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Deviations from general relativity, such as could be responsible for the cosmic acceleration, would

influence the growth of large-scale structure and the deflection of light by that structure. We clarify the

relations between several different model-independent approaches to deviations from general relativity

appearing in the literature, devising a translation table. We examine current constraints on such deviations,

using weak gravitational lensing data of the CFHTLS and COSMOS surveys, cosmic microwave

background radiation data of WMAP5, and supernova distance data of Union2. A Markov chain

Monte Carlo likelihood analysis of the parameters over various redshift ranges yields consistency with

general relativity at the 95% confidence level.
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I. INTRODUCTION

The nature of gravitation across cosmological ages and
distances remains a frontier of current knowledge as we try
to understand the origin of the cosmic acceleration [1,2].
Newly refined observations of cosmic structure [3,4] make
it possible to test the predictions of general relativity (GR)
for its influence on the growth of cosmic structure through
gravitational instability and the gravitational lensing de-
flection of light by that structure. Indications of a deviation
from GR would have profound consequences for cosmol-
ogy, as well as for fundamental physics.

To explore for new gravitational phenomena, it is useful
to parametrize the deviations from GR in the gravitational
field equations. A common approach is to introduce two
new parameters. The first parameter imposes a relation
between the two gravitational potentials entering
Newton’s gravitational law of acceleration and the
Poisson equation. These are equal in GR in the absence
of anisotropic stress but different in many theories of
modified gravity. The second parameter establishes a new
relation between the metric and matter through a modified
Poisson-Newton equation, which can be viewed as turning
Newton’s gravitational constant into an effective function
of time and space. Numerous realizations of these relations
have been put forward in the literature [5–18].

One motivation for our study is to attempt to relate these
disparate, but closely related, approaches. Furthermore,
many studies have focused on the ability of future mea-
surements to discriminate among various models and to
carry out parameter estimation [19–30], however there is
sufficient data at present to evaluate preliminary tests of
GR [31–37]. We concentrate here on current constraints,

which also allows us to examine a recent claim of a
possible departure from GR [38].
The main points of this article are thus to (1) clarify the

relation between different parametrizations and what the
degrees of freedom are in a consistent system of equations
of motion, (2) confront the parameters encoding deviations
from GR with current data to test the theory of gravity, and
(3) discuss which features of the data have the most sensi-
tivity to such a test and what astrophysical systematics may
most easily mimic a deviation.
In Sec. II we lay out the gravitational field equations in

terms of the metric potentials and matter perturbations and
compare several forms of parametrizations, giving a
‘‘translation table’’ between them. We illustrate in
Sec. III the influence of the parameters on the cosmic
microwave background (CMB) temperature power spec-
trum, the matter growth and power spectrum, and the weak
lensing shear statistics. Using Markov chain Monte Carlo
(MCMC) techniques, we then constrain the deviation pa-
rameters with current data in Sec. IV. We briefly discuss
astrophysical systematics and future prospects in Sec. V.

II. SYSTEMS OF PARAMETRIZING GRAVITY

The most accurate observations of the effects of gravity
have been made in the local Universe, e.g. within the Solar
System and in binary neutron star systems [39–42]. These
observations can be used to distinguish between various
theories of gravity through the parametrized post-
Newtonian (PPN) formalism [43,44]. The standard PPN
formalism introduces a set of constant parameters that take
on various values in different gravity theories. This, how-
ever, does not give a full description of possible deviations
from general relativity over cosmological scales.

PHYSICAL REVIEW D 81, 123508 (2010)

1550-7998=2010=81(12)=123508(11) 123508-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.123508


Recent interest in modified gravity has concentrated on
those theories that can serve as an alternative explanation
for the current period of accelerated cosmic expansion. In
order for modifications producing late-time acceleration on
cosmic scales to agree with local tests of gravity they must
contain length and/or time-dependent modifications, which
do not occur in the standard PPN formalism. Moreover, for
some theories the natural arena for the PPN formalism—
Solar System and binary neutron star system observa-
tions—may be less discriminating than cosmological tests
of gravity, given that the modifications are on large scales.
This has led to efforts to establish a parametrized formal-
ism that allows for meaningful comparison between modi-
fied gravity theories within a cosmological framework [5–
18], without assuming a specific model.

