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We examine the question as to whether the Palatini fðRÞ gravity theories permit space-times in which

the causality is violated. We show that every perfect-fluid Gödel-type solution of Palatini fðRÞ gravity
with density � and pressure p that satisfy the weak energy condition �þ p � 0 is necessarily isometric to

the Gödel geometry, demonstrating therefore that these theories present causal anomalies in the form of

closed timelike curves. This result extends a theorem on Gödel-type models to the framework of Palatini

fðRÞ gravity theory. We concretely examine the Gödel-type perfect-fluid solutions in specific fðRÞ ¼
R� �=Rn Palatini gravity theory, where the free parameters � and n have been recently constrained by

observational data. We show that for positive matter density and for � and n within the interval permitted

by the observations, this theory does not admit the Gödel geometry as a perfect-fluid solution of its field

equations. In this sense, this theory remedies the causal pathology in the form of closed timelike curves

which is allowed in general relativity. We derive an expression for a critical radius rc (beyond which the

causality is violated) for an arbitrary Palatini fðRÞ theory. The expression makes apparent that the

violation of causality depends on the form of fðRÞ and on the matter content components. We also

examine the violation of causality of Gödel-type by considering a single scalar field as the matter content.

For this source we show that Palatini fðRÞ gravity gives rise to a unique Gödel-type solution with no

violation of causality.
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I. INTRODUCTION

The fðRÞ gravity theory provides an alternative way to
explain the current cosmic acceleration with no need of
invoking either a dark energy component or the existence
of an extra spatial dimension. The freedom in the choice of
different functional forms of fðRÞ, however, gives rise to
the problem of how to constrain on theoretical and/or
observational grounds, the many possible fðRÞ gravity
theories. A great deal of effort has gone into the study of
some features of these theories [1] (see also Refs. [2] for
recent reviews). This includes solar system tests [3],
Newtonian limit [4], gravitational stability [5], and singu-
larities [6]. General principles such as the so-called energy
conditions have also been used to place constraints on fðRÞ
theory [7]. Recently, observational constraints from several
cosmological data sets have also been employed to test the
viability of some fðRÞ theories [8–14].

In dealing with fðRÞ gravity theories two different varia-
tion approaches may be followed, namely, the metric and
the Palatini formalisms. In the metric approach the con-
nection is assumed to be the Levi-Civita connection, and
variation of the action is taken with respect to the metric,
whereas in the Palatini approach the metric and the affine
connections are treated as independent fields and the varia-
tion of the action is taken with respect to both metric and
connections. Although these approaches lead to the same

set of field equations in the context of general relativity
(GR), for a general fðRÞ with nonlinear term in the
Einstein-Hilbert action they give rise to different field
equations. In this paper we shall focus on fðRÞ gravity in
the Palatini formalism.
In both versions of the fðRÞ gravity theories the causal

structure of four-dimensional space-time has locally the
same qualitative nature as that of the flat space-time of
special relativity—causality holds locally. The nonlocal
question, however, is left open, and violation of causality
can occur. However, if gravity is governed by a fðRÞ theory
instead of GR, various issues of both observational and
theoretical nature ought to be reexamined in the fðRÞ
gravity framework, including the question as to whether
these theories permit space-time solutions of their field
equations in which the causality is violated.
In general relativity there are solutions to the field

equations that have causal anomalies in the form of closed
timelike curves. The renowned Gödel model [15] is the
best known example of such a solution, which makes
apparent that the GR does not exclude the existence of
solutions with closed timelike world lines, despite its
Lorentzian character that leads to the local validity of the
causality principle. The Gödel model is a solution of
Einstein’s equations with cosmological constant � for
dust of density �, but it can also be interpreted as
perfect-fluid solution (with pressure p ¼ �) without cos-
mological constant. In this regard, we recall that it was
shown by Bampi and Zordan [16] that every Gödel-type*reboucas@cbpf.br
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solution of Einstein’s equations with a perfect-fluid
energy-momentum tensor is necessarily isometric to the
Gödel spacetime.

