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We investigate cosmological constraints on an energy density contribution of elastic dark matter self-

interactions characterized by the mass of the exchange particle mSI and coupling constant �SI. Because of

the expansion behavior in a Robertson-Walker metric we investigate self-interacting dark matter that is

warm in the case of thermal relics. The scaling behavior of dark matter self-interaction energy density

(%SI / a�6) shows that it can be the dominant contribution (only) in the very early universe. Thus its

impact on primordial nucleosynthesis is used to restrict the interaction strength mSI=
ffiffiffiffiffiffiffi
�SI

p
, which we find

to be at least as strong as the strong interaction. Furthermore we explore dark matter decoupling in a self-

interaction dominated universe, which is done for the self-interacting warm dark matter as well as for

collisionless cold dark matter in a two component scenario. We find that strong dark matter self-

interactions do not contradict superweak inelastic interactions between self-interacting dark matter and

baryonic matter (�SIDM
A � �weak) and that the natural scale of collisionless cold dark matter decoupling

exceeds the weak scale (�CDM
A >�weak) and depends linearly on the particle mass. Finally structure

formation analysis reveals a linear growing solution during self-interaction domination (� / a); however,

only noncosmological scales are enhanced.
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I. INTRODUCTION

In the past decades high-precision observations allowed
the development of a standard model of cosmology:
�CDM. Its main statements are that we are living in a
flat universe (�0

tot ¼ 1:0052� 0:0064), dominated by the
‘‘dark’’ components: dark energy (�0

DE ¼ 0:721� 0:015)
and nonbaryonic dark matter (�0

DM ¼ 0:233� 0:013) [1].
The necessity of a dark energy component comes from

the acceleration of the universe expansion, inferred from a
high redshift Hubble diagram of type Ia supernovae as
standard candles [2] and radio galaxies as standard yard-
sticks [3]. A recent and impressive proof for the existence
of dark matter (DM) can be deduced from observations of
colliding galaxy clusters. Optical and near infrared obser-
vations of the galaxies, x-ray emission of the upheated
intergalactic plasma, and gravitational lensing of the
mass distribution show the necessity of a nonvisible DM
component, which dominates the mass budget [4,5]. An
overview of DM physics and particle candidates can e.g. be
found in recent reviews [6–9].

Numerical structure formation simulations in the
�CDM framework (from one of the first and most popular
[10] to the most recent [11,12]) show an impressive agree-
ment with observations and have therefore become a cor-
nerstone of modern cosmology. Nevertheless they also
reveal two shortcomings that are worth being taken seri-
ously. First, simulations predict scale independently a large

number of substructures in collisionless cold dark matter
(CDM) halos, which exceed on galactic scales clearly the
number of yet observed Milky Way satellites [13,14]. One
explanation is that reionization could prevent formation of
visible baryonic structures in the smallest DM halos (e.g.
[15]). Second, simulations show cusps in the center of
collisionless CDM halo density profiles. But observations
of dwarf spheroidal galaxies—which have a huge mass-to-
light ratio and hence are objects suited to study DM
properties without perturbing baryonic effects, rotation
curves of high spatial resolution and large extension of
low luminosity spiral galaxies, and the universal rotation
curve for spiral galaxies indicate a constant DM halo core
density (e.g. [16–18]). An overview about processes that
might lead from intrinsic cuspy CDM distributions to the
observed cored ones gives e.g. Ref. [19].
An idea to avoid both mismatches of the CDM scenario

is to introduce strong elastic DM self-interactions [20]. A
recent overview concerning collisional DM is given in
Ref. [9]. Here, we want to concentrate on the most impor-
tant facts that are also relevant for this work. The original
self-interaction strength proposed by Ref. [20] is
�SI=mDM ¼ 0:45–450 cm2=g (self-interaction cross sec-
tion over DM particle mass). But in Ref. [21] it was
demonstrated that cross sections generating reasonable
dwarf galaxy cores predict too large galaxy cluster cores.
Reference [22] showed that independent of the dependence
on the halo velocity dispersion self-interacting cross sec-
tions cannot solve the satellite problem accurately. The
most reliable constraint on the self-interaction strength
comes again from observations of colliding galaxy clusters
[23,24]. The nonexistence of an offset between the galaxy
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distribution and the gravitational lens mass peak, and the
subcluster mass-to-light ratio allow one to constrain
�SI=mDM < 0:7 cm2=g. This result nearly completely
rules out the formerly proposed self-interaction strength.
The strongest limit on the collisional character of DM
(�SI=mDM < 0:02 cm2=g) can be inferred from the ob-
served ellipticity of DM halos and the property of DM
collisions to make halos spherical [25], but one has to take
into account its model dependence [23,24].

Another approach that avoids the satellite and cuspy
halo problems is to provide the DM particles with a finite
thermal streaming velocity, to achieve a cutoff in the power
spectrum and smearing of the innermost, highest density
halo regions [26,27] (see also [16]). This means to intro-
duce warm dark matter (WDM) particles. A lower bound
on the DM particle mass can be determined from the
Lyman-� forest (mWDM * 4 keV [28]) and gravitational
lensing (mWDM * 2:2 keV [29]) of high redshift quasars
(given limits are for thermal relics). Reference [30] showed
that these boundaries can be lowered considerably in a
setup of mixed cold and warm DM, which we also consider
in this work. So we follow Ref. [31] in using 1–10 keVas a
typical mass range for WDM particles in the following.

Other solutions proposed are stronger CDM annihila-
tions ([32], but see also [33]) or a coupling between
quintessence dark energy and CDM (e.g. [34]).

Present attempts to enlarge the phenomenology of DM
physics are e.g. strong DM baryonic matter interactions
[35] or a dark radiation (electromagnetism) between DM
particles [36].

We introduce in this work an energy density contribution
of elastic dark matter self-interactions. Despite the fact that
self-interacting dark matter (SIDM) may not solve the
shortcomings of the collisionless approach, the motivation
for this work is to explore new, interesting cosmological
consequences of an additional energy density contribution
of DM self-interactions within the above mentioned con-
straints. Interestingly enough, an interaction strength of
�SI=m� 1 cm2=g still corresponds to strong interactions
(�strong � 10 fm2) between nucleonlike particles (m�
1 GeV).

In Sec. II we introduce our idea of a self-interaction
energy density contribution %SI. Energy density scaling
according to the Friedmann equations and its equation of
state (pSI ¼ %SI) imply that the self-interaction contribu-
tion shows the steepest decrease with the scale factor
(%SI / a�6) and thus can (only) have a direct impact on
the very early universe. Its proportionality to the SIDM
particle density (%SI / n2SIDM) leads us to consider warm

self-interacting dark matter (WSIDM) in the case of ther-
mal relics to have the correct scaling behavior (nSIDM /
a�3). But this does not rule out a second collisionless CDM
component. After finally defining our parameter set, we use
in Sec. III today’s DM energy density�0

DM to constrain the

parameters characterizing the SIDM particle properties

and primordial nucleosynthesis limits on an additional
energy density contribution to constrain the self-
interaction strength mSI=

ffiffiffiffiffiffiffi
�SI

p
. We find that it depends

inversely on the SIDM particle mass (mSI=
ffiffiffiffiffiffiffi
�SI

p /
1=mWDM) but can be at least as strong as for strong inter-
actions (mSI=

ffiffiffiffiffiffiffi
�SI

p � 100 MeV).