A. Degrees of freedom

Changes in the laws of gravitation affect the relationship
between the metric and matter variables. Let us explore the
degrees of freedom available to define this relation.
Restricting our attention to scalar degrees of freedom of
the gravitational field, the metric has only two physically
relevant scalar functions, or potentials, given by the line
element (in conformal-Newtonian gauge, adopting the no-
tation of [45])

ds2 ¼ a2½�ð1þ 2c Þd�2 þ ð1� 2�Þd~x2�; (1)

where a is the scale factor, � the conformal time, and x the
spatial coordinate. In addition to the metric potentials �
and c , perturbations to a perfect fluid introduce four addi-
tional scalar functions: density perturbations ��, pressure
perturbations �p, velocity (divergence) perturbations �,
and a possible nonzero anisotropic stress �.

The dynamics of any particular theory are then specified
when six independent relations between these six quanti-
ties are given. Further restricting attention to those gravity
theories that maintain the conservation of stress energy,
r�T�� ¼ 0, the resulting generalized continuity and Euler

equations give two scalar equations and the gravitational
field equations supply the remaining four [45].

Because the cosmic expansion shifted from deceleration
to acceleration only recently, since z < 0:5 [46], gravity
theories that account for this transition without any physi-
cal dark energy require a significant departure from GR at
late times. Consequently, nonrelativistic matter is the
dominant component of the cosmological fluid and so
�p ¼ �pm ¼ 0 and � ¼ �m ¼ 0. Hence, in these theories
the dynamically important equations consist of two, as yet
unspecified, gravitational field equations and the two equa-
tions of stress-energy conservation applied to matter,
which in Fourier space are given by

_�m ¼ ��m þ 3 _�; (2)

_� m ¼ �H�m þ k2c : (3)

In the above equations, �m � ��m= ��m with ��m the homo-
geneous part of the matter density, H � _a=a, the dot
denotes a derivative with respect to conformal time, and
k is the wave number. There still remains freedom in
setting the two gravitational field equations to close the
system, subject to the requirement that the theory ap-
proaches GR within the solar system.
The two field equations that can close the system in the

case of GR are

r2� ¼ 4	Ga2 ��m�m; (4)

c ¼ �; (5)

where

�m � �m þ 3H
k2

�m: (6)

In a wide variety of alternative theories of gravitation,
additional scalar degrees of freedommodify the strength of
Newton’s constant, and enforce a new relationship between
the potentials � and c . Therefore, one choice for the
modified field equations in Fourier space is

� k2
A�þ Bc

Aþ B
¼ 4	G�ð�; kÞ ��m�m; (7)

� ¼ 
ð�; kÞc ; (8)

where A and B are constants, and � and 
 are functions of
time and scale, which are still to be determined. As we will
see, there are many other choices that can be made for the
exact form of parametrization. These choices influence the
constraints and the correlations between those constraints
that particular observations give for a particular set of post-
GR parameters. We discuss some of the frameworks in the
next subsections.

B. $�CDM

We refer to the equations of motion used in [6,23,34,36]
as $CDM. In $CDM, the equations of motion for cosmic
perturbations are determined by enforcing the relation

c ¼ ½1þ$ð�; kÞ�� (9)

for the potentials arising from nonrelativistic matter, where
the departure from GR is controlled by the parameter$. In
practice, this is carried out by adding a source to the off-
diagonal space-space Einstein equation in order to simulate
a smooth transition from GR to modified gravity.
Next, requiring that the new gravitational phenomena do

not introduce a preferred reference frame distinguished by
a momentum flow, e.g. a � that would be attributed to a
dark fluid, the time-space Einstein equation is preserved,
whereby

� k2ð _�þH c Þ ¼ �4	Ga2ð ��þ �pÞ�: (10)

As discussed in [36], preserving the time-space Einstein
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equation along with the modification in Eq. (9) still results
in a correction to the GR Poisson equation. This can be
thought of as a consequence of the conservation of stress
energy and the related Bianchi identity as applied to the
modified gravitational field equations.

We now propose to extend the $CDM model, to incor-
porate a new parameter � that controls the modification to
the Poisson equation, i.e.

� k2� ¼ �ð�; kÞ4	Ga2 ��m�m: (11)

Procedurally, this equation replaces Eq. (10) for obtaining
the evolution of the gravitational fields. We call this new
parametrization $�CDM and note that in this parametri-
zation the time-space Einstein equation is generally modi-
fied, as opposed to in the $CDM parametrization. Note
that setting � ¼ 1 does not reproduce the original$CDM
model since there$ itself modifies the Poisson equation as
discussed above. This parametrization is consistent with
the conservation of large-scale curvature perturbations
following an argument made in Ref. [21]. They argue
that superhorizon curvature perturbations are conserved,
so long as the velocity perturbation � is of order ðk=H Þ2.
This can be seen to be true from Eq. (A3) presented in the
appendix of this work.

