, the expres-
sions are generally simpler than for the finite case since the
probability that there is at least one instance of our data
(5.4) becomes exactly unity.
This set of examples shows that frameworks ðT; �Þ are

an umbrella formalism for organizing, comparing, and

MARK SREDNICKI AND JAMES HARTLE PHYSICAL REVIEW D 81, 123524 (2010)

123524-4



(most importantly) making explicit a number of different
assumptions that are commonly made in the quantum
cosmology of a very large universe. Some of these possible
assumptions will be discussed in more detail in Sec. VIII
and Appendix A.

VI. PREDICTIVITY

First let us consider theories T where there is at most one
copy of our dataD0. No xerographic distribution is needed.
In this setting, a theory is predictive if the likelihood is high
for some piece of data that we might acquire in the future,
given the theory and the data that we have acquired in the
past. To make this more concrete, consider a simplified
situation in which a stream of data d�n; . . . , d�1, d0 is
acquired at a sequence of times t�n; . . . , t�1, t0, where t0
denotes the present time, defined relative to the local
clocks provided by each particular occurrence of D0.
Assuming that all this data is accessible now, our present

data is the union,D0 ¼ d�n [ . . . [ d0. Let P
ð1pÞðq1jT;D0Þ

be the first-person likelihood that at some future time t1 we
will acquire some piece of data q1; q1 is a subset of all the
data d1 that we acquire at that time. A theory is predictive

if, for some kinds of data q1, the likelihood P
ð1pÞðq1jT;D0Þ

is sharply peaked around particular values �q1.
There is obvious motivation to favor theories that are

predictive and provide a coherent story connecting past
data that we currently have to future data that we may
acquire. The utility of physical theory lies in its predictive
power. Theories that are predictive are also testable in the
sense that they are falsifiable when new data disagrees with
that predicted. Indeed, the whole history of science can be
read as the search for predictive theories.

We turn now to theories of large universes with repli-
cation of our dataD0. As already noted, in this case we can
only make predictions if we specify a xerographic distri-
bution � in addition to a conventional theory T. Once the
xerographic distribution is specified, we can (at least in

principle) compute the likelihood Pð1pÞðq1jT; �;D0Þ that
we will acquire a piece of data q1 at a future time t1. A
framework ðT; �Þ is predictive if, for some kinds of data q1,
the likelihood Pð1pÞðq1jT; �;D0Þ is sharply peaked around
particular values �q1.

To compute Pð1pÞðq1jT; �;D0Þ, we first compute the
third-person likelihood that the data subset q1 is found at
time t1 at the Ath location of the data D0; for this we need
only the theory T and the data D0. Denote this likelihood
by Pðq1@AjT;D0@AÞ, where x@A means that data x
occurs at location A. Then the likelihood that ‘‘we’’ obtain
q1 is

Pð1pÞðq1jT; �;D0Þ ¼
X
A

�APðq1@Aj�; T;D0@AÞ: (6.1)

Without an assumed xerographic distribution, no predic-
tion whatsoever can be made about what ‘‘we’’ will see in
the future. A physical theory that is considered ‘‘com-

plete’’ in the usual sense (such as a specified quantum state
and a rule for its evolution, or even a fully deterministic
classical theory plus initial data) is insufficient to deter-
mine the xerographic distribution, which must therefore be
chosen as an additional ingredient of the theoretical
framework.

VII. MAKING THEORIES PREDICTIVE WITH
TYPICALITYASSUMPTIONS

Frameworks ðT; �Þ with the same theory T but different
assumptions for the xerographic distribution � can be
compared and tested. Scientists favor frameworks that
are predictive, that is, that generate a stream of future
predictions and hence are testable.
In this section we give two examples how the predictiv-

ity of frameworks ðT; �Þ with a fixed theory T can be
affected by different choices of � that reflect different
assumptions about the typicality of our data D0 in two
different situations.

