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We investigate spherically symmetric perfect-fluid spacetimes and discuss the existence and stability of

a dividing shell separating expanding and collapsing regions. We perform a 3þ 1 splitting and obtain

gauge invariant conditions relating the intrinsic spatial curvature of the shells to the Misner-Sharp mass

and to a function of the pressure that we introduce and that generalizes the Tolman-Oppenheimer-Volkoff

equilibrium condition. We find that surfaces fulfilling those two conditions fit, locally, the requirements of

a dividing shell, and we argue that cosmological initial conditions should allow its global validity. We

analyze the particular cases of the Lemaı̂tre-Tolman-Bondi dust models with a cosmological constant as

an example of a cold dark matter model with a cosmological constant (�-CDM model) and its general-

ization to contain a central perfect-fluid core. These models provide simple but physically interesting

illustrations of our results.
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I. INTRODUCTION

Models of structure formation generally assume that
small local inhomogeneities grow due to the gravitational
instability, so that the overdensities collapse and eventually
form the ‘‘bound’’ structures we observe in the present
universe. Underlying this viewpoint is the idea that the
collapse of the overdensities departs from the general
expansion of the universe. This approach often relies on
the idea that a small overdensity can be approached as a
closed patch in an otherwise spatially flat Friedmann uni-
verse, and it claims that Birkhoff’s theorem justifies that,
on the one hand, its evolution is independent from the
outside universe, and, on the other hand, that the behavior
of the outside Friedmann universe is immune to the col-
lapse of the closed patch (see e.g. [1–3]). The collapse of
overdensities has been extensively studied and most works
have been focused on the study of the formation both of
small structure (astrophysical objects) and of large-scale
structure as the outcome of the growth of small perturba-
tions in a cosmological context. The latter subject com-

prises the relativistic and Newtonian analysis of the
evolution of the fluctuations (see e.g. [4–7]) and the study
of the subsequent amplification of the growing modes into
the nonlinear regime resorting to numerical methods (see
e.g. [8–11]). In the present work we consider spherically
symmetric, inhomogeneous universes with pressure and
study the question of whether there exists a dividing shell
separating expanding and collapsing regions. Our goal
bears a connection to the general problem of assessing
the influence of global physics into the local physics
[12,13]. One aspect of this problem that has always at-
tracted great interest is the endeavor to explain the local
inertial phenomena in a Machian sense (see e.g. [14,15])
and, in fact, Brans-Dicke theory [16–19] stems from this
problem.
Another related aspect has been the study of the influ-

ence of cosmic expansion on local systems. Einstein and
Straus [20] were the first to study this problem by con-
structing a global solution that resulted from matching the
spherically symmetric vacuum Schwarzschild solution to
an expanding dust Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) exterior across a hypersurface preserving the
symmetry. Bonnor has made several investigations along
this line (see e.g. [21]). In particular, he copresented an
exact solution representing a local distribution of electri-
cally counterpoised dust embedded in an expanding uni-
verse with zero spatial curvature [22], showing that the
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distribution participates in the expansion. Among the gen-
eralizations of this model are settings that keep the spheri-
cal symmetry but generalize the interior source fields by
considering, for example, Vaidya (see [23] and references
therein) or Lemaı̂tre-Tolman-Bondi (LTB) spacetimes (see
[24–28]). On a different context, Herrera and co-workers
[29–31] have studied the ‘‘cracking’’ of compact objects in
astrophysics using small anisotropic perturbations around
spherically symmetric homogeneous fluids in equilibrium.
The latter references are concerned with the existence of a
shell where there is a change in the direction of the radial
force acting on the particles of the shells. Whenever this
happens one has a cracking situation, a concept introduced
by Herrera in Ref. [29]. The approach of these works is
somewhat complementary to ours because it is not the full
evolution that is depicted there, but rather the effect on
particles as a result from a departure from equilibrium.

In this work we use a different approach from all the
works described above. On one hand, by making use of a
single coordinate patch, we do not have to handle the
matching problem. On the other hand, our approach is
not perturbative. We adopt the formalism that has recently
been developed in a remarkable series of papers by Lasky
and Lun using generalized Painlevé-Gullstrand (GPG) co-
ordinates [32–34]. We perform a 3þ 1 splitting and obtain
gauge invariant conditions relating not only the intrinsic
spatial curvature of the shells to the Misner-Sharp mass
[35]1 but also a function of the pressure that we introduce
and that generalizes the Tolman-Oppenheimer-Volkoff
(TOV) equilibrium condition.

In particular, we consider that the existence of a spheri-
cal shell separating an expanding outer region from an
inner region collapsing to the center of symmetry depends
essentially on two conditions. The first condition estab-
lishes that there is no matter exchange across the shell. The
second condition establishes that the generalized TOV
equation is satisfied on that shell, and hence that this shell
is in some sort of equilibrium. The difference with respect
to the original problem where the TOV equation was
introduced for the first time is twofold. Our result does
not rely on the assumption of a static equilibrium of the
spherical distribution of matter, and consequently does not
assume that all the internal spherical perfect-fluid spherical
shells are constrained to satisfy the TOV equation. In our
case the generalized TOV equation is just satisfied at the
dividing shell. Besides, the generalized TOV function de-
pends on the spatial 3-curvature in a more general way than
the original TOV equation. Furthermore, we shall charac-
terize the dividing shell with kinematic quantities that
provide a gauge invariant formulation of the problem.

In order to illustrate our results we will analyze some
particular cases. The simplest example is provided by the

well-known Lemaı̂tre-Tolman-Bondi dust models with a
cosmological constant that can be seen as an example of a
cold dark matter model with a cosmological constant
(�-CDM). A preliminary presentation of this work can
be found in [36]. As a second case we consider general-
izations of the previous model to contain a central perfect-
fluid core. These models provide simple but physically
interesting illustrations of our results.
An outline of the paper is as follows: Section II The GPG

formalism of Lasky and Lun: 3þ 1 splitting and gauge
invariants kinematical quantities. Section III Existence
of a shell separating contraction from expansion: general
conditions. Section IV Particular examples: Sec-
tion IVA �-CDM model (LTB with a cosmological con-
stant). Section IVB Perfect-fluid core in a �-CDM model.
Section V Discussion of our results.
We shall use units such that 8�G ¼ 1 ¼ c, and the

following index convention: Greek indices �;�; . . . ¼ 1,
2, 3 while latin indices a; b; . . . ¼ 0, 1, 2, 3.

II. 3þ 1 SPLITTING AND GAUGE INVARIANTS
KINEMATICAL QUANTITIES

In this section we set the basic equations that we shall
subsequently need. For comparison, we follow closely the
formalism used by Lasky and Lun [33], while slightly
generalizing their derivations for the explicit presence of
a cosmological constant �.

A. Metric and ADM splitting

We adopt the GPG coordinates of Ref. [33] and
perform an Arnowitt-Deser-Misner (ADM [37]) 3þ 1
splitting [38] in which the spherically symmetric line
element assumes a perfect-fluid timelike normalized flow
na :¼ ��rat ¼ ½��; 0; 0; 0� (nana ¼ �1), defining with
its lapse N ¼ � and its radial shift vector N� ¼ ð�; 0; 0Þ,
an evolution of the spatially curved three-metric 3g�� ¼
diagð 1

1þE ; r
2; r2sin2�Þ with time (d�2 :¼ d�2 þ

sin2�d�2),

ds2 ¼ ��ðt; rÞ2dt2 þ 1

1þ Eðt; rÞ ð�ðt; rÞdtþ drÞ2

þ r2d�2: (2.1)

The 3þ 1 approach uses the projection operators along
and orthogonal to the flow

Na
b
:¼ �nanb; hab :¼ gab þ nanb; (2.2)

where hab is the 3-metric on the surface � normal to the
flow. Those projectors are also used for covariant deriva-
tives: Along the flow, the proper time derivative of any
tensor Xab

cd is

_X ab
cd

:¼ neXab
cd;e; (2.3)

and in the orthogonal 3-surface, each component is pro-
jected with h

1Also referred to as the ADM mass when considering the mass
of the whole spatial hypersurface.
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X �a �b
�c �d; �e