C. PPF linear theory

A parametrized post-Friedmann (PPF) framework of
linear fluctuations was introduced by [9,13] to describe
modified gravity models that yield cosmic acceleration
without dark energy. It captures modifications of gravity
on horizon, subhorizon, and nonlinear scales. Once the
expansion history is fixed, the model is defined by three
functions and one parameter, from which the dynamics are
derived by conservation of energy and momentum and the
Bianchi identities. Modifications to the relationship be-
tween the two metric perturbations are quantified by the
metric ratio

gða; kÞ � �� c

�þ c
: (12)

In the linearized Newtonian regime, a second function
fGðaÞ relates matter to metric perturbations via

� k2ð�þ c Þ ¼ 8	G

1þ fG
a2 ��m�m: (13)

The corresponding quantity that defines this relationship
on superhorizon scales is f� ðaÞ. The last quantity that

needs to be defined is c�, which determines the transition
scale from superhorizon to quasistatic behavior in the
dynamical equations (see [9,13] for details).

The PPF parameters can be directly related to the
$�CDM parameters as follows:

g ¼ � $

2þ$
; $ ¼ � 2g

1þ g
; (14)

fG ¼ 2

�ð2þ$Þ � 1; � ¼ 1þ g

1þ fG
: (15)

D. Gravitational growth index �G

Another way to close the system of equations is to
specify the evolution of one of the perturbed fluid or metric
variables. A standard choice is to determine a specific
evolution for �m through the gravitational growth index
�G introduced to parametrize deviations from general rela-
tivity in growth by [47]. This was partly tied to the metric
potentials in [48] but here we present a more complete
relation.
From Eq. (23) of [48] we see the key quantity is the

modification of the source term in the Poisson equation,
there calledQ. The second-order equation for the evolution
of the density perturbation arises from r2c , and there is
also a modification� allowed in the gravitational coupling
as in Eq. (11). In essence, r2c ! �k2ð1þ$Þ� ! ð1þ
$Þ�� 4	Ga2 ��m�m. Thus Q ¼ ð1þ$Þ�. The relation-
ship between $, �, and the evolution of �m is presented
rigorously here in Eq. (A5) (also see Sec. III B).
The gravitational growth index in Eq. (23) of [48] thus

relates to the $�CDM formalism through

�G ¼ 3ð1� w1 � ½ð1þ$Þ�� 1�=½1��mðaÞ�Þ
5� 6w1

(16)

! 6

11

�
1�$0 þ�0

2

�m

1��m

�
: (17)

Note w1 is an effective high redshift equation of state
defined in terms of how the matter density in units of the
critical density, �mðaÞ, deviates from unity (specifically,
w1 ¼ ½d ln�mðaÞ=d lna�=½3ð1��mðaÞ�). In the last line
of Eq. (17) we specialize to a �CDM expansion history, as
used throughout this article, sow1 ¼ �1, and to the ansatz
for $ and � used later in Eqs. (18).

E. Relating parametrizations

The discussion above is by no means an exhaustive list
of the parametrizations proposed in the literature to de-
scribe departures from GR. Many more exist, and while all
of them have in common a relatively simple parametriza-
tion of the departure from � ¼ c , they all differ in how
they close the system of equations. Some, like $�CDM,
modify the Poisson equation directly. Others, like$CDM,
retain one of the Einstein equations.
Table I lists some of the most common parametrizations

and presents a useful translation between their post-GR
parameters and $�CDM. With the possible exception of
the parametrization from [38] (see next paragraph and
footnote 1), all of the parametrizations presented are pre-
sumed to leave the equations of stress-energy conservation
unmodified.
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Since none of these model-independent approaches start
from an action, one must be careful to trace the system of
equations to make sure that the phenomenological modifi-
cations do not under- or over-specify the system1 and do
satisfy stress-energy conservation. Another approach in-
volves testing consistency relations valid in GR between
observables; see for example [7,22,49].

III. INFLUENCE OF GRAVITY MODIFICATIONS
ON OBSERVATIONS

The behaviors of the CMB, weak lensing, and matter
power spectrum in the $CDM scenario have been dis-
cussed in [34,36]. The consequences are slightly different
when we introduce � in the $�CDM parametrization. In
the case that $< 0 and �< 1, both lead to an amplifica-
tion of low-‘ CMB power;$> 0 and�> 1 both suppress
it. This allows us to play the two parameters against each
other, combining positive (negative) values of $ with
smaller (larger) values of � to generate non-GR power
spectra that appear to be in better agreement with the data
than those obtained within the confines of the $CDM
model. That either parameter can enhance or suppress
power results in a degeneracy between $ and � in any
multiparameter exploration of the data. Observations that
can break this degeneracy therefore become vital to diag-
nosing departures from GR.