In Sec. IV we analyze the consequences on DM decou-
pling in a universe dominated by the self-interaction en-
ergy density contribution. The annihilation cross section of
WSIDM �WDM

A is inverse proportional to the elastic self-
interaction strength (�WDM

A / ffiffiffiffiffiffiffi
�SI

p
=mSI) and rather low

(�WDM
A � �weak) while the natural scale for the annihila-

tion cross section of a collisionless CDM component�CDM
A

exceeds the weak scale and depends beside the self-
interaction strength also on the particle mass mCDM. This
casts new light on the ‘‘WIMPmiracle’’ and coincides with
Fermi-LAT and PAMELA data (e.g. [37,38]). We use the
unitary bound and neutrino induced constraints on the DM
annihilation cross section to again limit the self-interaction
strength.
Another consequence of an early self-interaction domi-

nated epoch may concern structure formation. We show in
Sec. V that a relativistic analysis of linear perturbation
theory reveals a linear growing solution � / a of self-
interaction dominated SIWDM and also of collisionless
CDM in a mixed model during self-interaction domination.
However, only noncosmological scales (M & 10�3M�)
can be enhanced and a small observable effect could only
be present with fine-tuned parameters.
Finally we summarize our results in Sec. VI.

II. SELF-INTERACTION ENERGY DENSITY

In the following, we analyze constraints and consequen-
ces of an energy density contribution from dark matter self-
interactions %SI.
We describe two particle interactions between scalar

bosons or fermions by the exchange of vector mesons.
For a scalar field � (fermionic field c ) and a vector field
V� the Lagrangian reads

Lb ¼ D�
��

�D���m2
b�

��� 1
4V��V

�� þ 1
2m

2
vV�V

�;

(1a)

Lf ¼ �c ðiD6 �mfÞc � 1
4V��V

�� þ 1
2m

2
vV�V

�; (1b)

with V�� ¼ @�V� � @�V�. The boson (fermion) field is

coupled to the vector field by a minimal coupling scheme

D � ¼ @� þ igv�ðc ÞV�; (2)

where gv�ðc Þ is the�ðc Þ-V coupling strength. We treat the

vector field as a classical field. In homogeneous and iso-
tropic matter the spatial components of the vector field
vanish and the equation of motion for the scalar (fermion)
field reads
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½D�D� þm2
b��ðxÞ ¼ 0; (3a)

½iD6 �mf�c ðxÞ ¼ 0: (3b)

In the mean-field approximation, after expanding into
plane waves, we obtain the dispersion relation

!�ðc Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

bðfÞ
q

þ gv�ðc ÞV0: (4)

Note that the vector interaction between the scalar (fermi-
onic) particles is repulsive, which ensures the overall
stability of self-interacting boson matter and avoids an
enhancement of the annihilation cross section due to the
formation of bound states. The number density of bosons
(fermions)

nb ¼ J0 ¼ i��@0�� ið@0��Þ�� 2gv�V0�
��; (5a)

nf ¼ J0 ¼ �c�0c ; (5b)

is just the source term for the vector field that is determined
from the equation

m2
vV0 ¼ gv�ði��@0�� ið@0��Þ�� 2gv�V0�

��Þ
¼ gv�nb; (6a)

m2
vV0 ¼ gvc �c�0c ¼ gvcnf: (6b)

The total energy density of the boson (fermion) matter can
be determined from the energy-momentum tensor

%b ¼ %free
b þ 1

2
m2

vV
2
0 ¼ %free

b þ g2v�

2m2
v

n2b; (7a)

%f ¼ �c�0ði@0 � gvcV0Þc þ 1

2
m2

vV
2
0

¼ �c�0ði@0 � gvcV0Þc þ g2vc

2m2
v

n2f; (7b)

where the equation of motion for the vector field (6) has
been used. The energy density of free boson matter obeys
for the lowest energy mode k ¼ 0, %free

b ¼ 2m2
b�

�� ¼
mbnb. The pressure is given by

pb ¼ pfree
b þ 1

2
m2

vV
2
0 ¼ pfree

b þ g2v�

2m2
v

n2b; (8a)

pf ¼ 1

3
�c ½�0ði@0 � gvcV0Þ �mf�c þ 1

2
m2

vV
2
0

¼ 1

3
�c ½�0ði@0 � gvcV0Þ �mf�c þ g2vc

2m2
v

n2f: (8b)

The pressure of free boson (fermion) matter fulfills pfree ¼
%free=3 while the particles are relativistic, and for the low-
est energy mode k ¼ 0 the total pressure is just given by
the vector field contribution. The form of the interaction is
equal to the one used for investigating implications of
interactions of fermions and bosons on compact stars in
Refs. [39,40].

For simplicity we denote the particle masses mSIDM �
mbðfÞ, mSI � mv, and define the coupling constant �SI �

g2v�ðc Þ=2, so that the energy density contribution from dark

matter self-interactions reads

%SI ¼ �SI

m2
SI

n2SIDM ¼ pSI; (9)

with mSI=
ffiffiffiffiffiffiffi
�SI

p
as the energy scale of the self-interaction.

This scale can also be interpreted as the vacuum expecta-
tion value of the Higgs field of the interaction. For weak
interactions the interaction strength is given by Fermi’s
constant 1=

ffiffiffiffiffiffi
GF

p
or the vacuum expectation of the Higgs

field generating the masses of the W and Z bosons, so that
mweak=

ffiffiffiffiffiffiffiffiffiffiffiffi
�weak

p � 300 GeV. Correspondingly, the strength

of low energy strong interactions, quantum chromodynam-
ics, is controlled by the pion decay constant as 1=f2� in
chiral perturbation theory, with f� being the vacuum ex-
pectation value of the sigma field. Hence, for strong inter-
actions the typical interaction energy scale is
mstrong=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�strong

p � 100 MeV [39].

Note that according to the underlying propagator Eq. (9)
is valid only when mSI > 5TSIDM, so when the vector
meson is nonrelativistic. Otherwise the self-interaction
energy density contribution scales like radiation (%SI /
n2SIDM=T

2
SIDM / T4

SIDM). Once mSI=
ffiffiffiffiffiffiffi
�SI

p
is fixed, this can

also be used as a boundary condition on the coupling
constant for given TSIDM. A corresponding discussion is
given in Appendix A. Please also note that the coupling
constant �SI defined here differs from the common defini-
tion by a factor 2�, e.g. �s ¼ g2s=ð4�Þ. The equation of
state (9) of the self-interaction pSI ¼ %SI represents the
stiffest possible equation of state consistent with causality.
The expansion behavior of the universe in a Robertson-

Walker metric is described by the Friedmann equations

d%

da
¼ �3

%þ p

a
; (10)

where a is the scale factor, implying that the self-
interaction energy density contribution shows the steepest
decrease (Fig. 1):

%SI / a�6: (11)

So, the universe could be in a self-interaction dominated
epoch prior to radiation domination in the very early uni-
verse. Under certain assumptions it might be possible in the
future to constrain the dominating equation of state in the
early universe via gravitational waves [41].
The scaling behavior %SI / a�6 and the proportionality

between self-interaction energy density and SIDM particle
density %SI / n2SIDM imply that

nSIDM / a�3: (12)

This condition is naturally fulfilled after DM decoupling
and in the case of relativistic particles also before that, as
nWDM / T3. But it is incompatible with the exponential
suppression of nonrelativistic particles before they de-
couple [nCDM / expð�mCDM=TÞ]. This is why we discuss
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in the following warm self-interacting dark matter and
consider cold dark matter as a second, collisionless
component.