:¼ hafh
b
gh

i
ch

j
dh

k
eX

fg
ij;k: (2.4)

Then the covariant derivative of the flow, from its projec-
tions, is defined as

na;b ¼ Nc
bna;c þ n �a; �b ¼ �nb _na þ 1

3 �hab þ �ab þ!ab;

(2.5)

where the projection trace, the expansion of the flow, is
� ¼ na; �a, the rate of shear �ab is its symmetric trace-free

part, and its skew-symmetric part is the vorticity !ab.
For perfect fluids we have the Raychaudhuri propagation

equation

_�� _na; �a ¼ � 1

3
�2 þ _na _na � �ab�

ab þ!ab!
ab

� 	

2
ð
þ 3PÞ þ�; (2.6)

where 	 ¼ 8�.
The quantity �ab :¼ 1

2Lnhab, where Ln is the Lie de-

rivative along the vector field na, is the so-called extrinsic
curvature and is given by2

�ab ¼ diag

�
0;� 1þ E

�
@;� �

�r3
;� �

�r3sin2�

�
;

with @ ¼
�
�0 þ 1

2

_E� �E0

1þ E

�
: (2.7)

Its trace is the expansion scalar3

� ¼ �ð�r2Þ0
�r2

� 1

2

LnE

1þ E
; (2.8)

which leads to the shear scalar

a ¼ 1

3

r

�

�
�

r

�0 þ 1

6

LnE

1þ E
: (2.9)

The 3-Ricci curvature tensor, which arises from fully
projecting the Riemann tensor in accordance with
Eq. (2.4), is

3R�� ¼ diag

�
� E0

ð1þ EÞr ;�
1

2
E0r� E;�

� 1

2
E0r� E

�
sin2�

�
: (2.10)

Then, the 3-Ricci trace and trace-free 3-Ricci tensor derive
from the 3-metric as

3R ¼ �2
ðErÞ0
r2

(2.11)

and

3Q�� :¼ 3R�� � 1
3
3g��

3R (2.12)

) 3Q�
� ¼ 1

6

E0r� 2E

r2
P�
� ¼ qðt; rÞP�

� (2.13)

) q ¼ r

6

�
E

r2

�0
; (2.14)

where P�
� is diag½�2; 1; 1�.

The trace and trace-free Hessian of � are given by

1

�
D�D�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E

p
�r2

ðr2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E

p
�0Þ0 (2.15)

and

1

�
D�D��� 1

3�
3g��D

cDc� ¼ �ðt; rÞP�� (2.16)

with

� ¼ � r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E

p
3�

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E

p
r

�0
�0
; (2.17)

and where D� ¼ h
�
�r� is the notation for 3-covariant

derivative used in Ref. [39] and in Ref. [12].
The Bianchi identity Ta

b;a ¼ 0 can be projected along nb,

giving

nbTa
b;a ¼ �Ln
� ð
þ PÞ� ¼ 0; (2.18)

while projections orthogonal to nb give the Euler equation

hbaT
c
b;c ¼

�
1
0
0

0
BBB@

1
CCCA
�
P0 þ ð
þ PÞ�

0

�

�
¼ 0 (2.19)

) P0 ¼ �ð
þ PÞ�
0

�
: (2.20)

B. The Einstein field equations

It is well known that the ADM approach separates the
ten Einstein field equations (EFE) into four constraints and
six evolution equations. Spherical symmetry reduces them
to 2þ 2 equations.
The Hamiltonian constraint reads, in the presence of a

cosmological constant,

3Rþ 2
3�

2 � 6a2 ¼ 16�
þ 2�; (2.21)

the momentum constraint, restricted to the radial direction
by symmetry,

ðr3aÞ0 ¼ � r3

3
�0; (2.22)

2Recall that for a scalar Ln ¼ na@a ¼ 1
� @t � �

� @r; [33] called
it Kab, but we preferred the Ellis convention for the extrinsic
curvature. The prime denotes partial radial derivatives, while the
dot will denote from here on partial time derivatives.

3Note that we obtain a sign for � and a different from that of
Ref. [33].
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and the evolution equations can be reduced to4

� 2Ln�� 1

2
3R��2 � 9a2 þ 2

�
DaDa�¼ 24�P� 3�;

(2.23)

�Lna� a�þ �� q ¼ 0: (2.24)

Using Eqs. (2.8) and (2.9) in Eq. (2.22), one can simplify
the latter into

� LnE

1þ E
¼ 2

�

�2
�0: (2.25)

Using the guidance that, from Eqs. (2.11) and (2.14), 3Rþ
12q eliminates derivatives in E, we can further simplify the
combination of Eqs. [(2.23) þ6� (2.24)]� r2=3 with ex-
pressions from Eqs. (2.8), (2.9), (2.11), (2.14), and (2.15) as

2rð1þ EÞðln�Þ0 � 8�Pr2 þ�r2 þ 2rLn

�
�

�

�
�

�
�

�

�
2

¼ �E: (2.26)

Substitution of Eq. (2.26) into Eq. (2.21) �r2=4 yields,
together with Eqs. (2.8), (2.9), (2.11), (2.25), and r=2�
(2.26), a Poisson-like equation that, integrated over r,
defines a Misner-Sharp mass function [35]

M0 ¼ 4�
r2 ) M ¼ 4�
Z r

0

x2dx ¼ r2ð1þ EÞðln�Þ0

� 4�Pr3 þ 1

3
�r3 þ r2Ln

�
�

�

�
; (2.27)

which with Euler’s Eq. (2.20) rewritten, for P � �
, leads
to the expression

M

r2
þ 4�Pr ¼ Ln

�
�

�

�
þ 1

3
�r� 1þ E


þ P
P0: (2.28)

The evolution Eq. (2.26) can be recast to recognize the
definition of (2.27):

Eþ 2
M

r
þ 1

3
�r2 ¼

�
�

�

�
2
: (2.29)

With Euler’s Eq. (2.20), the momentum Eq. (2.25) becomes

L nE ¼ 2
�

�

1þ E


þ P
P0; (2.30)

while taking Eq. (2.29)’s Lie derivative and using (2.30)

with Ln
1
r ¼ � �

� @r
1
r ¼ �

� =r
2, then �

�� Eq. (2.28) reads

L nM ¼ 4�Pr2
�

�
: (2.31)

Taking the positive (contracting) root of Eq. (2.29), the
evolution Eqs. ��(2.31) and ��(2.30) forM and E can be
written in terms of time derivatives, where we render
explicit the Lie derivative (see footnote 2):

_M ¼ �ðM0 þ 4�Pr2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
M

r
þ 1

3
�r2 þ E

s
; (2.32)

_E ¼ �

�
E0 þ 2

1þ E


þ P
P0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
M

r
þ 1

3
�r2þ E

s
: (2.33)

This system is then closed with a choice of an equation
of state (EoS).

C. Generalized LTB

Getting the metric (2.1) into the generalized LTB
(GLTB) form, as in [33], requires a coordinate transform
so that �dtþ dr / dR. Taking tðTÞ and rðT; RÞ, we have
then the condition

�@Ttþ @Tr ¼ 0; (2.34)

which becomes

� ¼ � _r: (2.35)

Consequently, the line element (2.1) can be rewritten as

ds2 ¼ ��ðT; RÞ2ð@TtÞ2dT2 þ ð@RrÞ2
1þ EðT; RÞdR

2 þ r2d�2;

(2.36)

where EðT; RÞ>�1 and we can freely absorb the time
function in the new time by choosing t ¼ T. Using now :

and 0 for @T and @R, respectively, Eq. (2.29) now reads

_r 2 ¼ �2

�
2
M

r
þ 1

3
�r2 þ E

�
(2.37)

and Eq. (2.32) rewrites, using Eq. (2.35),

_M ¼ �4�Pr2 ¼ 4�Pr2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
M

r
þ 1

3
�r2 þ E

s
; (2.38)

while Eq. (2.33)�r0 rewrites

_Er0 ¼ 2�
1þ E


þ P
P0 ¼ 2

1þ E


þ P
P0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
M

r
þ 1

3
�r2 þ E

s

(2.39)

and Euler’s Eq. (2.20)�r0 is unchanged,

�0

�
¼ � P0


þ P
: (2.40)