For the purposes of the discussion in this section, wewill
assume the redshift dependences

$ ¼ $0a
3 � ¼ 1þ�0a

3: (18)

Note this form can be motivated by the scaling argument in

[48], that the deviations in the expansion history should
keep pace with the deviations in the growth history.
Otherwise one tends to either violate GR at early times
(causing difficulties for primordial nucleosynthesis and the
CMB) or does not achieve acceleration by the present. In
addition to the CMB, we also discuss the effects of our
post-GR parameters on the matter power spectrum and on
weak lensing statistics.

A. CMB anisotropy spectrum

We modified versions of the public Boltzmann codes
CMBFAST [50] and CAMB [51] to evolve the cosmological

perturbations according to parametrization (18) and the
equations of motion presented in Sec. II B. We used these
codes to generate examples of CMB anisotropy and matter
power spectra for different values of$0 and�0; in order to
focus on the non-GR effects, in this section all other
cosmological parameters are set to their WMAP5 maxi-
mum likelihood values [52]. Figure 1 shows the resulting
CMB anisotropy spectra. As in [34] for $CDM, negative
values and extreme positive values of the post-GR parame-
ters amplify the power in the low-‘ multipoles. Moderate
positive values suppress the low-‘ power. This is a mani-
festation of the integrated Sachs-Wolfe (ISW) effect. The
high-‘ power is unaffected.
The ISW effect arises when time evolving � and c

potentials cause a net energy shift in CMB photons. The
CMB ISW power is sourced as

Cl � ð _�þ _c Þ2: (19)

As was discussed in [36], the evolution of � and c
potentials in the Universe is a competition between gravi-
tational collapse trying to deepen the potentials and cosmic
expansion trying to dilute them. Under GR with a cosmo-
logical constant, the expansion wins and the source term

for the ISW _�þ _c > 0 (note �, c < 0). By weakening

TABLE I. Translation between several different parametrizations of modified gravity and the $�CDM framework.

Parametrization Parameter relating � and c Closing parameter Comments

$CDM [6,34,36] $ Retains Eq. (10)

Curvature [12] �BZ ¼ 1
1þ$ Conserves curvature perturbations � Effectively retains Eq. (10).

See appendix in Ref. [34]

PPF [9,13] g ¼ � $
2þ$ fG ¼ 2

�ð2þ$Þ � 1 Includes scale-dependent

transition between super- and

subhorizon regimes

MGCAMB [20,21]

cf. [7,8,10]

�MGC ¼ 1
1þ$


 ¼ 1
1þ$

�MGC ¼ �ð1þ$Þ
~Geff ¼ �ð2þ$Þ

2

Modifies Poisson equation

with c instead of � in Eq. (11)

Subhorizon [10] B
��

¼ 1þ$ �� ¼ �

Growth index [47] Additional �G ¼ 6
11 ð1� $0þ�0

2
�m

1��m
Þ Only defines ð$;�Þ ! �G

not inverse

Decoupled [38] 
 ¼ 1
1þ$ �G ¼ lnð _�m=H�mÞ

ln�mðaÞ Over-specified (also

enforces Poisson equation)

1A careful reading of [38] reveals that there four unknowns—
�, c , �, and �—are evolved with five equations—the continuity
equation (2), Euler equation (3), Poisson equation (4), and the
post-GR parameter equations � ¼ 
c and _�m ¼ H�m�

�G
m .

Thus, the system is over-specified.
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gravity, $0 or �0 < 0 tilts the competition even more
toward cosmic expansion, hastening the dilution of �

and c , causing _�þ _c to be even larger, and amplifying
the ISWeffect. Positive$0 or�0 amplifies gravity—either
by directly deepening the Newtonian potential c so that
mass is more attractive ($0 > 0 case) or by causing �m to
source a deeper potential through the modified Poisson
equation (�0 > 0 case)—so that the dilution due to cosmic
expansion is slowed, leading to a weaker ISWeffect. In the
case of extremely positive $0 or �0 the ISW deepening is

so pronounced that the sign of _�þ _c is reversed, but since
the ISW effect in the power spectrum depends on the
square, the ISW effect is again amplified. High-‘ power
is unaffected because the ISW is a subdominant effect on
those scales.