A. Boltzmann brains

Thermal or vacuum fluctuations could replicate our data
[6,7]. In one simplified model, a spatially closed universe
originates in a Big Bang and eventually enters a de Sitter
phase that persists forever. It is assumed that there is a very
tiny probability per unit spacetime volume that a ‘‘brain’’
could fluctuate into existence. Such fluctuations are called
‘‘Boltzmann brains’’ (BBs) or ‘‘freak observers’’ [7]. Since
the spacetime volume is infinite in this model (even though
the spatial volume is finite), it is assumed that an infinite
number of BBs will be fluctuated into existence. A tiny
fraction of this infinite number have the same data D0 that
we do. How do we know that we are not one of them? This
is the Boltzmann brain problem.
Let us accept this scenario uncritically, and ask only if

there is an assumption for the xerographic distribution �
for which the framework is predictive.
An assumption that we are typical, �A ¼ 1=N, does not

result in a predictive framework. In that case, we are much
more likely to be a BB than an ordinary observer (OO). The
BBs are deluded (e.g. [8]); their data suggest that they are
13.7 Gyr from a big bang, but typically they are much
further away. In contrast to ordinary observers that have
13.7 Gyr of history, the subsequent observations of any
particular BB is overwhelmingly likely to be disordered,
and inconsistent with its apparent history. Future data is
thus uncorrelated with D0, and firm predictions cannot be
made.
Now let us consider a nonuniform �; that is, we assume

that we are atypical. In particular, we suppose that �A is
nonzero only for locations sufficiently close to a big bang
to make it much more likely that we are OOs rather than
BBs. In this case, the framework is predictive in the usual
way.
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The answer to the question ‘‘How do we know that we
are not BBs?’’ is this: we do not know. But if we assume a
xerographic distribution � such that we are not likely to be
BBs, then we get a predictive, testable framework ðT; �Þ.
Confirmation of the predictions of this framework by a
series of observations then support the original assumption
of atypicality.6

B. Laboratory experiment

Consider a laboratory experiment to determine the value
of a fundamental constant � by a sequence of measure-
ments. We consider a class of theories that predict that � is
constant throughout spacetime, but predict different values
for it. In a very large universe, the experiment will be
replicated in many different locations xA in all essential
details. For the vast majority of these experiments the mean
value �� of the sequence of outcomes will be close to the
true value of the constant to the accuracy of the experi-
ment. But for a tiny fraction of these experiments, the
sequence of measurement outcomes are mistaken—their
mean value �� is far from the true value—just by the
chances of statistics. How do we know that our particular
sequence of results is not one of these?

The answer lies in the evidence from further measure-
ments. The probabilities for further measurements can be
predicted from the previous ones once a xerographic dis-
tribution � is specified. An assumption that our experiment
is typical of all the others results in a theoretical framework
ðTð ��Þ; �A ¼ 1=NÞ, where Tð ��Þ is the theory that predicts
that the value of the constant is the mean value of the
previous outcomes, ��. The prediction of this framework
is that the next measurement should yield �� to within
statistical error. Confirmation of this prediction by further
measurements supports the framework ðTð ��Þ; �A ¼ 1=NÞ,
both as to the value of � and the assumption of typicality.

In the way the problem has been set up, there is no
evident variable with which to make an assumption of
atypicality. The physical situations of all the experiments
have been assumed to be the same, in contrast to the
different situations represented by BBs and OOs. As em-
phasized correctly be a number of authors (e.g. [9]),
some kind of typicality is assumed implicitly in the
analysis of every laboratory experiment. Here we have
made that assumption explicit in terms of the xerographic
distribution.

VIII. MEASURES FOR COSMOLOGY

In models of eternally inflating cosmologies, relative
probabilities for different kinds of physical situations are
defined in terms of the ratios of the number of times they
occur. Examples are the occurrence of different kinds of
‘‘bubble universes’’ and the ratio of the number of BBs to

OOs. Since the numbers are typically infinite, a ‘‘measure’’
is required to define these fractions; without a measure,
third-person probabilities are ill defined.
Ideally, such a measure would emerge unambiguously

from an underlying theory (such as string theory). In this
case, the ‘‘measure problem’’ would be solved, and third-
person probabilities could be computed.
However, a xerographic distribution would still be

needed in order to define and compute first-person proba-
bilities. Solving the measure problem does not remove the
need to choose a xerographic distribution, but does make
the choice of a uniform xerographic distribution well
defined.
In some models (e.g. [2]), there is a natural choice for

the measure. However, in more general contexts there is as
yet no consensus for how to determine the measure from
the underlying theory, or even whether this is possible (see
e.g. [9,10] for discussions). If it turns out that the measure
is not computable from the underlying theory, then what-
ever freedom remains in the choice of the measure can and
should be incorporated into the choice of the xerographic
distribution.
Starting from a different perspective, Page [11] has also

argued that the quantum wave function alone contains
insufficient information for the calculation of probabilities
of subsequent observations by a particular observer when
there are multiple copies of that observer. His work is
discussed in Appendix A.