D. Remarks on �

In all that precedes, the cosmological constant was kept
explicit. However, from the EFEs, one can include its
effects in the total density and pressure as that of a fluid

4Note the sign differences in front of the Lie derivatives terms
compared with [33]; our results give a sign for _H, which is
consistent with the Raychaudhuri equation restricted to the
FLRW case.
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with 
� ¼ �P� ¼ �
	 . We then obtain expressions identi-

cal to Lasky and Lun [33]. It is interesting to note that the
Misner-Sharp mass, in the explicit � formulation, is only
referring to the initial, ‘‘�-less‘‘ mixture, while encom-
passing the gravitational effects of the presence of�. From
Eq. (2.27) we can define the mass Mtot and pressure term
4�Ptotr

3 for the sum of the total perfect-fluid mixture plus
� by taking Eq. (2.27) for a perfect fluid and setting� ¼ 0.
We can also interpret the sum of the total mass and pressure
terms as the mass of an equivalent dust modelMed. We can
then integrate the mass of � fluid and introduce the
‘‘Misner-Sharp mass’’ [35] pressure term for the � fluid:

Mtot þ 4�Ptotr
3 ¼ r2ð1þ EÞðln�Þ0 þ r2Ln

�
�

�

�
� Med;

(2.41)

M� ¼ 4�

3
r3
� ¼ �

6
r3; (2.42)

4�P�r
3 ¼ �1

2�r3: (2.43)

Thus we can rewrite the Misner-Sharp sum of the mass and
pressure term from its components from Eq. (2.27):

Mþ 4�Pr3 ¼ Mtot þ 4�Ptotr
3 þ 1

3�r3; (2.44)

M� þ 4�P�r
3 ¼ � 1

2
�r3 þ�

6
r3 ¼ � 1

3
�r3; (2.45)

so Mtot ¼ MþM� and Ptot ¼ Pþ P�. In Sec. III, unless
stated otherwise, we will use M, 
, and P to refer to the
total values of the corresponding quantities, while we will
adopt the notationMpf, 
pf, andPpf to refer to the perfect-

fluid quantities. We also wish to remark that although the
mass evolution Eq. (2.31) refers to the ‘‘�-less‘‘ mixture
mass and pressure, this conservation equation holds for
each component of a mixture of noncoupled fluids. We thus
have for independent fluids

M ¼ X
fluid i

Mi; (2.46)

P ¼ X
fluid i

Pi; (2.47)

L nMi ¼ 4�Pir
2 �

�
¼ �4�Pir

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
M

r
þ E

s
: (2.48)

III. GEOMETRICAL AND PHYSICAL
CONDITIONS FOR THE EXISTENCE OF A

DIVIDING SHELL

In our spherical symmetric approach, we are looking for
shells dividing expansion at all time from regions of mixed
behavior involving periods of collapse.

This leads to an investigation of the conditions for the
dynamical separation of sections of matter trapped inside a
dividing surface (physical condition). We will see that this
approach is distinct from a purely kinematic separation of
contraction from expansion (geometrical condition) and
will express the physical condition using kinematic
quantities.

A. Misner-Sharp mass conservation

In the previous section we have seen how the Misner-
Sharp mass is evolving with the flow under Eq. (2.31). We
can thus define a surface for which this mass is conserved
with respect to the flow:

8t; LnMðt; r?ðtÞÞ ¼ 0 , 8t; E ¼ �2
M

r?
;

or P? ¼ 0 or r? ¼ 0:

(3.1)

While the second case, P ¼ 0, defines a dustlike layer in
the perfect-fluid mix, and the third case, r ¼ 0, is trivial,
we shall concentrate on the first case, E ¼ �2M

r . In this

case, from Eq. (2.30) we get

L nE ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
M

r
þ E

s
1þ E


þ P
P0 ¼ 0; (3.2)

so the shell is characterized by fixed curvature and Misner-
Sharp mass. This implies that if a prescribed initial P and 

distribution is given such that there exists a shell where

E? ¼ �2
M?

r?
; (3.3)

then this shell can locally separate inner and outer regions
that can be expanding and contracting differently. We call
the separating shell a ‘‘limit shell,’’ and denote it with ?. In
GPG coordinates the above condition is equivalent to
�
� j? ¼ 0, or to �? ¼ 0. We can then use it to compute

_r ? ¼ � 2M

E
�

�
LnM

M
�LnE

E

�
?
¼ 0; (3.4)

€r ? ¼ � 2M

E
�2

�
L2

nM

M
�L2

nE

E

�
?
; (3.5)

and

L nr ¼ ��

�
) Lnr? ¼ 0; (3.6)

so the limit shell appears as a ‘‘turnaround’’5 shell, in terms
of areal radius.
However, these conditions are coordinate dependent and

give limited insight as to how they would express for
different observers. This calls for a definition using gauge
invariant quantities.

5See the discussion in [1] Sec. 19, p. 77.
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B. Expansion and shear

Newtonian structure formation in spherical symmetry
provides a natural limiting shell that is a locus separating at
a given time expansion from collapse: the turnaround
radius (see e.g. [40]). The definition of that locus is given
by the vanishing of the expansion with respect to the flow.
Nevertheless, this is not necessarily the case resulting from
condition (3.1). Let us first start from the previous mass
flow definition and examine the corresponding expansion.

In GPG coordinates [33], defining the flow by the shift/
lapse vector, we can compute the expansion (the trace of
the symmetric part of the projected covariant derivative of
the flow vector), using Eqs. (2.25) and (2.8):

� ¼ �
�
�

�

�0 � 2
�

�

1

r
: (3.7)

At r� (for
�
� ¼ 0), we have nonzero expansion given by

�? ¼ �
�
�

�

�0
?
: (3.8)

The shear can also be expressed here from Eqs. (2.9) and
(2.25) as

a ¼ 1

3

��
�

�

�0 � �

�

1

r

�
; (3.9)

and we can then relate shear and expansion as [using
Eq. (3.6)]

r

�
�

3
þ a

�
¼ ��

�
¼ Lnr; (3.10)

so on the limit shell,

�? þ 3a? ¼ 0 , ðLnrÞ? ¼ 0: (3.11)

1. Generalizing TOV

The TOV equation, following [33], emerges from
Eq. (2.28) in the static case.

We now generalize the TOV equation by defining a
functional gTOV from Eq. (2.28) as

gTOV ¼
�

1þ E


pf þ Ppf

P0
pf þ 4�Ppfrþ

Mpf

r2
� 1

3
�r

�
:

(3.12)

Using Eqs. (2.44) and (2.45) we also have

gTOV ¼
�
1þ E


þ P
P0 þ 4�PrþM

r2

�
: (3.13)

The definitions (3.10), (2.28), and (3.13) combine to yield

gTOV ¼ �r

�
Ln

�
�

3
þ a

�
�

�
�

3
þ a

�
2
�

(3.14)

¼ �L2
nr: (3.15)

So, gTOV is equal to the radial acceleration or, more

generally, to the Lie derivative of �=�, and hence
Eq. (3.15) is the version in the GPG formalism of the
classical Euler’s equation of continuum mechanics. We
also see that this gTOV acceleration relates to the force
envisaged in the works of Herrera and collaborators
[29–31] multiplied by ð1þ EÞ=
þ p, i.e., by ð1�
2M=r?Þ=ð
þ pÞ at r ¼ r?. We can then obtain local con-
ditions that yield the TOVequation on the limit shell when

gTOV ? ¼ 0 , L2
nr ¼ 0 , Ln

�
�

3
þ a

�
?
¼ 0: (3.16)

We can further express gTOV in a form that reminds us
of the FLRW Raychaudhuri equation by using h
i �
M=ð4�r3=3Þ, i.e.

gTOV ¼ 1þ E


þ P
P0 þ 4�

3
rðh
i þ 3PÞ; (3.17)

and for FLRW it reduces to

gTOV FL ¼ 4�

3
rð
þ 3PÞ ¼ �€r: (3.18)

2. Dynamics of the limit shell

We have seen that we could define the limit shell by only
setting E? ¼ �2M?=r? (so �? ¼ 0), so that �? ¼ 3a?.
Now, using Eqs. (2.29), (2.32), (2.33), and (3.13), we find�

�

�

�� ¼ �

�
�

�

�0 þ �gTOV (3.19)

) _� ¼ �

�
�0 � �

�0

�
þ _�

�

�
þ �2gTOV; (3.20)

so on the limit shell, we have�
�

�

��
?
¼ �gTOV? (3.21)

) _�? ¼ �2gTOV?: (3.22)

Recall that, in the LTB frame, � ¼ � _r, so this tells us

€r LTB;? ¼ ��2gTOV?; (3.23)

and thus when gTOV? ¼ 0 that shell has no acceleration
and is therefore really static, as expressed in the original
TOV equation. For completeness, we can reexpress
Eq. (3.6) with Eqs. (2.31), (2.30), and (3.13), in GPG
coordinates:

€r GPG;? ¼ � 2M

E
�2

�
L2

nM

M
�L2

nE

E

�
?