We describe the DM as a free Boltzmann gas and addi-
tionally take into account a nonzero DM chemical poten-
tial. Fermionic DMwith a nonvanishing chemical potential
according to Fermi-Dirac statistics is analyzed in detail in
Ref. [42]. Altogether our model contains six parameters.
Besides the particle mass mWDM, the degeneracy factor

gWDM, and the relativistic chemical potential
�WDM=TWDM, the number of degrees of freedom of parti-
cles in thermal equilibrium at WSIDM decoupling gWdec

th eq

(which fixes today’s WDM temperature) characterizes the
SIDM particle properties. Today’s relative amount of
WSIDM is given by F0

WDM � �0
WDM=�

0
DM, and finally

mSI=
ffiffiffiffiffiffiffi
�SI

p
determines the WDM self-interaction strength.

The evolution of the total SIDM energy density %SIDM ¼
%SI þ %WDM is shown in Fig. 2. Even very strong DM self-
interactions can only have a direct impact on the very early
universe. The cosmic microwave background radiation
(CMB) is unaffected by the additional DM self-interaction
energy density contribution considered. Primordial nucleo-
synthesis is the major cornerstone to constrain the self-
interaction strength. Besides the scaling %SIDM / a�6

while the self-interaction contribution dominates over the
particle contribution, one sees that %SIDM / a�4 once the
relativistic particle contribution dominates and %SIDM /
a�3 when the WDM particles have become nonrelativistic.

III. CONSTRAINTS

A. Today’s dark matter density �0
DM

The parameters describing the DM particle properties
are not all independent of each other, and today’s relative
DM energy density �0

DM can be used to extract allowed
combinations. At the present-day temperature the WDM
particles are nonrelativistic, so that their energy density is
given by %0

WDM ¼ mWDMn
0
WDM. According to particle

number conservation after decoupling and entropy conser-
vation of the particles in thermal equilibrium, today’s
WDM particle density depends on the one at decoupling as

n0WDM ¼ 3 10
11

gWdec
th eq

T3
0

T3
Wdec

nWdec
WDM: (13)

Since we describe the WDM as a free Boltzmann gas, its
number density until decoupling is given by

nWDMðTÞ ¼ gWDM

�2
T3 exp

�
�WDM

T

�
: (14)

Thus Eq. (13) leads to the following constraint on the
WSIDM particle parameters:

gWDMmWDM

gWdec
th eq F

0
WDM

exp

�
�WDM

TWDM

�
¼ 3�

8	 3 10
11

m2
Pl

H2
0�

0
DM

T3
0


 1:80 eV	�0
DMh

2
0

0:1143
; (15)

with T0 ¼ ð2:725� 0:002Þ K [43] and �0
DMh

2
0 ¼

0:1143� 0:0034 [1].
Allowed ranges of the parameters describing the

WSIDM particle properties are shown in Fig. 3 where the
degrees of freedom in thermal equilibrium at WSIDM
decoupling is plotted against the WDM particle mass
over the relative amount of WDM. For the largest possible

FIG. 2 (color online). Evolution of the SIDM energy density
%SIDM ¼ %SI þ %WDM with the expansion of the universe for
different self-interaction strengths. WDM particle parameters are
mWDM ¼ 1 keV, gWDM ¼ 2, �WDM=TWDM ¼ 0, gWdec

th eq ¼ 1107,

F0
WDM ¼ 1. af:o: is the scale factor at the freeze-out of the

neutron to proton number ratio and aCMB at photon decoupling.

FIG. 1 (color online). Double-logarithmic plot of the evolution
of different energy density contributions with the scale factor a.
aCMB is the scale factor at photon decoupling, arad mat

eq at

radiation-matter equality, and af:o: at the freeze-out of the
neutron to proton number ratio. %SI is fixed so that self-
interaction–radiation equality is at freeze-out of the neutron to
proton number ratio.
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number of degrees of freedom in thermal equilibrium at
WSIDM decoupling in the particle physics standard model,
namely gWdec

th eq ¼ 106:75, the WDM particle mass is re-

stricted to gWDMmWDM � 193 eV. To achieve WDM
masses of 1–10 keV, additional degrees of freedom at
WDM decoupling are required. All in all this mass range
demands at least 103–104 degrees of freedom in thermal
equilibrium at WSIDM decoupling. This is common to all
WDM models and not specific to the one discussed here.
Additional degrees of freedom appear e.g. in supersym-
metric theories or in theories with extra dimensions or in
string gas cosmology models (see e.g. [44,45]).

B. Primordial nucleosynthesis

An additional energy density contribution at big bang
nucleosynthesis (BBN) is parametrized as additional neu-
trino families �N�

%BBN
rad ¼ %BBN

� þ ð3þ �N�Þ%BBN
� þ %BBN

e ; (16)

assuming that it scales like radiation (%rad / a�4). In our
model this is true for the energy density contribution of the
WDM particles %WDM but the self-interaction energy den-
sity drops faster (%SI / a�6). Hence, we use limits on �N�

to constrain %WDM only (%BBN
WDM � �N�%

BBN
� ), resulting in

the following constraint on the WDM particle parameters:

gWDM expð�WDM

TWDM
Þ

gWdec4=3

th eq

� 7�4

360	 10:754=3
�N�: (17)

Together with Eq. (15) this can be transformed into a lower
bound on the WDM particle mass:

mWDM

F0
WDM

� 135

7�3

10:754=3

3 10
11

m2
Pl

H2
0�

0
DM

T3
0

gWdec�1=3

th eq

�N�

(18)


 22:6 eV	�0
DMh

2
0

0:1143

gWdec�1=3

th eq

�N�

: (19)

Reference [46] obtains as a limit for the additional energy
density during BBN (2� uncertainty)

�N� � 0:3: (20)