IX. CONCLUSION

The possibility that our data may be replicated exactly
elsewhere in a very large universe profoundly affects the
way science must be done.
Central to cosmology are the third-person probabilities

for properties of the universe given a theory T of its
quantum dynamics and quantum state. But of even greater
interest are the first-person probabilities for the results of
observation carried out by us—a particular subsystem of
the universe—conditioned on our existing data. These
probabilities are the means to test any prescription for
prediction. In a very large universe, where our data will
be replicated elsewhere with significant probability, pre-
dicting these probabilities requires not only a theory T but
also but also a probability distribution on the set of copies
of us. This xerographic distribution cannot, even in prin-
ciple, be determined from a theory of the dynamics and the
quantum state since such a theory has nothing to say about
which copy is ‘‘us.’’ It is only the theoretical framework
consisting of both a theory and an assumed xerographic
distribution that is predictive and testable by observation.
In cosmology we should favor theoretical frameworks

that generate a stream of predictions from our data that are
confirmed by subsequent observation. The authors believe
that choices of both the theory T and the xerographic
distribution � should be competed against other alterna-6Others have expressed related ideas, e.g. [8].
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tives, and that no element of the theoretical framework
should be assigned a unit probability.

Ideas that imply particular notions of typicality (such as
the ‘‘Copernican principle,’’ ‘‘anthropic principle,’’ or the
‘‘principle of mediocrity’’) cannot be universal laws of
nature if only because they refer to a negligibly minor
subsystem of the universe: ‘‘us.’’ In the present context,
these are simply notions that can motivate a particular
choice of the xerographic distribution.

It is no surprise that information about us is required to
make predictions for our observations. Our data suggest
that we are located some 13.7 Gyr from a big bang. To
make a reliable prediction from that information, we have
to assume that it truly describes our physical situation.

If the universe is rife with delusion, we must assume that
we are atypical in order to have predictive and testable
scientific theories. Indeed, it is only by making such as-
sumptions that we are able to do science in a very large
universe. We imagine that even Copernicus would have
agreed that it was necessary to assume that Ptolemy was
not deluded in his observations of the planets.
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APPENDIX A: THE WORK OF PAGE AS AN
EXAMPLE

As mentioned above, the schema for quantum cosmo-
logical prediction developed here provides a common
framework for the discussion of different prescriptions
for science in a very large universe. Prescriptions for which
notions of first- and third-person probabilities can be dis-
tinguished, and a xerographic distribution identified.

Notable among these different presciptions are those
found in the extensive contributions of Don Page [11–
13]. In this appendix we attempt to fit at least some parts
of his ideas into the present context, in part to address his
criticisms of our earlier work [1].

Page reaches the conclusion that Born’s rule of usual
quantum theory must be modified to apply to a very large
universe where our data have a significant chance of being
replicated elsewhere. We disagree with this conclusion as
we now explain.

We begin with Page’s discussion of Born’s rule. In [13],
he says that ‘‘a goal of science is to produce complete
theories Ti that each predict normalized probabilities PjðiÞ
for observations Oj.’’ These are the probabilities for ob-

servations made by ‘‘the observer.’’ We interpret these as

first-person probabilities for alternative outcomes of our
observations. For example they might be the probabilities
for alternative CMB temperature maps or the alternatives
red and blue in the R/B model. The sum of the probabilities
of an exhaustive set of exclusive outcomes is of course 1.
This is illustrated explicitly by (5.7).
We agree with Page that first-person probabilities are not

specified by the quantum state of the universe alone. As we
have argued, a xerographic distribution is needed to con-
nect them to the third-person probabilities that are speci-
fied by the quantum state. However, this does not mean that
‘‘Born’s rule dies.’’ Born’s rule is alive, well, and essential
for constructing third-person probabilities.
Page suggests various candidates for replacing Born’s