¼ ��2

�
gTOV? � r2?

gTOV2
?

M?

�
: (3.24)

From Eqs. (3.7) we derive upon integration
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�
�

�

�
¼ �r

�
aþ�

3

�
¼

�
�

�

�
r0

�
r0
r

�
2 � 1

r2

Z r

r0

�r2dr;

(3.25)

where ð�=�Þr0 is a function only of t, which arises as the

‘‘constant’’ of the integration performed with respect to r,
and which sets the value of�=� at r ¼ r0. Using Eq. (2.22)
integrated directly, or Eq. (3.25) and (3.10), the latter result
translates into�

aþ�

3

�
¼

�
r0
r

�
3
�
ar0 þ

�r0

3

�
þ 1

r3

Z r

r0

�r2dr; (3.26)

which is its gauge invariant expression.
From Eq. (3.25) we obtain

Ln

�
�

�

�
¼

�
�

�

��
2

r3

�
r20

�
�

�

�
r0

�
Z r

r0

�r2dr

�
þ�

�

þ 1

�r2

�
r20@t

�
�

�

�
r0

�
Z r

r0

_�r2dr

�
¼ gTOV:

(3.27)

This is the general equation that corresponds indeed to
Eq. (21) of Di Prisco et al. [31], and it confirms their claim
of a nonlocality of the radial acceleration. From Eq. (3.25)
we realize that this nonlocality also characterizes the radial
expansion, as one should expect, and we further remark
that a similar nonlocality is already present in the energy
condition defining r? Eqs. (3.3) and (3.11) and in our gTOV
condition Eqs. (3.13) and (3.16), since both implicate M,
which is an integral between 0 and r?.

As �=� ¼ rð�=3þ aÞ vanishes at r ¼ r?, from
Eq. (3.25) one deduces that�

�

�

�
r0

r20 ¼
Z r?

r0

�r2dr; (3.28)

so that the integral on the right-hand side vanishes if the
initial parameter r20ð�=�Þr0 vanishes at some interior value

r0 < r?. This implies that � must vanish at some inter-
mediate value r0 < r < r?, since it has to change signs
within the interval of integration.

Likewise, when gTOV ¼ 0, i.e. Lnð�=�Þ, vanishes at
some r, we derive from Eq. (3.27) that�

�

�

��
2

r3

�
r20

�
�

�

�
r0

�
Z r

r0

�r2dr

�
þ�

�

¼ 1

�r2

�
r20@t

�
�

�

�
r0

�
Z r

r0

_�r2dr

�
: (3.29)

So, at r ¼ r?, the latter Eq. (3.29) reduces to

r20@t

�
�

�

�
r0

¼
Z r?

r0

_�r2dr; (3.30)

and we conclude that the integral on the right-hand side
vanishes if the term r20@tð�=�Þr0 vanishes at r0. This result
shows that the vanishing of the time derivative of the

expansion thus occurs at least at one intermediate value
between r0 and r. In the case when @tð�=�Þr0r20 ¼ 0 at the

center, we recover the result of Di Prisco et al. [31],
establishing the vanishing of the radial aceleration, i.e.
_� ¼ 0, at some 0< r < r?.

3. Raychaudhuri expansion evolution

From Eqs. (2.21) and (2.23), with � included as a fluid
component, we have in the GPG frame,

� 2Ln�� 2

3
�2 � 12a2 þ 2

�
DkDk� ¼ 8�ð
þ 3PÞ;

(3.31)

and on the limit shell, that reads

� 2

�
_�? � 2�2

? þ 2

�
DkDk�? ¼ 8�ð
þ 3PÞ; (3.32)

showing that this shell can still be dynamic. Using the
Euler Eq. (2.20), the Hessian (2.15) gives

2

�
D�D�� ¼ 1þ E


þ P
P0
�

E0

1þ E
� 2ð�r2Þ0

�r2

�

� 2

�
1þ E


þ P
P0
�0
: (3.33)

Thus Eq. (3.31) reads

�Ln���2 � 2

r

�

�

�
2�þ 3

r

�

�

�

¼ 4�ð
þ 3PÞ � P0

2ð
þ PÞE
0 þ

�
1þ E


þ P
P0
�0

þ
�
2

r
� P0


þ P

�
1þ E


þ P
P0: (3.34)

Here, we can recognize the first term of TOV. On the limit
shell the above equation reads

� 1

�
_�? ��2

? ¼ 4�ð
þ 3PÞ � P0

2ð
þ PÞE
0

þ
�
1þ E


þ P
P0
�0 þ �

2

r
� P0


þ P

�
1þ E


þ P
P0;

(3.35)

and we recast the Raychaudhuri equation for the FLRW
case

�Ln���2

3
¼ 4�ð
þ 3PÞ (3.36)

¼ �3 _H� 3H2: (3.37)

4. Remarks on null expansion limit shells

We now explore the consequences of having, in addition
to (3.11), the condition �? ¼ 0 for the limit shell. In this
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case, the shear must also vanish on the shell and�
�

�

�0
?
¼ 0; (3.38)

which constrains the gradient of the generalized velocity
field �=�.

In addition, and most importantly, the Raychaudhuri
Eq. (3.34) shows that an initially expansion-free dividing
shell is not likely to remain so, and will drift radially. If we
impose the vanishing of Ln� in Eq. (3.31), we derive

1

�?

DkDk�? ¼ 4�ð
þ 3PÞ?; (3.39)

which then translates into a thermodynamic condition on
the second-order derivative of P, which should induce a
very specific and ad hoc local equation of state of the
perfect fluid, namely�
1þ E


þ P
P0
�0
?
¼ �4�ð
þ 3PÞ? þ P0

?

2ð
þ PÞ? E
0
?

�
�
2

r
� P0


þ P

�
?

1þ E?


? þ P?

P0
?: (3.40)

We conclude that the case of a static, expansion-free, limit
shell is very restrictive: for example, in the simplest case,
discussed below, of an inhomogeneous �-CDM model,
Eq. (3.40) induces a restrictive equation of state P ¼
�
=3 on the shell, which is verified neither by the dust
component nor by the � fluid, whereas the limit shell in
this case derives from a staticity condition (see Sec. IVA).

IV. APPLICATIONS TO SIMPLE MODELS

We now will illustrate the behavior according to the
limit shell of simple models. First we will see how it
appears in a �-CDM model, that is, a Lemaı̂tre-Tolman-
Bondi dust model with a cosmological constant. We will
then look at more general models including perfect fluids.

A. Overdensity in a �-CDM model

In what follows we consider a �-LTB model which,
besides the bare LTB case, is exactly solvable, the simplest
perfect-fluid model with a cosmological context departing
from LTB and which satisfies the conditions for the exis-
tence of an asymptotically r-static dividing shell. Indeed,
as stated in [33], choosing P ¼ 0 leads to the usual LTB
solutions. Setting P ¼ 0 in Eq. (2.38) implies6 _M ¼ 0, and
it is somewhat remarkable that this mass is still conserved
for each shell in spite of the presence of �. � gives a
homogeneous pressure, which in Eq. (2.40) gives �0 ¼ 0
so we can redefine�dT ¼ dT� into the line element (2.36),
and finally in Eq. (2.39), assuming no shell crossing r0 � 0.
We are therefore left with Eq. (2.37) in the classic LTB

form, with

_r 2 ¼ 2
M

r
þ 1

3
�r2 þ E: (4.1)

Adding a cosmological constant modifies the mass defini-
tion but not the dust equation of motion. However, we have
an extra term that leads to a different dynamics. We can
thus write the Raychaudhuri-like equation corresponding
to time derivation of Eq. (4.1):

€r ¼ �M

r2
þ�

3
r; (4.2)

and this shows there exists a radius without acceleration for
strictly positive�, contrary to pure dust. However, the first
integral (4.1) suffices for analysis of what happens to each
shell (with fixed R).