The resulting constraints on the WSIDM particle parame-
ters are shown together with those from today’s DM energy
density in Fig. 4. While the lower right corner is excluded
by today’s DM energy density, the lower left one is ruled
out by the allowed energy density (which scales like ra-
diation) during BBN. Smaller WDM particle masses re-
quire a higher temperature and thus a lower number of
degrees of freedom in thermal equilibrium at decoupling to
have the correct energy density today. In the grey shaded
region at the left the increased WDM temperature would
result in a too large energy density during BBN.
To constrain the DM self-interaction strength via BBN

we have to focus on the earliest stage of BBN, which is the
freeze-out of the neutron to proton number ratio. This
occurs at temperatures of Tf:o: � 800 keV.
A larger energy density results in a higher expansion rate

of the universe (H / %1=2). This implies that the equality
between expansion rate and reaction rate of reactions that
keep the neutrons and protons in equilibrium is achieved
earlier, i.e. at a higher temperature, and hence the neutron
concentration at freeze-out is enhanced. The time when the
deuterium bottleneck opens is not affected by an additional
energy density of DM self-interactions (as %SI / a�6).
Hence, the period between freeze-out of the relative neu-
tron concentration [Xn ¼ nn=ðnn þ npÞ] and the beginning
of nucleosynthesis reactions is slightly extended (�t ¼
tbBBN � tf:o:). During this time span free neutrons decay.
Nevertheless, also the neutron concentration when the
deuterium bottleneck opens is increased [XbBBN

n ¼
Xf:o:
n expð��t=	nÞ]. Nearly all neutrons available for the

FIG. 4 (color online). Allowed combinations of the WSIDM
particle parameters according to Eqs. (15) and (19).

FIG. 3 (color online). Allowed combinations of the parameters
describing the WSIDM particle properties according to Eq. (15),
so resulting in today’s correct DM energy density�0

DM ¼ 0:233.
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nucleosynthesis processes are incorporated into 4He. For
this reason, the primordial 4He mass fraction (YP ’
2XbBBN

n ) is the ideal probe to constrain the self-interaction
energy density contribution and thus the self-interaction
strength. The detailed calculation is given in Appendix B.
We assume for simplicity that the freeze-out of the neutron
to proton number ratio occurs in a radiation dominated
universe, so that the DM self-interaction energy density
contribution does not exceed the radiation contribution:

%f:o:
tot ¼ %f:o:

SI þ %f:o:
rad ¼ ð1þ xf:o:SI Þ%f:o

rad; 0 � xf:o:SI < 1;

(21)

where xf:o:SI � %f:o:
SI =%

f:o:
rad . According to the definition of the

DM self-interaction energy density, Eq. (21) translates into
the following constraint on the DM self-interaction
strength:

mSIffiffiffiffiffiffiffi
�SI

p ¼
ffiffiffiffiffiffi
30

p 	 10:75ffiffiffiffiffiffiffiffi
xf:o:SI

q
�3

Tf:o:

gf:o:
1=2

eff

gWDM

gWdec
th eq

exp

�
�WDM

TWDM

�

¼ xf:o:
�1=2

SI

3
ffiffiffiffiffiffi
30

p 	 10:75

8�2 	 3 10
11

m2
Pl

Tf:o:

gf:o:
1=2

eff

H2
0�

0
DM

T3
0

F0
WDM

mWDM


 1:70	 106 eV2 	�0
DMh

2
0

0:1143

Tf:o:=879 keV

ðxSI=0:279Þ1=2
F0
WDM

mWDM

:

(22)

For the second equality we have used the relation between
the parameters describing the WSIDM particle properties
according to Eq. (15).

A robust upper limit on the primordial 4He abundance
inferred from observations is (2� uncertainty, from
Ref. [47])

YP < 0:255: (23)

This implies a constraint on the DM self-interaction energy
density contribution at the freeze-out of the neutron to
proton number ratio (see Appendix B) as

xf:o:SI < 0:279: (24)

The resulting constraint on the DM self-interaction
strength according to Eq. (22) is shown in Fig. 5. The
grey shaded region is ruled out by the allowed additional
energy density contribution of DM self-interactions at the
freeze-out of the neutron to proton number ratio. The limit
on the self-interaction strength scales inverse proportional
to the SIDM particle mass. Even an additional energy
density contribution of DM self-interactions of the strength
of the strong interaction (mstrong=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�strong

p � 100 MeV) is

consistent with the primordial element abundances.
If we associate with the vector meson exchange interac-

tion a cross section given by

�SI 
 s
�2
SI

m4
SI

; (25)

where s ¼ 4E2
SIDM in the center of momentum frame, with

ESIDM � TSIDM (�mSIDM) as the relativistic (nonrelativ-
istic) single-particle energy, Fig. 6 shows the ‘‘late uni-
verse’’ constraints on the dark matter collisional cross
section as discussed in Sec. I, comparable with the con-
straint on the DM self-interaction strength from the halo
structure of Ref. [48]. Note that the constraints on
�SI=mSIDM are valid only if all DM is self-interacting
(F0

WDM ¼ 1), whereas our constraint on the DM self-
interaction strength via primordial nucleosynthesis has a
trivial dependence on the relative amount of SIWDM
(mSI=

ffiffiffiffiffiffiffi
�SI

p / F0
WDM).

FIG. 5 (color online). Constraint on the DM self-interaction
strength according to Eqs. (22) and (24) by the permitted energy
density at freeze-out of the neutron to proton number ratio as
kickoff of the primordial nucleosynthesis.

FIG. 6 (color online). Constraint on the DM self-interaction
strength depending on the SIDM particle mass for two different
relative amounts of SIWDM according to Eqs. (22) and (24),
together with the proposed ranges [20,24,25] of the DM colli-
sional cross section, for the case that all DM is self-interacting
(F0

WDM ¼ 1) according to Eq. (25).
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IV. DARK MATTER DECOUPLING

Chemical decoupling occurs when the expansion rate of
the universe exceeds the dark matter annihilation rate

�A ¼ nDMh�Avi; (26)

where h�Avi is the thermally averaged product of the total
DM annihilation cross section and the relative velocity of
the annihilating DM particles. The expansion rate of the
universe is determined by the dominant energy density

contribution (H / %1=2). In the standard model DM decou-
pling takes place in a radiation dominated universe. In an
epoch prior to radiation domination when the WDM self-
interaction energy density contribution dominates (Fig. 1),
DM decoupling can occur during this self-interaction
dominated era.

A. Self-interacting warm dark matter

In the case of thermal WDM relics the DM particles are
relativistic at decoupling and their annihilation rate is
therefore �WDM

A ¼ nWDM�
WDM
A . In a universe that is domi-

nated by the WDM self-interaction energy density contri-
bution, also the expansion rate is proportional to the
SIWDM particle density [%SI / n2WDM, Eq. (9)], so that
for �A ¼ H the WSIDM annihilation cross section is
independent on the particle parameters but determined by
the elastic self-interaction strength:

�WDM
A ¼

�
8�

3

�
1=2

m�1
Pl

ffiffiffiffiffiffiffi
�SI

p
mSI


 7:45	 10�7 	 100 MeV

mSI=
ffiffiffiffiffiffiffi
�SI

p �weak: (27)

This dependence of the WSIDM annihilation cross section
on the elastic self-interaction strength is shown in Fig. 7.