Figure 2 more clearly illustrates this bimodal behavior
by plotting the change in quadrupole power relative to GR

as a function of the post-GR parameter, varying one at a
time (compare Fig. 4 in [36]). The blue, dot-dashed curve
is generated by varying$0 and holding fixed �0 ¼ 0. The
red, dashed curve is generated by varying �0 and holding
fixed $0 ¼ 0. Note that the CMB appears to be more
sensitive to differing values of �0 than of $0. The black,
solid curve is generated by varying $0 and compensating
for this by setting �0 ¼ 2=ð2þ$0Þ � 1. This choice is
motivated by the alternative definition of the unmodified
Poisson equation

� k2ð�þ c Þ=2 ¼ 4	Ga2 ��m�m (20)

(see further discussion in the next section). We see that, for
a wide range of values of$0, complementary ($0 > 0 and
�0 < 0 or vice versa) values of �0 cancel out much of the
late-time ISW effect found in Fig. 1, as alluded to in the
introduction to this section.

B. Matter power spectrum and weak lensing statistics

We investigate the power spectrum of the matter pertur-
bations �m as a function of wave number k in Fig. 3 for the
same set of models. Again the most dramatic post-GR
effects occur at large scales. This is not due to any scale
dependence in the modifications (we took $ and � to be
independent of k), but simply from the k2 factor in the
modified Poisson equation (11).
For the weak lensing shear correlation function, as for

many other observables, we need to know how overden-
sities grow with scale factor. In the case of GR and$CDM,
this is a relatively simple proposition since the growth of

-1 0 1 2 3 4
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ϖ0 = x, µ0=0
ϖ0 = 0,  µ0 = x
ϖ0=x, µ0=2/(2+ϖ0)−1

FIG. 2 (color online). The change in quadrupole power relative
to the value in GR is plotted as a function of $0 and �0. The
blue, dot-dashed curve shows the effects of varying $0 with
fixed �0 ¼ 0. The red, dashed curve shows the effects of varying
�0 with fixed$0 ¼ 0. One can mimic the unmodified GR CMB
spectrum over a much wider range of post-GR parameter values
by simultaneously varying $0 and �0 in opposite directions, as
shown in the black, solid curve using �0 ¼ 2=ð2þ$0Þ � 1.
The horizontal dotted line denotes perfect agreement with GR.
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FIG. 1 (color online). CMB anisotropy spectra are plotted as a
function of the parameters $0 and �0 in Eqs. (18). As in [34],
the post-GR effects all occur in the low-‘ multipoles. The CMB
anisotropy is more sensitive to variations in �0 than to variations
in $0. See Fig. 2 for more on this point and on varying $0 and
�0 simultaneously.
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overdensities �m is scale-independent after decoupling.
As just discussed, this no longer holds for $�CDM. It is
possible, using energy conservation and Eqs. (9) and (11),
to derive a second-order differential equation for the evo-
lution of �m. We show the derivation and result in the
Appendix, and focus here on the parameter dependence.
With the exception of one term on the middle line of

Eq. (A5), all of the terms containing metric potential
modifications to general relativity (the � and $ terms)
are multiplied by a factor ofH 2=k2. Hence, we expect that
the strongest departures from GR predictions occur for
small values of k. Since the most important aspect for
comparing modifications against observations is the
change in shape of the power spectrum, rather than its
normalization, in Fig. 3 we normalize the power spectrum
to agree with PGR at large k. The strongest deviation in
shape indeed occurs for k & 0:002 Mpc�1. The one excep-
tional term in Eq. (A5) is precisely the ð1þ$Þ� term
discussed in Sec. II D entering the gravitational growth
index �G formalism, and this will dominate for large values
of k, giving a scale-independent enhancement (suppres-
sion) for positive (negative) $0 or �0.
Figure 4 plots 
E, the E mode of the weak lensing shear

two-point correlation function (Eq. (8) of Ref. [4]), nor-
malized to the value under GR as a function of angular
separation on the sky. For the angular scales of interest, the
effects of changing �0 and $0 principally manifest them-
selves as a renormalization of 
E. This is because the scales
plotted are much smaller than the scales (k�H ) at which
shape-changing effects manifested themselves in Fig. 3.
Nonlinear power is treated using the usual subroutine
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FIG. 4 (color online). We plot the ratio of the E mode of the
weak lensing shear two-point correlation function (Eq. 8 of [4])
to the same statistic calculated in GR, with all parameters but
either $0 or �0 fixed, to see the influence of the non-GR
parameters. For the most part, post-GR parameters serve to
renormalize the correlation function. As with the CMB anisot-
ropy and matter power spectra, the effect is more sensitive to
changes in �0 than to changes in $0.
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FIG. 3 (color online). We plot the matter power spectrum
(normalized to k ¼ 1 Mpc�1) generated by varying the parame-
ters $0 and �0. Unlike under $CDM [34], even our scale-
independent parametrization has scale-dependent effects due to
the k2 factor in the Poisson equation. The bottom panel shows
the residuals of the top panel, i.e. the deviation relative to GR
when varying $0 (the �0 case looks similar), to highlight the
scale-dependent regime at low-k and scale-independent regime
at high-k.
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halofit based on the semianalytic fitting scheme presented
in Ref. [53]. While we acknowledge that this is not strictly
appropriate for modified gravity, we have no reason to
think that the effect will be substantial for reasonable
values of �0 and $0. Furthermore, the constraints pre-
sented below in Sec. IV appear to principally derive from
effects at the low-k, rather than the high-k, limit.