rule. In his nomenclature [12], our xerographic distribution
for the assumption that we are typical of all the observing
systems that exist appears to be equivalent to Page’s rule 5,
which he calls ‘‘observational averaging.’’
Constructions such as those of Page or the theoretical

frameworks discussed in this paper are tested by compar-
ing observations with the first-person predictions for
them. The third-person probabilities for features of the
universe are essential for computing these. For instance,
both Page’s candidates for replacing Born’s rule and the
examples of xerographic distributions in this paper rely on
an assumption of classical spacetime to make notions of
location meaningful. But classical spacetime is neither
fundamental nor inevitable in a quantum theory of gravity.
Whether a quantum state predicts an ensemble of alterna-
tive classical spacetimes is a question of whether the
third-person probabilities are high for correlations in time
governed by the Einstein equation for suitably coarse-
grained histories of geometry and matter fields (e.g. [2]).
Third-person probabilities are thus not dispensable; they
are essential for the understanding of our quantum
universe.

APPENDIX B: THIRD TO FIRST IN THE R/B
MODELWITH A XEROGRAPHIC DISTRIBUTION

In this appendix the first-person likelihoods (5.8) in the
red-blue model of Sec. V are derived by explicitly consid-
ering the form of the xerographic distribution �typO without
invoking the symmetry of the model directly.
We start with the third-person probability PðnO; nRjTÞ

that of the N total cycles, nO are occupied by observing
systems, with nR of these in red cycles. The probability that
there are nO cycles occupied by observing systems is
p
nO
E ð1� pEÞN�nO multiplied by the number of ways of

arranging nR observing systems in NR red cycles and the
number of ways of arranging nB ¼ nO � nR observing
systems in NB ¼ N � NR blue cycles. This is

PðnO; nRjTÞ ¼ NR

nR

� �
N � NR

n� nR

� �
p
nO
E ð1� pEÞN�nO :

(B1)
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The theoretical framework consists of the theory T and a
xerographic distribution that assumes we are a typical in
the class of observing systems. The n observing systems
can be labeled by an index A that runs from 1 to n. The
xerographic distribution that says we are equally likely to
be any one of these systems is

�typO
A ¼ 1

nO
; (B2)

which satisfies

XnO
A¼1

�typO
A ¼ 1: (B3)

With these assumptions the first-person likelihood

Pð1pÞðE; Rj�typO; TÞ that we exist and observe red is �
typO
A

times the third-person probability PðnO; nRjTÞ summed
over A and the alternative configurations specified by
ðnO; nRÞ. In general the third-person probabilities would
depend on which cycles are occupied and hence on A. But
in the present case where they are all identical there is no
such dependence. The result is

Pð1pÞðE; Rj�typO; TÞ ¼ XN
nO¼1

XnO
nR¼1

XnR
A¼1

�
typO
A PðnO; nRjTÞ:

(B4)

Substituting in (B1) and (B2) and performing the sum over
A, we get

Pð1pÞðE; Rj�typO; TÞ ¼ XN
nO¼1

XnO
nR¼1

nR
nO

NR

nR

 !
N � NR

nO � nR

 !
pnO
E ð1� pEÞN�nO

¼ XN
nO¼1

NR

nO

XnO
nR¼1

NR � 1

nR � 1

 !
N � NR

nO � nR

 !
pnO
E ð1� pEÞN�nO ¼ XN

nO¼1

NR

nO

N � 1

nO � 1

 !
pnO
E ð1� pEÞN�nO

¼ NR

N

XN
nO¼1

N

nO

 !
p
nO
E ð1� pEÞN�nO ¼ NR

N
½1� ð1� pEÞN�; (B5)

where the third equality follows from Vandermonde’s identity.
We see that (B5) is the same as (5.8). The argument based on symmetry given in Sec. V is evidently a more efficient way

of getting this result. A general case without symmetry would be even more complicated. Suppose, for example, there was
a different value of pE for each cycle. Then the third-person probabilities would depend on which cycles were occupied
and not just on the total number of them as here. The prescription for computation however would be essentially the same:
calculate the third-person probabilities for a configuration of occupied and unoccupied cycles; multiply by the xerographic
distribution; sum over the possible configurations.
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