The annihilation cross section is given here in units of the
cross section for weak interactions, which is defined as

�weak � T3
0

m3
PlH

2
0


 3:18	 10�12 GeV�2


 1:24	 10�39 cm2: (28)

One notes that the WSIDM annihilation cross section is
rather small for reasonable (elastic) interaction strengths
(�WDM

A � �weak). Hence, WSIDM decoupling in a self-
interaction dominated universe reproduces naturally and
consistently the ‘‘superweak’’ inelastic coupling between
the WSIDM and baryonic matter, required in Sec. III A to
obtain typical WDM particle masses of 1–10 keV. Our
analysis of SIDM decoupling in a self-interaction domi-
nated universe complies with the qualitative statement of
Ref. [49] ‘‘that the elastic scattering cross section cannot
be arbitrarily small given a nonvanishing inelastic cross
section.’’

B. Collisionless cold dark matter

For a CDM species the thermally averaged product of
the total DM annihilation cross section and the relative
velocity between the annihilating DM particles is given
according to Maxwell-Boltzmann statistics by

h�Avi ¼ �CDM
A

4ffiffiffiffi
�

p
�

T

mCDM

�
1=2

: (29)

Hence, the conditional equation for the decoupling of
collisionless CDM in a universe dominated by the self-
interaction energy density contribution of SIWDM reads

�CDM
A

�
mCDM

TCdec

��1=2 ¼
ffiffiffi
8

3

s
�

4mPl

nCdecWDM

nCdecCDM

ffiffiffiffiffiffiffi
�SI

p
mSI

: (30)

The WDM particle density is that of a decoupled, relativ-
istic free Boltzmann gas. If one inserts for the CDM
particle density the particle density of a nonrelativistic
particle species, one arrives at

mCDM

TCdec

exp

�
�mCDM

TCdec

�
¼

ffiffiffi
3

p
�3=2mPl

4	 3 10
11

H2
0�

0
DM

T3
0

gCdecth eq

�CDM
A

	 F0
WDM

gCDMmWDM

ffiffiffiffiffiffiffi
�SI

p
mSI

: (31)

If one takes for the CDM particle density the decoupling
particle density according to its today’s relic density
[Eq. (13) for the CDM component], one gets

�CDM
A

�weak

¼ 8

ffiffiffi
2

3

s
m2

Pl

H2
0�

0
DM

T3
0

�
mCDM

TCdec

�
1=2 F0

WDM

1� F0
WDM

mCDM

mWDM

	
ffiffiffiffiffiffiffi
�SI

p
mSI

: (32)

While in a radiation dominated universe the CDM annihi-

FIG. 7 (color online). Constraint on the WSIDM annihilation
cross section depending on the elastic self-interaction strength,
in the case of WSIDM decoupling in a self-interaction domi-
nated universe, according to Eq. (27).
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lation cross section depends logarithmically on the CDM
particle mass, we find that �CDM

A is proportional to mCDM

when CDM decoupling occurs in a self-interaction domi-
nated universe. Furthermore, a larger elastic self-
interaction strength implies a higher expansion rate, so
that the annihilation cross section has to be larger, in order
that the CDM fits its particle density today. One can solve
Eqs. (31) and (32) iteratively for a chosen parameter set of
DM particle parameters. The correlation between the an-
nihilation cross section of collisionless CDM and the self-
interaction strength of elastic WDM self-interactions is
shown in Fig. 8.

The value of mSI=
ffiffiffiffiffiffiffi
�SI

p
is bounded below by constraints

from primordial nucleosynthesis according to Eqs. (22)
and (24). The upper limit of mSI=

ffiffiffiffiffiffiffi
�SI

p
comes from requir-

ing a self-interaction dominated universe at CDM decou-
pling (%Cdec

SI > %Cdec
rad ). This condition implies rather strong

elastic WDM self-interactions, which result in large colli-
sionless CDM annihilation cross sections, exceeding con-
siderably the cross section of the weak scale. This is in
contrast to what is called ‘‘WIMP miracle’’ in the standard
model, the fact that a CDM particle with a mass around
100 GeV fits to today’s DM relic density with an inelastic
cross section of the weak scale. The nonobserved decay of
a Z boson into two DM particles rules out CDM masses of
mCDM & mZ=2 
 45:6 GeV. The linear dependence of the
CDM annihilation cross section on the CDM particle mass
can also be recognized in Fig. 8. The ratio of CDM particle
mass and temperature at CDM decoupling becomes
slightly larger in a self-interaction dominated universe
compared to CDM decoupling in a radiation dominated
universe, depending on the CDM particle mass. We find
values ofmCDM=TCdec between 25 and 35 for the parameter
sets given in Table I.

If CDM decoupling occurs in a radiation dominated
universe, the natural scale of the velocity weighted mean
annihilation cross section is h�Avi � 3	
10�26 cm3 s�1=ð1� F0

WDMÞ [33,50]. For the decoupling
of collisionless CDM in a universe dominated by the DM
self-interaction energy density contribution this becomes

h�Avi ¼
�
8�

3

�
1=2

m�1
Pl

F0
WDM

1� F0
WDM

mCDM

mWDM

ffiffiffiffiffiffiffi
�SI

p
mSI


 2:77	 10�23 cm3 s�1 mCDM=10 TeV

mWDM=1 keV

	 1 MeV

mSI=
ffiffiffiffiffiffiffi
�SI

p F0
WDM

1� F0
WDM

: (33)

Hence, the degeneracy in the CDM particle mass is re-
moved and the natural scale of the CDM annihilation cross
section depends also on the CDM particle mass. All in all
the natural scale of CDM decoupling can be increased by
some orders of magnitude when CDM decoupling occurs
in a self-interaction dominated universe, depending on the
elastic WDM self-interaction strength (see Fig. 10).
Interestingly enough, such boosted CDM annihilation
cross sections are able to explain the high energy cosmic-
ray electron-plus-positron spectrum measured by Fermi-
LAT and the excess in the PAMELA data on the positron
fraction (e.g. [37,38]; see Fig. 11). A general upper limit on
the DM annihilation cross section is set by the unitarity
bound. For s-wave dominated annihilation this is [49,51]

h�Avi � 4�

m2
CDMv

: (34)

Together with the natural scale of the CDM annihilation
cross section, the unitary bound sets an upper limit on the
CDM particle mass of thermal relics. For CDM decoupling

in a radiation dominated universe this is mCDM &

100 TeVð1� F0
WDMÞ1=2. If collisionless CDM decoupling

occurs in a self-interacting dominated universe, the unitar-
ity bound leads with the corresponding natural scale
[Eq. (33)] to the following limit of the thermal relic
CDM particle mass:

FIG. 8 (color online). Collisionless CDM annihilation cross
section in dependence of the elastic WDM self-interaction
strength according to Eqs. (31) and (32) for DM particle pa-
rameter sets given in Table I.

TABLE I. DM parameter sets shown in Figs. 8–10. Compared
to the reference set 1, we increase the CDM degeneracy factor
gCDM in set 2, the WSIDM particle mass mWDM in set 3, and the
relative amount of WSIDM F0

WDM in set 4 and decrease the

CDM particle mass mCDM in sets 5 and 6.