IV. CONSTRAINTS ON DEVIATIONS FROM GR

We now examine constraints imposed by current data on
deviations from GR, allowing a large set of cosmological
parameters to vary simultaneously. The investigation in-
cludes two different functional dependences for the gravi-
tational modification parameters $ðaÞ and �ðaÞ. The first
model for the post-GR parameter form does not assume a
particular redshift dependence but allows $ and � to take
independent values in each of three redshift bins. (In fact,
we slightly smooth the transitions so as to avoid infinities
in the derivatives entering the ISW effect, with a transition
modeled by an arctan form of width �a ¼ 0:01.) That is,
�¼ f1þ�0a;1þ�0b;1þ�0cg and $¼f$0a;$0b;$0cg
for f2< z � 9; 1< z � 2; z � 1g. We assume that $ and
� are scale-independent. For z > 9 we assume that differ-
ences from GR are negligible so � ¼ 1 and $ ¼ 0.

We test this theory against the data using a modified
version of the public MCMC code CosmoMC [51,54,55]
with a module (first presented in [56]) to incorporate the
COSMOSweak lensing tomography data [3] and data from
the CFHTLS survey [4]. We also include WMAP5 CMB
data [57–59] and Union2 supernova distance data [60]. In
all cases, we use the full covariance matrix (including
systematics in the Union2 case) provided by the group
who collected and initially analyzed the data. In addition
to the post-GR parameters, the parameter set includes
�bh

2, �ch
2, � (the ratio of the sound horizon to the

angular diameter distance to last scattering), � (the optical
depth to reionization), ns, the amplitude of the SZ effect,
and the amplitude of primordial scalar perturbations. We
assume that w ¼ �1 for our effective dark energy, that
�K ¼ 0, and that there are no massive neutrinos contrib-
uting to dark matter. Each weak lensing data set requires 3
nuisance parameters. Thus, we integrate over a total of up
to 16 parameters, depending on the data sets used and the
parametrization of � and $ chosen. Under the binned
parametrization, we vary � or $ but not both simulta-
neously, which would require 19 independent parameters.
This choice was made both for convenience and to repro-
duce the analysis of Ref. [38]. Additional MCMC calcu-
lations done in which both � and $ were allowed to vary
in all 3 bins also returned results consistent with GR in the
presence of a cosmological constant.

Figure 5 shows the marginalized probabilities on the
$0a;b;c parameters for runs in which �0a;b;c ¼ 0, so that

� ¼ 1 and the Poisson equation defined as in Eq. (4)
remains valid at all redshifts. Figure 6 shows similar con-
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FIG. 5 (color online). Marginalized probabilities of the post-
GR parameters$0a;b;c defined in high, medium, and low redshift

bins, respectively. The parameter � has been fixed to � ¼ 1,
consistent with general relativity. Green (dot-dashed) curves are
constraints determined from the WMAP 5 yr [57] and supernova
Union2 [60] data sets only. Red (dashed) curves also include the
COSMOS weak lensing tomography data [3]. Black (solid)
curves use measurements of the aperture mass taken from the
CFHTLS weak lensing survey [4] in addition to COSMOS,
WMAP5, and Union2.
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straints on �0a;b;c in the case where $0a;b;c ¼ 0. Our

results in all cases are consistent with GR within the
95% confidence limit, although they do allow the possibil-
ity of departures from GR with $0 or �0 � 0:1.

Constraints on the usual cosmological parameters are
largely unaffected by the introduction of � and $. Mean
values shift by less than �1� and marginalized uncertain-
ties are comparable between GR and non-GRMCMC runs.
The only notable exceptions are �8 and�ch

2 (the physical
density of cold dark matter in the Universe), whose margi-
nalized uncertainties increase by up to a factor 2.3 upon the
introduction of post-GR parameters. This is consistent with
the observation that � and $ principally modify the
growth history of cosmological perturbations.