1. Kinematic analysis

The Friedmann-like Eq. (4.1) can be used to get the
dynamics in a purely kinematical way. It can be expressed
with a polynomial

_r 2 ¼ �

3r

�
r3 þ 3E

�
rþ 6M

�

�
¼ �

3r
P3;fðrÞ; (4.3)

which roots (given in Appendix A) should obey the effec-
tive potential equation

E ¼ VðrÞ � � 2M

r
��

3
r2: (4.4)

Since _r2 � 0, we have the condition

E � VðrÞ: (4.5)

The motion of a given shell over time thus follows E ¼
const curves above the effective potential V. Roots, the
points of changing direction, translate as geometric inter-
sections between those curves and V. The effective poten-
tial admits one real negative root (0 energy/curvature) at

r ¼ �
ffiffiffiffiffiffiffiffi
6M

�

3

s
; (4.6)

and one double solution at its horizontal tangent (V 0 ¼ 0)

rlim ¼
ffiffiffiffiffiffiffiffi
3M

�

3

s
; (4.7)

for which the value of E becomes

Elim ¼ �ð3MÞ2=3�1=3: (4.8)

It can easily be shown that any shell standing at rlim with
Elim will automatically be a limit shell

rlim ¼ � 2Mtot;lim

Elim

¼ �2
Mþ �

6 r
3
lim

Elim

¼ � 3M

Elim

; (4.9)

and calculating its gTOV, using the definition of Eq. (3.13)

6M can be understood as the mass of the dust alone but
interacting with �; see Sec. II D.
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and recognizing Eq. (4.2),

gTOV ¼ M

r2
��

3
r ¼ �€r; (4.10)

that such a shell will be r-static (gTOVlim ¼ �€rlim ¼ 0).
The effective potential analysis is shown in Fig. 1.

We can thus reconstruct the phase space of that shell in
the ð _r; rÞ plane. Above the energy Elim, there is only one
root in the negative region; thus the flow is qualitatively
defined by its initial conditions. At Elim, the double positive
root gives a repulsive point, thus a saddle, while, below
Elim, the pair of roots give closed and open orbits as shown
in Fig. 2.

The Raychaudhuri-like equation can also be expressed
with a polynomial

€r ¼ �

3r2

�
r3 � 3M

�

�
¼ �

3r2
P3;RðrÞ; (4.11)

admitting only one real root; the acceleration is always
positive for

r �
ffiffiffiffiffiffiffiffi
3M

�

3

s
; (4.12)

thus at infinity (cosmological constant dominates, andM is
monotonous in r). Therefore, at this root, there exists a
limit radius beyond which there is no recollapse:

rlimðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3MðRÞ
�

3

s
: (4.13)

Note that this radius corresponds to the saddle point, which
initial energy radial profile is fixed with initial conditions

for the mass distribution ElimðRÞ ¼ �ð3MðRÞÞ2=3�1=3.
Therefore the last intersection between the initial curvature
profile, set by combining velocity and mass profiles, and
this saddle point profile yields a global shell beyond which
there is no recollapse, recovering separation of expansion
from collapse. Explicit exact solutions for this �LTB
evolution model are shown in Appendix B. It is never-
theless crucial to realize that the selection of the limit shell
from initial curvature does not entail necessarily that it
should start as r-static. Indeed the opposite should be true
in general, as can be seen in Eqs. (4.1) using Elim, Rlim in
(4.4), and Fig. 1: for any choice of the initial Rlim < rlim,
the radial velocity

_R 2
lim ¼ Elim � VðRlimÞ> 0; (4.14)

so it appears that the r-static behavior of the shell should
only emerge asymptotically as it approaches zero velocity
for infinite time. The selected limit shell therefore agrees
with the conditions (3.11) and (3.16), only at infinity in
time, and is traced back to initial conditions owing to the
�þ dust conservation of M and E in time. More general
fluids should not always allow for this conservation on the
limit shell; however, once a shell verifies Eqs. (3.11) and
(3.16), its staticity guarantees that it should verify it at time
infinity. It is remarkable that the existence of the limit shell
only matters at time infinity, suggesting that a weaker
definition than (3.11) and (3.16) should be a sufficient
condition.

2. Time dependent TOV

The shape of Eq. (4.10) shows that, at the root of the
Raychaudhuri-like polynomial, gTOV ¼ 0 and that it is
positive inside and negative outside. The trapped region is
thus characterized by gTOV � 0. We can also compute,
using M ¼ 4�h
ir3=3,

FIG. 1 (color online). Kinematic analysis for a given shell of
constant M and E. Depending on E relative to Elim, the fate of
the shell is either to remain bound (E< < Elim) or to escape and
cosmologically expand (E> > Elim). There exists a critical be-
havior where the shell will forever expand, but within a finite,
bound radius (E ¼ Elim, r 	 rlim). The maximum occurs at

rlim ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M=�3

p
.

FIG. 2. Phase space of a shell of fixed M and E. The scales are

set by the value of rlim ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M=�3

p
while the actual kinematic of

the shell is given by E.
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gTOV 0 ¼
�
4�

�

� 2

3
h
i

�
��

3

�
r0; (4.15)

so TOV is a decreasing function of r [for r0 > 0, a fair
assumption as seen when rðt ¼ 0Þ ¼ R], except in regions
where 
 > 2

3 ðh
i þ 
�Þ, that is, in density peaks. It is also

a time dependent function through the evolution of r:

_gTOV ¼ 

�
2M

r3
þ�

3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ 2M

r
þ�

3
r2

s
; (4.16)

and thus for a given shell, it increases with time for ingoing
dust shells and decreases for outgoing ones. The main point
is that with dust, turnaround shells have r-static gTOV, and
that balanced shells (between their mass pull and that of�)
verify the TOV equation and are thus static.

3. Expansion and shear

From the definition (3.9) of the shear, we see that in the
GLTB model under consideration

a ¼ � 1

3

�
_r0

r0
� _r

r

�
; (4.17)

where we now denote by a prime the derivative with
respect to the GLTB radial coordinate R (i.e., @r ¼
@R=r0). Using Eqs. (4.1) and (4.2) we, then, derive

a ¼ 
 1

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ 2M

r þ �
3 r

2
q ��

E0

r0
� 2E

r

�
þ 2

r

�
M0

r0
� 3M

r

��
:

(4.18)

It is then possible to verify that this quantity does not
vanish in general when r ! r?. It does vanish if the
expansion � also vanishes at the locus where �=� ¼ 0,
i.e., at r ¼ r?, as we have commented in Sec. III B 4.

4. Examples of initial density

It is obvious then that initial conditions are crucial to
determine the existence of a separating shell in the �LTB
model since they set the profile of E and that of Elim. A
single crossing of the two curves ensures locally the ex-
istence of such a shell, while its global effect remains if the
initial conditions do not foster shell crossing. This is the
case if there is only one crossing from bound to unbound E
of Elim. More complicated cases will be examined in a
future work. We now proceed with examples of initial
density profiles and then deduct the conditions on the
corresponding curvature profile for a limit shell to exist.