Set mCDM gCDM mWDM F0
WDM

1 10 TeV 2 1 keV 0.1

2 10 TeV 3 1 keV 0.1

3 10 TeV 2 10 keV 0.1

4 10 TeV 2 1 keV 0.9

5 100 GeV 2 1 keV 0.1

6 10 GeV 2 1 keV 0.1
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mCDM �
�
3�2

8

�
1=6

m1=3
Pl

�
mCDM

TCdec

�
1=6

	
�
1� F0

WDM

F0
WDM

�
1=3

m1=3
WDM

�
mSIffiffiffiffiffiffiffi
�SI

p
�
1=3

; (35)


 2:86	 1012 eV	
�
mWDM

1 keV

mSI=
ffiffiffiffiffiffiffi
�SI

p
1 MeV

�
1=3

	
�
mCDM

TCdec

�
1=6

�
1� F0

WDM

F0
WDM

�
1=3

: (36)

The resulting upper limit on the thermal relic CDM particle
mass for CDM decoupling in a self-interaction dominated
universe is shown in Fig. 9.

The maximum thermal relic CDM particle mass for
CDM decoupling in a self-interaction dominated universe
depends on the elastic WDM self-interaction strength and
on the DM particle parameters. The limit on mCDM is well
in the TeV range.

Another way to constrain the annihilation of DM is via
the appearance of thereby produced particles. Neutrinos
proved to be the most useful final state, since they provide a
stringent but conservative upper limit on the DM annihi-
lation cross section independent of branching ratios
[33,52]. Assuming s-wave dominated CDM annihilation
processes we can directly transfer the DM annihilation
cross-section limits from today’s neutrino signal to the
early universe CDM decoupling. Since our model contains
three ingredients, namely, warm dark matter, nonvanishing
elastic dark matter self-interactions, and larger cold dark
matter annihilation cross sections, which tend to lead to
less cuspy halo profiles, we use the Milky Way Halo
Average neutrino constraint of Ref. [52] to compare with
the predicted CDM annihilation cross sections when colli-

sionless CDM decoupling occurs in a self-interaction
dominated universe. Figure 10 shows the velocity weighted
mean CDM annihilation cross section for decoupling in a
self-interaction dominated universe according to Eq. (33)
together with the unitarity bound and neutrino bound for

FIG. 11 (color online). Thermally averaged product of the total
collisionless CDM annihilation cross section and the relative
velocity between the annihilating CDM particles in dependence
of the CDM particle mass for the DM particle parameter sets
given in Table II, according to Eq. (33). Also shown are as upper
limits the Halo Average neutrino bound of Ref. [52] (�b) and the
unitarity bound according to Eq. (34) (ub), as well as the 2�
contours for fits to Fermi (Fermi�) and PAMELA (PAM�) data
assuming annihilation only to�þ�� of Ref. [38] and the best-fit
lines to the PAMELA data for annihilations to eþe� (PAM e)
and WþW� (PAM W) of Ref. [53].

FIG. 9 (color online). Upper limit on the thermal relic CDM
particle mass from the unitarity bound depending on the elastic
SIWDM self-interaction strength for collisionless CDM decou-
pling in a self-interaction dominated universe for DM parameter
sets given in Table I, according to Eq. (35).

FIG. 10 (color online). Thermally averaged product of the total
collisionless CDM annihilation cross section and the relative
velocity between the annihilating CDM particles in dependence
of the elastic WDM self-interaction strength for the DM particle
parameter sets given in Table I, according to Eq. (33). Also
shown are as upper limits the unitarity bound (ub) and neutrino
bound (�b) for the chosen CDM particle masses.
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given CDM particle mass. One realizes that the combina-
tion of superstrong WDM self-interaction strengths to-
gether with very heavy CDM particle masses are ruled
out. With regard to the neutrino bound of the DM annihi-
lation cross section one should consider that it assumes that
all the DM is collisionless CDM, which is not the case in
our model with a much more weakly annihilating WDM
component, so that it sets very strong limits on the self-
interaction strengths.

Finally Fig. 11 displays the velocity weighted mean
CDM annihilation cross section for decoupling in a self-
interaction dominated universe according to Eq. (33) in the
common presentation as a function of the collisionless
CDM particle mass, together with the Halo Average neu-
trino constraint of Ref. [52], the unitary bound according to
Eq. (34), the 2� contours for fits to Fermi and PAMELA
data assuming annihilation only to�þ�� of Ref. [38], and
the best-fit lines to the PAMELA data for annihilations to
eþe� and WþW�, respectively, of Ref. [53].

V. STRUCTURE FORMATION

Now we want to study the impact of a self-interaction-
dominated epoch in the early universe on the evolution of
ideal fluid cosmological perturbations. We use uniform
expansion gauge (UEG) that is free of unphysical gauge

modes and has the two gauge invariant variables � and ĉ ,
which can be identified with the density contrast and a
quantity related to the fluid velocity in the subhorizon limit
(kph  H), respectively [54,55].

The system of general relativistic evolution equations in
UEG reads

�0
i ¼

3ðwi � c2siÞ
a

�i þ k

aH
ĉ i � 3ð1þ wiÞ

a
�; (37)

ĉ 0
i ¼

3wi � 1

a
ĉ i � c2si

k

aH
�i � ð1þ wiÞk

aH
�; (38)

� ¼ �
3
2 ð1þ 3c2sÞ

ð k
H
Þ2 þ 9

2 ð1þ wÞ�; (39)

where � is the density contrast,w ¼ p=% is the equation of
state, cs is the isentropic speed of sound, H is the confor-
mal Hubble parameter, k is the comoving wave number of
the mode (k ¼ kpha), and � is the perturbation of the lapse.

Primes denote derivatives with respect to the scale parame-
ter a. Equations (37) and (38) apply to each decoupled fluid
component i individually and the general relativistic ana-
logue of the Poisson equation (39) connects them. In
Eq. (39) the averaged quantities w ¼ P

ipi=
P

i%i, �¼P
ið%i�iÞ=Pi%i, and c2s ¼ P

iðc2si%i�iÞ=Pið%i�iÞ enter.
For a single fluid with w ¼ 1, corresponding according

to Eq. (9) to self-interaction domination, the analytic solu-
tion in the subhorizon limit (k=H  1) is given by

�SIðaÞ /a � ðAcosða2�3�=4ÞþBsinða2�3�=4ÞÞ; (40)

i.e. an oscillation with linearly growing amplitude as
shown by Ref. [55]. This is in contrast to density fluctua-
tions in standard CDM that can only grow logarithmically
during radiation domination in the early universe.
For self-interacting warm dark matter there are two

relevant damping scales, collisional self-damping (sd)
due to particle scattering at early times and free streaming
(fs) at late times when the WDM elastic self-interaction
rate �SI has dropped below the Hubble rate. These two can
be estimated via the expressions

l2sd 

Z tsdec

0

v2
WDMðtÞdt

�SIðtÞa2ðtÞ
; (41)

lfs 

Z tcollapse

tsdec

vWDMðtÞdt
aðtÞ ; (42)

as given, for example, in Refs. [56,57]. tcollapse denotes the

time of gravitational collapse, and the rms velocity of the
WDM particles is vWDM ¼ c ¼ 1. Equation (41) is only
valid as long as lsd � lfs, i.e. as long as the particles can be
treated as interacting. Any increase in the density contrast
in WSIDM produced at early times will be washed out at
later times either due to collisional self-damping or due to
an inevitable phase of free streaming after self-decoupling
(sdec).
In a mixed model of SIWDM and collisionless CDM the

picture can differ because the CDM component allows
some increase in density fluctuations to be stored. First
of all let us examine the solution to the Eqs. (37)–(39) for a
subdominant CDM component in a SIWDM background
(wCDM ¼ c2sCDM ¼ 0, w 
 wSI ¼ 1, c2s 
 c2sSI ¼ 1):