Figure 7 plots the two-dimensional confidence contours
for the post-GR parameters $0, �0 in the case of redshift
dependence as in Eqs. (18). Note that since this parametri-
zation has the strongest effect at low redshift, the greater
sky area of CFHTLS has more leverage in constraining the
parameters than the greater depth of COSMOS. For the
binned parametrization, the constraints from MCMC runs
with WMAP5þ Union2þ CFHTLS (no COSMOS) were
indistinguishable from those including COSMOS as well,
supporting the supposition that the sky coverage of
CFHTLS is, for current data, more important than the
redshift depth of COSMOS in constraining the post-GR
parameters.

Table II presents the 95% constraints on our post-GR
parameters for all of the MCMC calculations considered in
Figs. 5–7. All of the results are consistent with GR.

We also note that in Fig. 7 the contours exhibit the same
degeneracy implied by Fig. 2. Apparently, the probe of

growth provided by current weak lensing data is not able to
add much more leverage to the CMB data. This can also be
seen in the lack of significant change in the width of the
probability distributions in Fig. 5 when adding weak
lensing.
The degeneracy illustrated in Fig. 2 is plotted as the

black, solid curve in Fig. 7. The agreement with the like-
lihood contours is quite interesting, calling to mind the
discussion in Sec. III A about parameter covariances. This
arose from the observation that an unmodified Poisson
equation (20) that relates the sum of the two metric poten-
tials to the underlying density fluctuations leaves the large-
scale CMB predictions nearly unchanged when varying the
ratio of the metric potentials, i.e.$. That degeneracy is due
to the fact that the large-scale CMB predictions depend on
the sum of the two metric potentials [cf. Equation (19)]. If
this sum is directly related to the underlying density per-
turbation then the only effect$ can have on the large-scale
CMB is through its effect on the evolution of �m; by
contrast, if the Poisson equation is of the form of
Eq. (11), where only one potential is related to �m, then
$ also appears in a multiplicative factor. Thus the specific
approaches to modifying gravity give distinct relations
between the parameters and the observables.
For observations that depend on the combination�þ c

there will be a degeneracy along the curve [see Eqs. (13)
and (15)]

� ¼ 2

2þ$
: (21)
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FIG. 6 (color online). Marginalized probabilities of the post-
GR parameters �0a;b;c defined in high, medium, and low redshift

bins, respectively. The parameter $ has been fixed to $ ¼ 0,
consistent with general relativity. All curves show constraints
derived using data from the WMAP 5 yr release [57], supernova
Union2 set [60], and COSMOS [3], plus CFHTLS [4] weak
lensing data.

FIG. 7 (color online). Confidence contours of 68% (inner) and
95% (outer) for modified gravity parameters are plotted in the
$0-�0 plane (all other parameters marginalized), where $0 and
�0 are defined as in Eq. (18). Blue (background) contours use
the WMAP 5 yr, supernova Union2, and COSMOS data sets.
Red (foreground) contours use WMAP 5 yr, supernova Union2,
COSMOS, and CFHTLS data. The black curve plots the degen-
eracy direction �0 ¼ 2=ð2þ$0Þ � 1 from Fig. 2. The yellow x
denotes GR parameter values.
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We find numerically that this degeneracy applies approxi-
mately to both large-scale CMB as well as weak lensing
observations, even though both measurements have a fur-
ther dependence on $ and � through the growth factor
[cf. Equation (17)]. The relation in Eq. (21) gives the black,
solid curve in Fig. 7 and indeed is quite close to a degen-
eracy in the constraints.

V. DISCUSSION

Testing general relativity on cosmological length scales
is an exciting prospect enabled by improvements in data.
To interpret such a test requires an approach to parame-
trizing modifications from GR, similar to the PPN method
for tests within the Solar System and using binary pulsars,
but appropriate for cosmic scales. Numerous parametriza-
tions have been suggested and we compare and, in some
cases, unify them through a ‘‘translation’’ table. These
approaches can effectively be interpreted within one for-
malism with two parameters $ and � (an extension of the
previous $CDM scenario).

In this generalized $�CDM model, even if the two
parameters characterizing modifications to gravity are
scale-independent we find effects that are visible in the
large-scale structure matter power spectrum, and thus in
weak lensing shear correlations, that depend on scale. We
give quantitative results for the effects of the modifications
on the cosmic microwave background temperature power
spectrum, the growth of matter density perturbations and
the density power spectrum, and the weak lensing statis-
tics, along with analysis of the physical basis of the effects.
On large scales in the density power spectrum, values of$
or � above their GR values cause suppression of power
while leading to enhancement on smaller scales.