NFW with background.—The choice of a so-called
Navarro, Frenk, and White (NFW) density profile [41] is
motivated by their prevalence in large cosmological dark
matter haloes (Le Delliou [42], and references therein). If
we initialize the halo with such a density profile, with
concentration 1=R0 and inflection density 
0=4, placed
on a constant background 
b, we can compute the corre-
sponding mass profile. The density profile, as illustrated in

Fig. 3, is given by [41]


 ¼ 
0
R
R0
ð1þ R

R0
Þ2 þ 
b: (4.19)

The corresponding mass then reads

M ¼ 4�

�
r30
0

�
ln

�
1þ R

r0

�
� R

Rþ r0

�
þ 
b

R3

3

�
: (4.20)

Now armed with the expression for the maximum energy
function, the double root solution above, we can obtain
from Eq. (4.8) the bound upper limit for the initial energy/
curvature profile that separates between ever-expanding
and bound shells

Elim ¼ �ð12�Þ2=3�1=3

�
r30
0

�
ln

�
1þ R

r0

�
� R

Rþ r0

�

þ 
b

R3

3

�
2=3

: (4.21)

Figure 4 shows that profile corresponding to the NFW with
background mass. We then propose an example for the
EðRÞ profile, motivated by its cosmological Friedmann
asymptotic curvature and its simple radial evolution from
bound to unbound, as

EðRÞ ¼ �4Emin

�
R

r1

��
1� R

r1

�
; (4.22)

where r1 > 0 and�1<Emin < 0, chosen so that E crosses
Elim near its constant density region. With the asymptotic
constant density and Friedmann negative curvature (E ’
4
r2
1

R2 ¼ �k1R2), these initial conditions model well a

collapsing structure in an open background of curvature
radius r1

2 . The resulting curves are shown in Fig. 4. We have

here an example where shells with E< Elim are trapped
inside the limit shell defined by the intersection of the two

6

8

10

12

14

16

0 2 4 6 8 10

FIG. 3. NFW with background density profile.

MIMOSO, LE DELLIOU, AND MENA PHYSICAL REVIEW D 81, 123514 (2010)

123514-10



profiles. Moreover, that limit shell in the case of dust with
� has been shown to be static. Thus, with this set of
physically motivated initial conditions, the limit shell de-
fined in this way delimits a constant region of collapsing
mass, separated from expanding shells.

Cosmological background with power law overden-
sity.—The most natural cosmological initial condition is a
power law overdensity, with or without cusp, upon a uni-
form background with an initial Hubble flow (Le Delliou
[42]). The uniform background and initial Hubble flow
ensures the asymptotic solution starts FLRW. In this sec-
ond example of initial conditions, we explored both density
profiles but illustrate only the cuspless case as it is more
observationally sounded (Le Delliou [42], and references
therein). The density profiles, as illustrated for the second

case in Fig. 5, are given by (� > 0, and in the first case � 	
3 for a finite central mass)


 ¼ 
0

�
R

R0

��� þ 
b; (4.23)


 ¼ 
0

�
1þ R

R0

��� þ 
b: (4.24)

Observations of the cosmic microwave background would
imply the choice of initial time at recombination and
amplitudes of the order of 
0 � 10�5
b (see Le Delliou
[42], and references therein). The corresponding mass then
reads, for the cuspy profile,

Mcusp ¼ 4�r30
0

8><
>:

½lnðRr0Þ�; � ¼ 3�ðRr0Þ3��

3��

�
; 0< �< 3

9>=
>;þ 4�

3

bR

3;

(4.25)

and for the profile with constant density in the center

Mno Cusp ¼ 4�r30
0 �

8>>>>>>>>>><
>>>>>>>>>>:

½12 ðRr0ÞðRr0 � 2Þ þ lnð1þ R
r0
Þ�; � ¼ 1

½ðRr0Þ
2þR

r0

1þR
r0

� 2 lnð1þ R
r0
Þ�; � ¼ 2�

R
r0

ð1þR
r0
Þ2 þ lnð1þ R

r0
Þ
�
; � ¼ 3�ð1þR

r0
Þ3���1

3�� � 2
ð1þR

r0
Þ2���1

2�� þ ð1þR
r0
Þ1���1

1��

�
; � > 0

9>>>>>>>>>>=
>>>>>>>>>>;
þ 4�

3

bR

3: (4.26)

The resulting boundary profile for E again follows
Eq. (4.8), using the obtained mass profiles. Taking an initial
Hubble flow, _R ¼ HiR, the EðRÞ profile is then defined by
Eq. (4.1) to be

EðRÞ ¼
�
H2

i �
�

3

�
R2 � 2M

R
: (4.27)

The resulting comparison between E and Elim for the non-
cuspy case is shown in Fig. 6. Once again, the intersection
defines a static limit shell for which rlim ¼ � 2Mtot;lim

Elim
and

gTOV ¼ 0, all shells inside it are in the kinematically
bound region of Fig. 1, while those outside are in the
free region. Initial conditions ensure they will expand in
a quasi-FLRW manner.

FIG. 5. Power law density profile without cusp and with back-
ground.

FIG. 4 (color online). NFW with background Elim and an
example of E profile given by Eq. (4.22), for Emin ¼
�1þ e�10 and r1 ¼ e9.
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These examples illustrate that cosmologically motivated
initial conditions lead to a clear separation between ex-
panding and collapsing regions. Therefore for these sys-
tems, expansion ignores the effects of collapse, and
conversely the details of the collapsing region can ignore
the presence of a background expanding universe.

B. Perfect-fluid core in a �-CDM model

Before examining the possibility of existence for a limit
shell inside a perfect fluid in a sequel paper, where we shall
present an ansatz for a perfect-fluid inhomogeneous core in
a Friedmann environment, let us turn to the configuration
where a perfect-fluid ball is surrounded by (a) vacuum with
a cosmological constant, and (b) dust and �.

1. Pure � exterior

In the sameway as [33] did for a perfect fluid surrounded
by a� ¼ 0 vacuum, we can examine the interface between
the perfect fluid and the � vacuum. In the latter region,
both the pressure radial derivative P0 ¼ 0 and the sum

� þ P� ¼ 0 for all time and place by definition of �. In
the same way as [33] showed for such a configuration with
� ¼ 0 vacuum, such a simple interface implies, through
Eqs. (2.40) and (2.30), that the energy and lapse functions,
E and �, are undefined there. These equations show that
only if the fluid’s pressure radial derivative P0 vanishes
faster than 
þ P can E and � remain defined. This con-
dition sets an unusual boundary constraint to the perfect
fluid’s EoS (simple linear EoS do not agree with it), but it is
more fruitful to point out that such behavior mimics that of
a vanishingly thin layer of �-dust. Thus, the transition
between the two regimes gives rise to an inescapable
�-dust atmosphere, however vanishingly thin, as was
found in the pure vacuum case [33]. We have two free
boundaries, r@1ðtÞ where the pressure vanishes and r@2ðtÞ>

r@1ðtÞ where the density vanishes, at which the EoS is

defined as

0 ¼
�
fð
; PÞ for r 2 ½0; r@1�
P for r 2 ½r@1 ; r@2�: (4.28)

Evolution of r@1ðtÞ and r@2ðtÞ follows from setting, respec-

tively, P ¼ 0, then P ¼ 
 ¼ 0 in Eqs. (2.32), (2.33), and
(2.40), to evolve those radii from initial conditions. The
continuity of the curvature through both boundaries im-
poses again

½ lim
r!rþ@i

� lim
r!r�@i

�fEðt; rÞg ¼ 0; (4.29)

which can be used to transmit the value of the mass
parameter from the outer Schwarzschild–de Sitter space-
time down to the perfect-fluid boundary curvature.

2. Limit shell

At this stage, the possibility opens for a limit shell in the
�-CDM atmosphere of the core, provided that such a shell
verifies in conjunction Eqs. (3.3), or equivalently (3.11)
and (3.16), which is only possible in a positively curved
region. Given the surrounding Schwarzschild–de Sitter en-
vironment, the positive curvature requirement is at least
locally filled near the outer boundary. There the analysis of
Sec. IVA applies fully to yield, given initial conditions, the
location of the previously discussed static virtual shell.