�0
CDM ¼ k

aH
ĉ CDM � 3

a
�; (43)

ĉ 0
CDM ¼ � 1

a
ĉ CDM � k

aH
�; (44)

� ¼ � 6

ð k
H
Þ2 þ 9

�SI: (45)

TABLE II. DM parameter sets shown in Fig. 11. Compared to
the reference set A, we increase the CDM degeneracy factor
gCDM in set B, the WSIDM particle mass mWDM in set C, the
relative amount of WSIDM F0

WDM in set D and the elastic WDM

self-interaction strength in set E and decrease it in set F.

Set mSI=
ffiffiffiffiffiffiffi
�SI

p
gCDM mWDM F0

WDM

A 1 MeV 2 1 keV 0.1

B 1 MeV 3 1 keV 0.1

C 1 MeV 2 10 keV 0.1

D 1 MeV 2 1 keV 0.9

E 1 keV 2 1 keV 0.1

F 100 MeV 2 1 keV 0.1
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The transition from superhorizon to subhorizon behavior
happens very quickly in a SIDM background since
k=H ¼ kph=H ¼ ða=aink Þ2, where aink is the scale parame-

ter at horizon entry. The terms proportional to � can be
dropped in the subhorizon limit (k=H  1) and the equa-
tions simplify further:

�0
CDM ¼ a

ain2k

ĉ CDM; (46)

ĉ 0
CDM ¼ � 1

a
ĉ CDM: (47)

The solution for ĉ CDM is easily found to be ĉ CDM ¼ C=a
with C being a constant. This then automatically yields the
solution to Eq. (46)

�CDM ¼ a � ðC=ain2k Þ þD; (48)

with D being a constant. Interestingly, this means that
subhorizon collisionless CDM density fluctuations will
also grow linearly during a SIWDM dominated phase in
contrast to a radiation dominated phase. Thus there will be
a region of enhanced fluctuations at low masses in the
matter power spectrum between the comoving wave num-
ber that is equal to the Hubble scale H eq at SIDM-
radiation equality and the wave number that corresponds
to the collisional self-damping scale k

eq
sd of SIDM at the

same moment. A quick estimate then yields the following
CDM transfer function: TðkÞ ¼ AeqðkÞ=AinðkÞ i.e. the ratio
of the amplitude of the CDM density fluctuation A with
wave number k at SIDM-radiation equality (eq) normal-
ized to the amplitude at horizon crossing (in):

TðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
k

H eq

s
; k

eq
sd > k >H eq: (49)

This results from the fact that in a SIDM background
modes become subhorizon more quickly since k=H /
a2 while each subhorizon CDM mode only grows as
�CDM / a. So while each subhorizon mode has increased
in amplitude by 1 order of magnitude, 2 additional orders
of magnitude in wave number have become subhorizon.
Therefore the spectrum is less steep than one might expect.

In Refs. [58,59] limits on the abundance of planet size
dark matter objects in the galactic halo via gravitational
lensing from the MACHO and EROS surveys are given.
These surveys are sensitive to dark matter objects down to
�10�7M�. In Fig. 12 we show the affected mass range of
collisionless CDM density fluctuations as a function of the
WDM elastic self-interaction strength mSI=

ffiffiffiffiffiffiffi
�SI

p
for two

different values of the SIWDM particle mass mWDM ¼
1 keV, 100 keV at �WDM=TWDM ¼ 0, and F0

WDM ¼ 0:1.
Also shown is the sensitivity limit of the MACHO and
EROS surveys. The shaded areas are limited to the left by
the requirement aSI radeq < aBBN [Eqs. (22) and (24)], which

also limits the largest structures that can be affected to
�1:4	 10�3M�. Using Eq. (49) this means in turn that

fluctuations on scales of 10�7M� are only enhanced by at

most a factor of �ð10�3=10�7Þ1=6 
 5. Therefore it is
unlikely that an observable overproduction of planet sized
objects could result from the proposed scenario. For most
of the parameter space the effect is far from being observ-
able with present small scale dark matter surveys. In the
limit of very weak WDM self-interactions the self-
damping length becomes very large and WSIDM can
become free streaming before SIDM-radiation equality
and any temporary small scale increase in the density
contrast gets damped away.
Note that elastic scattering processes between collision-

less CDM and standard model particles can contribute an
additional induced collisional damping scale until CDM
thermal decoupling, discussed e.g. in Refs. [54,56,60].

VI. CONCLUSIONS

In this paper we have analyzed constraints on an energy
density contribution of elastic dark matter self-interactions
%SI, characterized by the mass of the exchanged particle
mSI and the coupling constant �SI.
The scaling of energy densities implied that the self-

interaction contribution decreases as %SI / a�6 and thus
can only have a direct impact on the very early universe. As
the energy density scales with the number density squared
due to interactions, self-interacting dark matter has to be
warm in the case of thermal relics to give the correct
scaling behavior nSIDM / a�3. Note that this does not
rule out a second collisionless cold dark matter component.
We used today’s dark matter energy density and the

allowed radiation energy density during primordial nucleo-
synthesis to constrain the parameters characterizing the
warm self-interacting dark matter particle properties. The
dependence of the primordial 4He abundance on the dark
matter self-interaction energy density contribution at neu-
tron to proton number ratio freeze-out allowed one to

FIG. 12. Mass range of collisionless CDM density fluctuations
affected by a SIWDM dominated epoch for two values of the
SIWDM dark matter mass as a function of the self-interaction
strength at �WDM=TWDM ¼ 0 and F0

WDM ¼ 0:1.
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constrain the self-interaction strength mSI=
ffiffiffiffiffiffiffi
�SI

p
, which

depends inversely on the self-interacting dark matter par-
ticle mass (mSI=

ffiffiffiffiffiffiffi
�SI

p / 1=mWDM) but can be at least as

strong as the strong interaction scale (mSI=
ffiffiffiffiffiffiffi
�SI

p �
100 MeV). Furthermore, our constraint on the dark matter
self-interaction strength has a trivial dependence on the
relative amount of self-interacting warm dark matter
(mSI=

ffiffiffiffiffiffiffi
�SI

p / F0
WDM).