Owing to its unexpected properties, Gödel’s model has a
well-recognized importance and has motivated a number
of investigations on rotating Gödel-type models as well as
on causal anomalies not only in the context of general
relativity (see, e.g. Refs. [17]) but also in the framework
of other theories of gravitation (see, for example,
Refs. [18]).

In a recent paper, we have examined Gödel-type models
and the violation of causality problem for fðRÞ gravity in
themetric variational approach [19], generalizing therefore
the results of Refs. [20,21]. In this article, to proceed
further with the investigation of Gödel-type universes
along with the question of breakdown of causality in
fðRÞ gravity, we extend the results of Refs. [19–21] by
examining the question as to whether the fðRÞ gravity
theories in the Palatini formalism admit Gödel-type
space-times solutions in which violation of causality can
occur for a physically well-motivated matter source. In this
way, we extend the results of Refs. [19,21] in four different
regards. First, we demonstrate that every perfect-fluid
Gödel-type solution of any Palatini fðRÞ gravity with
density � and pressure p and satisfying the weak energy
condition �þ p � 0 or equivalently df=dR > 01 is nec-
essarily isometric to the Gödel geometry. This extends to
the context of Palatini fðRÞ the so-called Bampi-Zordan
theorem [16] which was established in the context of
Einstein’s theory, and has been extended recently to the
framework of fðRÞ in the metric formalism [19]. Second,
we examine the dependence of the critical radius rc (be-
yond which the causality is violated) with both the Palatini
fðRÞ gravity and the fluid components (p and �) and derive
an expression for rc that holds for any Palatini fðRÞ gravity
theory. Third, we concretely illustrate our general results
for perfect-fluid Gödel-type solutions in Palatini fðRÞ
gravity by taking the specific fðRÞ ¼ R� �=Rn theory,
where the free parameters � and n have been recently
constrained by a diverse set of observational data. We
show that for positive matter density and for� and nwithin
the interval permitted by the observational data, this theory
does not admit Gödel geometry as a perfect-fluid solution
of its field equations. In this sense, this theory remedies the
causal pathology in the form of closed timelike curves
which is allowed in general relativity. Fourth, we examine
the violation of causality of Gödel type by considering a
scalar field as a matter source. For this source we show that
Palatini fðRÞ gravity gives rise to a unique Gödel-type
solution with no violation of causality.

II. fðRÞ GRAVITY IN THE PALATINI APPROACH

The causality problem in fðRÞ gravity theories can be
seen as having three interrelated physically determinant
ingredients, namely, the gravity theory, the space-time
geometry and the matter source. Regarding the first ingre-
dient we recall that the action that defines a fðRÞ gravity is
given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
fðRÞ
2�2

þLm

�
; (1)

where g is the determinant of the metric tensor g��, fðRÞ is
a function of the Ricci scalar R, �2 ¼ 8�G, and Lm is the
Lagrangian density for the matter fields. Treating the met-
ric and the connection as independent fields, the variation
of this action with respect to the metric gives the field
equations

fRRð��Þ � f

2
g�� ¼ �2T��; (2)

where fR ¼ df=dR, T�� ¼ �ð2= ffiffiffiffiffiffiffi�g
p Þ�ð ffiffiffiffiffiffiffi�g

p
LmÞ=�g��

is the matter energy-momentum tensor, and R�� is given in

the usual way in terms of the connection ��
�� and its

derivatives.
The variation of the action (1) with respect to the con-

nections field yields

~r �ðfR ffiffiffiffiffiffiffi�g
p

g��Þ ¼ 0; (3)

where ~r� denotes the covariant derivative associated with

the ��
��. If one defines a metric h�� ¼ fRðRÞg�� it can be

easily shown that Eq. (3) determines a Levi-Civita connec-
tion of h��, which in turn can be rewritten in terms of g��

and its Levi-Civita connection in the form

�
�
�� ¼

�
�
��

�
þ 1

2fR
ð��

�@� þ �
�
�@� � g��g

�	@	ÞfR:
(4)

An important constraint, often used to simplify the field
equations, comes from the trace of Eq. (2), which is given
by

fRRð�Þ � 2f ¼ �2T; (5)

where T ¼ g��T�� is the trace of the energy-momentum

tensor and Rð�Þ ¼ g��R�� is calculated with the connec-

tion �
�
�� given by Eq. (4).