Recall that in the Schwarzschild–de Sitter region, E ¼
� 2M@2

r � �
3 r

2 while Elim ¼ �ð3M@2Þ2=3�1=3 ¼ cst; how-

ever, the analysis only applies in the presence of dust, thus
between r@1 and r@2 . Owing to the preservation of continu-

ity in M and E at r@1 , whichever behavior the perfect fluid

may have, it will be confined by that of the previously
explored �-CDM at its boundary.
Let us exhibit examples of such configurations: we can

start from a similar example as presented in Sec. IVA4.
Nevertheless, to preserve curvature continuity (4.29), the
initial velocity at r@2 should go to 0, and therefore the

previous E profile should be modified accordingly. Then
we are faced with three possibilities due to the location of
the dust layer boundaries compared with the limit shell in
the full space dust model: rlim < r@1 < r@2 , r@1 < rlim <

r@2 , or r@1 < r@2 < rlim. Those cases are illustrated, respec-

tively, in Figs. 7–9. In the first case, the dust layer locates
above the maximum of their effective potential (4.4) so
their initial velocities give the direction of their unhindered
asymptotic behavior; i.e. an initially expanding dust layer
should expand forever. If a separating shell exists, it should
lie within the perfect-fluid region. The second case shows
the existence of a separating shell, the perfect fluid being
bound by the eventual recollapse of the r@1 shell, while

some of the dust shell will expand through the vacuum
region and eventually squeeze it to infinity. In the third case
all the dust shells locate below the maximum of their

FIG. 6 (color online). Power law density without cusp þ
background in logð�ElimÞ � logðRÞ and logð�EÞ � logðRÞ
scales.
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effective potential (4.4) so the whole mass will eventually
recollapse, as if the separating shell was virtually located in
the vacuum region.

Now sending the r@2 boundary to infinity, we can expand

the dust layer accordingly, and so long as Sec. IVA’s
analysis yields a limit shell within the dust region, the
perfect fluid shall be contained by the collapsing inner
boundary (i.e. the third case disappears and we are left
with cases rlim < r@1 and r@1 < rlim as treated in Figs. 7 and

8).
In this section we have found that the presence of a

cosmological constant does not modify the need for a dust

layer around a perfect-fluid core surrounded by vacuum.
We have also given examples of limit shell separation
behaviors for appropriately set initial conditions in the
dust layer with �. We have even hinted at that possibility
inside the perfect fluid from the dust behavior, although
such study should be left for a sequel paper.

V. SUMMARYAND DISCUSSION

In the present work we have considered spherically
symmetric, inhomogeneous universes in order to ascertain
under which conditions a dividing shell separating expand-
ing and collapsing regions exists. This endeavor is impor-
tant in relation with the present understanding of structure
formation as the outcome of gravitational collapse of over-
dense patches within an overall expanding universe.
We have addressed this problematic by resorting to

an ADM 3þ 1 splitting, utilizing the so-called gen-
eralized Painlevé-Gullstrand coordinates as developed in
Refs. [32,33]. This enables us to follow a nonperturbative
approach and to avoid having to consider the matching of
the two regions with the contrasting behaviors [43]. We
have found local conditions characterizing the existence of
a dividing shell. We have related these conditions to a
gauge invariant definition of the properties of the dividing
shell. These require the vanishing of a linear combination
of the expansion scalar and of the shear on the shell, as well
as that of its flow derivative. In GPG coordinates, it sum-
marizes as a vanishing of both first- and second-order flow
derivatives of the areal radius.
In order to illustrate our findings we have considered

some simple examples of cosmological interest that pro-
vide realizations of our results. We have considered a
�-CDM model whereby we consider an LTB universe
with dust and a cosmological constant. Notice that the
simultaneous consideration of the latter two components

FIG. 7 (color online). rlim < r@1 < r@2 case for a dust layer
with �. Full space �-CDM diagram for logð�ElimÞ � logðRÞ
and logð�EÞ � logðRÞ in dashed line. This region is character-
ized by E> Elim, so the dynamical analysis of Fig. 1 yields
continuation of initial velocities directions.

FIG. 8 (color online). r@1 < rlim < r@2 case for a dust layer
with �, �-CDM for logð�ElimÞ � logðRÞ and logð�EÞ � logðRÞ
in dashed line. The region with E< Elim is trapped by its set of
effective potentials and will recollapse that with E> Elim, so the
dynamical analysis of Fig. 1 yields continuation of initial veloc-
ities. The separating shell remains in between those regions.

FIG. 9 (color online). r@1 < r@2 < rlim case for a dust layer
with �, �-CDM for logð�ElimÞ � logðRÞ and logð�EÞ � logðRÞ
in dashed line. This region is characterized by E< Elim, so the
dynamical analysis of Fig. 1 yields eventual recollapse.
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yields a perfect-fluid model for the combined matter con-
tent. Moreover it can be seen as a simplified model of a
dust universe within a cosmological setting coarsely pro-
vided by�, which would then mimic the energy content of
the background cosmological model with a rate of expan-
sion much smaller than that of the pure dust collapse.

We have chosen initial conditions motivated by cosmo-
logical considerations and have discussed the existence of
a dividing shell for those cases. We have also generalized a
result of Ref. [33] for the case where a cosmological
constant is present, which states that a perfect-fluid core
embedded in a universe filled with a cosmological constant
necessarily exhibits a dust transition between the perfect-
fluid inner region and the outer vacuum region. This per-
mits one to envisage this case as a generalization of the
former �-CDM examples.

Finally we should mention that a thorough discussion of
global conditions represents a much harder problem, and
remains an open problem since this involves the full char-
acterization of a partial differential equations problem with
boundary conditions in an open domain.
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APPENDIX A: ROOTS OF P3;f ðrÞ
1. Roots for the polynomial

The roots (rk) of Eq. (4.3) proceed from the polynomial
P3;f. We change variables such that r ¼ uþ v and use the

extra degree of freedom to choose to rewrite P3;f ¼ 0 such

that

uv ¼ � E

�
; (A1)

�
u3 þ 3M

�

�
2 ¼

�
E

�

�
3 þ

�
3M

�

�
2
: (A2)

Solutions for the latter second degree polynomial come
naturally as

u3 ¼ �3M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3

� þ ð3MÞ2
q
�

(A3)

) u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3

� þ ð3MÞ2
q
�

3

vuut
eið2�k=3Þ: (A4)

We are left with six solutions for u and v, which are
symmetrical and related by Eq. (A1) so uv being real,
choosing u3 as the positive square root solution, the cor-
responding v3 becomes the negative one while u and v are
complex conjugate, so

uv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3MÞ2 � E3

� � ð3MÞ2
�2

3

s
¼ � E

�
; (A5)

and therefore the roots are

rk¼0;�1 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�3Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3

�
þ ð3MÞ2

s
3

vuut
eið2�k=3Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3

�
þ ð3MÞ2

s
3

vuut
e�ið2�k=3Þ

�
=�1=3:

(A6)

2. Real root(s)

For the positive discriminant, � ¼ E3

� þ ð3MÞ2, there is

only one real root for k ¼ 0. A negative or null discrimi-
nant yields again the real k ¼ 0 root and two other real
roots for k ¼ �1, since then v ¼ �u. We are then left with
the single real root, noting

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3

�
þ ð3MÞ2

s
3

vuut
; (A7)

a�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3

�
þ ð3MÞ2

s
3

vuut
; (A8)

r0 ¼ a0 þ a�0
�1=3

; (A9)

and, when E3

� þ ð3MÞ2 	 0, the two other real roots

a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Mþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�EÞ3
�

� ð3MÞ2
s

3

vuut ð1
 i
ffiffiffi
3

p Þ; (A10)

�a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�EÞ3
�

� ð3MÞ2
s

3

vuut ð1� i
ffiffiffi
3

p Þ; (A11)

r� ¼ a� þ �a�
2�1=3

; (A12)
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3. Signs of the real roots

So as to order the roots, it is necessary to look at their
sign. This is important as r should be positive, r < 0 being
unphysical. Recall thatM,�> 0, and E>�1. When�>

0, i.e. when E>�ð3MÞ2=3�1=3 ¼ Elim, we have only one

real root and r0 > 0 ) a0 >�a�0. We always have�a�0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E3

� þ ð3MÞ2
q

3

r
> 0. Supposing a0 > 0 (and thus

a30 > 0) then �a�30 a30 ¼ E3

� > 0 , E> 0. Therefore, with

the hypothesis E> 0, the condition r0 > 0 implies a0 >
�a�0 , a30 >�a�30 , �3M> 3M. Hence for E> 0 we

have r0 < 0. The same as for 0 � E>�ð3MÞ2=3�1=3,
requesting r0 > 0 implies a0 >�a�0 while �a�0 > 0 �
a0. Therefore, 0 � E>�ð3MÞ2=3�1=3 always entails r0 <