We also analyzed dark matter decoupling in a universe
dominated by the self-interaction energy density contribu-
tion. The annihilation cross section of warm self-
interacting dark matter �WDM

A is inverse proportional to
the elastic self-interaction strength (�WDM

A / ffiffiffiffiffiffiffi
�SI

p
=mSI)

and much smaller than �weak. The natural scale for the
annihilation cross section of a collisionless cold dark mat-
ter component �CDM

A exceeds the weak scale (�CDM
A >

�weak) and depends linearly on the particle mass mCDM

(�CDM
A / mCDM 	 ffiffiffiffiffiffiffi

�SI
p

=mSI). This casts new light on the

‘‘WIMP miracle’’ and coincides with the Fermi-LAT and
PAMELA data. The unitary bound and neutrino induced
constraints on the dark matter annihilation cross section
allowed one to disfavor the combination of superstrong
elastic warm dark matter self-interactions (mSI=

ffiffiffiffiffiffiffi
�SI

p
&

1 MeV) together with very heavy thermal relic cold dark
matter particle masses (mCDM � 10 TeV).

A relativistic analysis of linear perturbation theory re-
veals a linear growing solution � / a of self-interaction
dominated warm dark matter and also of collisionless cold
dark matter in a mixed model during self-interaction domi-
nation. However, only noncosmological scales (M &
10�3M�) can be enhanced and a small observable effect
could only be present with fine-tuned parameters.
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APPENDIX A: SELF-INTERACTION COUPLING
CONSTANT

The ansatz for the self-interaction energy density that we
have used in this work [Eq. (9)] is valid only when mSI >

5TSIDM. Once mSI=
ffiffiffiffiffiffiffi
�SI

p
is known, this can also be used as

a boundary condition on the coupling constant for given
TSIDM:

�SI > 25
�SI

m2
SI

T2
SIDM: (A1)

This condition has to be fulfilled at primordial nucleosyn-
thesis and at collisionless CDM decoupling for the two
component DM scenario. Figure 13 shows the correspond-
ing constraints on the self-interaction coupling constant for
the conservative assumptions Tf:o:

WDM ¼ Tf:o: and TCdec
WDM ¼

mCDM=ðmCDM=TCdecÞ with mCDM ¼ 10 TeV.
We see that a self-interaction dominated universe at

BBN imposes rather loose conditions on the coupling
constant (e.g. �strong > 1:93	 10�3), while collisionless

CDM decoupling requires exotic coupling constants (e.g.
�strong > 2:47	 108).

APPENDIX B: PRIMORDIAL NUCLEOSYNTHESIS

The following analytical calculations are based on
Refs. [61,62]. We assume that the freeze-out of the neutron
to proton number ratio occurs in a radiation dominated
universe, so that the DM self-interaction energy density
contribution does not exceed the radiation contribution:

%f:o:
tot ¼ %f:o:

SI þ %f:o:
rad ¼ ð1þ xf:o:SI Þ%f:o:

rad ; 0 � xf:o:SI < 1:

The modification of the total energy density implies a
change in the temperature-time relation, and thus the con-
ditional equation of the neutron to proton ratio freeze-out
temperature becomes

FIG. 13 (color online). Constraints on the coupling constant in
dependence of the DM self-interaction strength at primordial
nucleosynthesis and collisionless CDM decoupling, according to
Eq. (A1).

STIELE, BOECKEL, AND SCHAFFNER-BIELICH PHYSICAL REVIEW D 81, 123513 (2010)

123513-12



9:50

�
Tf:o:

�m

�
4 þ 4:63

�
Tf:o:

�m

�
3 þ 0:677

�
Tf:o:

�m

�
2

¼ gf:o:
1=2

eff ð1þ xf:o:SI Þ1=2: (B1)

gf:o:eff is the effective number of degrees of freedom contrib-

uting to the radiation energy density. According to the
discussion in Sec. III B gf:o:eff ¼ 11:275. Adopting the largest
possible energy density of radiation during BBN, we cal-
culate the most conservative limits on the self-interaction
energy density and hence self-interaction strength. The
freeze-out temperature without any self-interaction energy
density contribution—but with the maximum WDM parti-
cle contribution %f:o:

WDM ¼ 0:3%f:o:
� —is Tf:o:ðxf:o:SI ¼ 0Þ 


848 keV. Doubling the radiation energy density at neutron
to proton number ratio freeze-out, the freeze-out tempera-
ture would increase to 938 keV. The increase of the freeze-
out temperature by a nonvanishing DM self-interaction
energy density contribution at freeze-out results in an
increase of the relative neutron concentration at freeze-
out, which is given by

Xf:o:
n ¼

Z 1

0
exp

�
�g�1=2

eff ð1þ xSIÞ�1=2
Z y

0
½9:50x2 þ 4:63x

þ 0:677�
�
1þ exp

�
� 1

x

��
dx

�
dy

2y2½1þ coshð1yÞ�
:

(B2)

For a vanishing energy density contribution of DM self-
interactions the relative freeze-out neutron concentration is
Xf:o:
n ðxf:o:SI ¼ 0Þ 
 0:157, which would increase to 0.184 if

one doubles the radiation energy density. The number of
neutrons available for the primordial nucleosynthesis pro-
cesses depends on the time spent between the freeze-out
and the opening of the deuterium bottleneck. The moment
of the neutron concentration freeze-out (using the point in
time corresponding to the above defined freeze-out tem-
perature) in a radiation dominated universe is

tf:o: ¼
�

45

16�3

�
1=2

mPlg
f:o:�1=2
eff ð1þ xf:o:SI Þ�1=2T�2

f:o:: (B3)

The time corresponding to the temperature when the nu-
cleosynthesis processes effectively set in is given by

tbBBN ¼
�

45

16�3

�
1=2

mPlg
bBBN�1=2
eff T�2

bBBN (B4)

since the energy density contribution of the self-interaction
is vanishing by then (see the discussion in Sec. III B).
Because TbBBN ’ 73:7 keV the corresponding effective

number of relativistic degrees of freedom is gbBBNeff 

3:50, where we include the WDM particles as being still
relativistic. For relatively heavy WDM particles that de-
couple at a large number of degrees of freedom in thermal
equilibrium this does not necessarily be the case, but it is
again the right choice for a conservative constraint of the
self-interaction strength. With this input one can calculate
the relative neutron concentration at the effective begin-
ning of the nucleosynthesis [XbBBN

n ¼ Xf:o:
n expð��t=	nÞ]

and finally the expected primordial abundance of 4He
(YP ’ 2XbBBN

n ). The dependence of the primordial 4He
abundance on an additional energy density contribution
of DM self-interactions at freeze-out of the number ratio
of neutrons and protons is shown in Fig. 14. Without this
contribution it is YPðxf:o:SI ¼ 0Þ 
 0:241 and in the case of

twice the radiation energy density this value increases to
0.281.
The primordial 4He abundance inferred from observa-

tions is subject of systematic uncertainties (for a discussion
see Ref. [47]) but a robust upper limit on YP is YP < 0:255
(2� [47]). This implies a constraint on the DM self-
interaction energy density contribution at the freeze-out
of the neutron to proton number ratio of xf:o:SI < 0:279. Very
recently Refs. [63,64] determined the primordial 4He abun-
dance YP with a central value of 0.256, which underlines
the possibility of new physics beyond standard BBN.
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