In practice, it turns out to be useful to express the field
equations (2) in terms of the metric g��, its derivatives, and

the matter fields. To this end, one uses Eqs. (4) and (5) to
eliminate the connection �

�
�� from the field equations (2).

After some manipulations one obtains

1In the metric formalism, this condition is necessary to ensure
that the effective Newton constant Geff ¼ G=fR does not change
its sign. At a quantum level, it prevents the graviton from
becoming ghostlike.
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fRG�� ¼ �2T�� � 1

2
ð�2T þ fÞg�� þH��fR

� 3

2fR

�
r�fRr�fR � 1

2
g��ðrfRÞ2

�
; (6)

where r� denotes the covariant derivative associated with

the Levi-Civita connection of the metric g��, h ¼
g��r�r�, H�� � r�r� � g��h, and G�� ¼
R�� � R=2g�� is the Einstein tensor, which is also calcu-

lated with the metric Levi-Civita connection.
Having given an account of the first basic ingredient of

the causality problem, i.e. fðRÞ gravity in the Palatini
approach, in the next section we shall examine the second
relevant component of this problem, which is the Gödel-
type geometries, and discuss how the violation of causality
can occur in Gödel-type spacetimes.

III. GÖDEL-TYPE GEOMETRIES

The Gödel-type class of geometries that we focus our
attention on in this article is given, in cylindrical coordi-
nates ðr;
; zÞ, by [21]

ds2 ¼ ½dtþHðrÞd
�2 �D2ðrÞd
2 � dr2 � dz2; (7)

where

HðrÞ ¼ 4!

m2
sinh2

�
mr

2

�
; (8)

DðrÞ ¼ 1

m
sinhðmrÞ; (9)

where ! and m are constant parameters such that !2 > 0
and �1 � m2 � þ1. Clearly, for m2 ¼ ��2 < 0 the
metric functions HðrÞ and DðrÞ become circular functions
HðrÞ ¼ ð4!=�2Þsin2ð�r=2Þ and DðrÞ ¼ ��1 sinð�rÞ,
while in the limiting case m ¼ 0 they become H ¼ !r2

and D ¼ r.
All Gödel-type geometries are characterized by the two

parameters m and !. In this way, identical pairs ðm2; !2Þ
specify isometric spacetimes [21–23]. Gödel solution is a
particular case of the 0<m2 <þ1 class of spacetimes in
which m2 ¼ 2!2.

In order to examine the causality features of Gödel-type
we first note that the Gödel-type line element (7) can be
rewritten as

ds2 ¼ dt2 þ 2HðrÞdtd
� dr2 �GðrÞd
2 � dz2; (10)

where GðrÞ ¼ D2 �H2. In this form it is clear that the
circles defined by t, z, r ¼ const, are closed timelike
curves depending on the sign of GðrÞ. Thus, for GðrÞ< 0
for a certain range of r (r1 < r < r2, say) the so-called
Gödel circles defined by t, z, r ¼ const are closed timelike
curves. By using this inequality along with the Eqs. (8) and
(9) it is easy to show that the causality features of the
Gödel-type space-times depend upon the two independent
parametersm and! as it follows [21]. Form ¼ 0 there is a

critical radius, rc ¼ 1=!, such that for all r > rc there are
noncausal Gödel circles defined by t, z, r ¼ const. For
m2 ¼ ��2 < 0 the functions H and D are trigonometric
functions and there is an infinite sequence of alternating
causal and noncausal t, z, r ¼ const regions without and
with Gödel circles. For 0<m2 < 4!2 noncausal Gödel
circles occur for r > rc such that

sinh 2 mrc
2

¼
�
4!2

m2
� 1

��1
: (11)

When m2 ¼ 4!2 the critical radius rc ! 1. Thus, for
m2 � 4!2 there are no Gödel circles, and hence the break-
down of causality of Gödel-type is avoided.
To close this section, we note that the presence of a

single closed timelike curve as, for example, a Gödel’s
circle, is an unequivocal manifestation of violation of
causality. However, a space-time may admit noncausal
closed curves other than Gödel’s circles. In this paper, by
noncausal and causal solutions we mean, respectively,
solutions with and without violation of causality of
Gödel-type, i.e., with and without Gödel’s circles.
Clearly this type of violation of causality is not of trivial
topological nature, which is obtained by topological iden-
tification [24].