0, and we conclude that r0 is always negative when E>

�ð3MÞ2=3�1=3. The case when ð3MÞ2�< 1 is more inter-

esting as we have three real roots for �1<E 	
�ð3MÞ2=3�1=3. Let us use the solutions of Eq. (A6) in
the form

rk ¼ uk þ �uk

�1=3
¼ 2ReðukÞ

�1=3
: (A13)

We know that

u3k ¼ �3Mþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�EÞ3
�

� ð3MÞ2
s

(A14)

so Imðu3kÞ � 0 and Reðu3kÞ< 0. We can then rewrite u3k ¼

ei’k;3 with 
2 ¼ ð�EÞ3

� , and ’k;3 2 ½�2 þ 2k�;�þ
2k��k2Z. The values of uk are deduced as uk ¼ 
1=3ei’k

with ’k ¼ ’k;3

3 : ’k 2 ½�6 þ 2k�
3 ; �3 þ 2k�

3 �k2Z. Each uk ad-

mits the same modulus, so the phases, each separated by
2�=3, give us the ranges and the order in which each root
lies. The results are the following:

’0 2
�
�

6
;
�

3

�
�

�
0;
�

2

�
) r0 > 0; (A15)

’þ 2
�
�� �

6
;�

�
�

�
�

2
;�

�
) rþ < 0; (A16)

’� 2
�
��

2
;��

3

�
�

�
��

2
; 0

�
) r� � 0; (A17)

and the order of the cosine (since rk involves the real part
of uk) yields �rþ � r0 � r� � 0. This is agreeing with
the analysis of Sec. IVA 1 understanding that the negative
root shifts from r0 to rþ through the � ¼ 0 point, and that
below the horizontal tangent, r0 is the exterior turning
point while r� gives the interior envelope of the effective
potential.

The above solutions give us then the explicit equations
for the intersection of the effective potential with the
current curvature involved in Eq. (4.1).

APPENDIX B: EXACT SOLUTIONS FOR AN
INHOMOGENEOUS �CDM

The equation of motion admits analytical solutions in
terms of hyperelliptic integrals (see also Lemaı̂tre [44]).
From Eq. (4.1)

t� tB ¼
Z r

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

Erþ 2Mþ �
3 r

3

s
dr; (B1)

however, in conformal time (dt ¼ rd)

r02 ¼ Er2 þ 2Mrþ�

3
r4; (B2)

) � B ¼
Z r

R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Er2 þ 2Mrþ �

3 r
4

q dr

¼
Z r

R

1ffiffiffiffiffiffiffiffiffiffiffi
P4ðrÞ

p dr: (B3)

Given that the incomplete elliptic integral of the first kind
is defined by

Fðx; kÞ ¼
Z x

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� t2Þð1� k2t2Þp ¼
Z x

0

dtffiffiffiffiffiffiffiffiffiffiffi
PFðtÞ

p ; (B4)

it is possible by a rational change of variable, z ¼ axþb
cxþd to

go from PF to P4:

PFðzðxÞÞ ¼ ððc� aÞxþ ðd� bÞÞððcþ aÞxþ ðdþ bÞÞ
� ððc� kaÞxþ ðd� kbÞÞ
� ððcþ kaÞxþ ðdþ kbÞÞ=ðcxþ dÞ4

¼ P4ðxÞ
ðcxþ dÞ4 : (B5)

The solutions are therefore following, using crþ d ¼
ad�bc
ða�czÞ and dr ¼ ad�bc

ða�czÞ2 dz:

� B ¼
Z r

R

1ffiffiffiffiffiffiffiffiffiffiffiffi
PFðzÞ

p 1

ðcrþ dÞ2 dr

¼ Fðarþb
crþd ; kÞ � FðaRþb

cRþd ; kÞ
ðad� bcÞ : (B6)

We then just need to find a, b, c, d, k in terms of E, M, �.

We already have the roots of P4 ¼ P3;fr
�
3 from

Appendix A, and we can write from Eq. (B5)

r1 ¼ �d� b

c� a
; r2 ¼ �dþ b

cþ a
;

r3 ¼ �d� kb

c� ka
; r4 ¼ � dþ kb

cþ ka
:

(B7)

We can obtain expressions for d and b, isolating them in
the first and second pairs of roots:
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8><
>:
d ¼ �r1ðc�aÞþr2ðcþaÞ

2

b ¼ r1ðc�aÞ�r2ðcþaÞ
2

(B8)

¼ �r3ðc�kaÞþr4ðcþkaÞ
2

¼ r3ðc�kaÞ�r4ðcþkaÞ
2k

9>=
>;: (B9)

Equating the two ways of writing bþ d, we obtain a linear
relation between c and a,

c ¼ r3kð1� kÞ þ r4kð1þ kÞ � 2kr2
r3ð1� kÞ þ 2kr2 � r4ð1þ kÞ a: (B10)

Now recall that the factors of x4 and x0 in P4 are, respec-
tively,

ðc2 � a2Þðc2 � k2a2Þ ¼ �

3
; (B11)

r1r2r3r4 ¼ 0: (B12)

The cosmological constant means from Eq. (B11) that
neither c ¼ �a nor c ¼ �ka, while Eq. (B12) entails
that one of the roots is 0. If we choose r4 ¼ 0, then we
have d ¼ �kb and therefore, from Eqs. (B8), dþ kb ¼ 0
yields

c

a
¼ r1ð1� kÞ � r2ð1þ kÞ

r1ð1� kÞ þ r2ð1þ kÞ ; (B13)

so with Eq. (B10) and r4 ¼ 0, we obtain a third degree
polynomial in k (recall k � 1 for nondegeneracy of PF)

ðk� 1Þ
��
kþ 2r1r2 � r1r3 � r2r3

r1r3 � r2r3

�
2 þ 1

�
�
2r1r2 � r1r3 � r2r3

r1r3 � r2r3

�
2
�
¼ 0 (B14)

) k

¼ 2r1r2 � r1r3 � r2r3
r2r3 � r1r3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2r1r2 � r1r3 � r2r3

r1r3 � r2r3

�
2 � 1

s
:

(B15)

We also can rewrite the condition (B10) to obtain a with
Eq. (B11): the positivity of � in Eq. (B11),

�

3
¼ 4k2ð1� k2Þ2½ð1� kÞ2r3 þ 4r2k�½r3 � r2�r2r3

½2r2kþ ð1� kÞr3�4
a4;

(B16)

imposes to choose r3 > r2 > 0, and thus

a ¼ �½2r2kþ ð1� kÞr3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3½ð1�kÞ2r3þ4r2k�½r3�r2�r2r3
q

2kj1� k2j

vuuut
:

(B17)

We deduce then c from Eq. (B10)

c ¼ �k½ð1� kÞr3 � 2r2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3½ð1�kÞ2r3þ4r2k�½r3�r2�r2r3
q

2kj1� k2j

vuuut
;

(B18)

derive b from including the solutions (B17) and (B10) in its
expression in Eq. (B8)

b ¼ 
½4r2kþ ð1� kÞ2r3�r1 þ ½ð1� k2Þr3�r2
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3½ð1�kÞ2r3þ4r2k�½r3�r2�r2r3
q

2kj1� k2j

vuuut
; (B19)

and obtain d with our choice of r4 ¼ 0 that induces d ¼
�kb,

d ¼ � k½4r2kþ ð1� kÞ2r3�r1 þ k½ð1� k2Þr3�r2
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3½ð1�kÞ2r3þ4r2k�½r3�r2�r2r3
q

2kj1� k2j :

vuuut
(B20)

Inputting the values of the roots from Appendix A, and the
values of the transformation coefficients a, b, c, and d into
Eq. (B12) yields the conformal time evolution solution that
can be related to the cosmic time according to

t� tB ¼
Z 

B

rd ¼
Z r

R
r
@

@r

�
Fðarþb

crþd ; kÞ
ðad� bcÞ

�
dr: (B21)

Therefore there is an analytic solution to the �LTB model
(see also Lemaı̂tre [44]).
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