We confront the modifications to GR with current cos-
mological observations, analyzing CMB (WMAP 5 yr),
supernovae (Union2), and weak lensing (CFHTLS and
COSMOS) data. Employing two different forms of depen-
dence of the modifications on redshift, we find no evidence
at 95% confidence level for such extensions to GR, regard-
less of the combinations of data used. Note that this holds
for both the data employed by [38] (which used an over-
specified system of equations in that analysis), and a more
comprehensive set of observations.

We also verify the trade-off between $ and � predicted
analytically. Such covariance leads to an interesting degen-
eracy for measurements depending on the sum of the
metric potentials, although growth measurements depend
on a different combination. Since large-scale CMB and
weak lensing depend on the sum of the metric potentials,
one could consider the Poisson equation for the sum, and
here the key parameter is the effective Newton constant
~Geff ¼ �ð2þ$Þ=2. The matter density growth factor is
primarily sensitive to extensions beyond GR in terms of the
factor � ¼ �ð1þ$Þ. These parameters still appear to
have covariance, however, in our initial explorations.
Overall, this suggests that exploration of gravity through
cosmological measurements requires a sufficiently flexible
theory space and a diverse set of observations.
As seen from Figs. 2–4, robust identification of devia-

tions from GR will require measurement over a large range
of scales. Well below the Hubble scale, the modifications
we have examined become scale-independent and so can
become confused with shifts in the fiducial amplitude (�8),
galaxy bias, or normalization errors from photometric
redshift estimation of weak lensing source densities.
These will need to be addressed to have confidence in
claims of any detected deviation, as will allowance for
expansion histories different from �CDM.
Finally, future data, including observations sensitive to

growth and the growth rate, and those sensitive to the
expansion history, will be essential to providing true tests
of the framework of gravity on cosmic scales.
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APPENDIX: DENSITY PERTURBATION GROWTH

We here obtain the analog of the GR second-order
differential equation for matter density perturbation evolu-
tion, working in the conformal Newtonian gauge. After
matter-radiation decoupling, conservation of energy gives

_�m ¼ 3 _�� �m; (A1)

_� m ¼ �H�m þ k2c ; (A2)

assuming �p ¼ � ¼ 0, i.e. there is no pressure, no pres-
sure perturbation, and no anisotropic shear. Rearranging
Eq. (A1) and substituting Eq. (A2), we can write

�m ¼ 3 _�� _�m ¼ 3 _�� _�m þ d

d�

�
3H�m

k2

�

¼ 3 _�� _�m þ 3

k2
½�m _H �H 2�m þH k2c �

¼ 3 _�� _�m þ 3H c

1� 3ð _H �H 2Þ=k2
: (A3)

We can use Eqs. (9) and (11) to write c in terms of �m,
�,$, and background quantities; similarly we can use the

time derivative of Eq. (11) to write _�. This gives

_�m ¼ _�m þ 3 _H�m
k2

þ 3H _�m
k2

¼ 3 _�� �m þ 3 _H�m
k2

þ 3H
k2

ð�H�m þ k2c Þ; (A4)

where the second equality comes from using Eqs. (A1) and
(A2). Substituting Eq. (A3) into (A4) would just return the

truism _�m ¼ _�m. However, if we take the first conformal
time derivative of Eq. (A4) before substituting, we find a
second-order differential equation describing the evolution
of �m for arbitrary $ða; kÞ and �ða; kÞ. We omit the
explicit copious algebra and show the result:

€�m

�
1þ 3

k2
��

�
¼ _�m

�
� 3

k2
ð2 _��þ 2� _�Þ � 3

k2
ð1þ$Þ��H þ

�
H þ 3

€H
k2

� 9
H _H
k2

þ 3
H 3

k2

�
� �3��� k2

k2 � 3ð _H �H 2Þ
�

þ�m

�
� 3

k2
ð €��þ� €�þ 2 _� _�Þ � ð1þ$Þ��

k2
ð�k2 þ 6 _H � 3H 2Þ � 3 _$

��

k2
H

� 3

k2
ð1þ$ÞH ð _��þ� _�Þ þ

�
H þ 3

€H
k2

� 9
H _H
k2

þ 3
H 3

k2

�
��3ð _��þ� _�Þ � 3ð1þ$ÞH��

k2 � 3ð _H �H 2Þ
�
;

(A5)

where � ¼ 4	Ga2 ��m. All that we have assumed in this derivation is that matter and � are the only constituents of the
background cosmology so that Eqs. (A1) and (A2) hold.
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