IV. GÖDEL-TYPE SOLUTIONS IN PALATINI fðRÞ
GRAVITY

The third important ingredient in the above mentioned
causality problem is the matter source, which we shall
discuss in this section. To this end, we first show how the
field equations (6) can be greatly simplified for Gödel-type
geometries, and then we discuss the role played by two
matter sources in the breakdown of causality of Gödel-
type.

A. Field equations

From Eqs. (7)–(9) it is straightforward to show that the
Ricci scalar for the Gödel-type metrics takes a constant
value R ¼ 2ðm2 �!2Þ. Hence, the last three terms of the
field equations (6) vanish. A further simplification comes
about if instead of using coordinates basis one uses the
following locally Lorentzian basis:

�0 ¼ dtþHðrÞd
; �1 ¼ dr; (12)

�2 ¼ DðrÞd
; �3 ¼ dz; (13)

relative to which the Gödel-type line element (7) clearly
takes the form

ds2 ¼ �AB�
A�B ¼ ð�0Þ2 � ð�1Þ2 � ð�2Þ2 � ð�3Þ2: (14)

In this basis the field equations (6) reduce to

fRGAB ¼ �2TAB � 1
2ð�2T þ fÞ�AB; (15)

where the nonvanishing components of the Einstein tensor
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GAB take the quite simple form

G00 ¼ 3!2�m2; G11¼G22 ¼!2; G33 ¼m2�!2:

(16)

In the next subsections we examine whether these theo-
ries permit causal and noncausal solutions for two physi-
cally well-motivated matter sources, namely, a perfect fluid
and a single scalar field.

B. Perfect fluid solutions

We first consider a perfect fluid of density � and pressure
p, whose energy-momentum tensor in the basis (12) and
(13) is clearly given by

TðMÞ
AB ¼ ð�þ pÞuAuB � p�AB: (17)

Taking into account Eqs. (16) and (15), for this matter
source the field equations reduce to

2!2fR � f ¼ �2ð�� pÞ; (18)

2ðm2 �!2ÞfR � f ¼ �2ð�� pÞ; (19)

2ð3!2 �m2ÞfR þ f ¼ �2ð�þ 3pÞ: (20)

From Eqs. (18) and (19) we obtain fRðm2 � 2!2Þ ¼ 0.
Thus, for fðRÞ theories that satisfy the week energy con-
dition fR > 0 (see next paragraph for details) we have
m2 ¼ 2!2, which according to Sec. III defines the Gödel
metric. Thus, a general class of perfect fluid Gödel-type
solutions of Palatini fðRÞ gravity is given by

m2 ¼ 2!2; (21)

�2� ¼ m2fR � f

2
; (22)

�2p ¼ f

2
; (23)

where f and fR are evaluated at R ¼ 2ðm2 �!2Þ ¼ m2.
Now, recalling the week energy condition (WEC) [25]

takes the form2 � � 0 and �þ p � 0, it is clear from (22)
and (23) that m2fR ¼ �2ð�þ pÞ, and thus the second
WEC inequality is identically satisfied for any Palatini
fðRÞ gravity theories with fR > 0. In this way, Eqs. (21)–
(23) show that the Gödel geometry arises as perfect fluid
solution of any Palatini fðRÞ gravity in which �þ p > 0.
This result can be looked upon as an extension of Bampi
and Zordan [16] theorem3 to the context of Palatini fðRÞ
gravity in the sense that for arbitrary � and p (with �þ

p > 0) all perfect-fluid Gödel-type solution of every
Palatini fðRÞ gravity, which satisfies the condition fR >
0, are necessarily isometric to the Gödel geometry.
Regarding the causality properties of this general family

of perfect-fluid Gödel-type solutions, we first note that
since they are isometric to Gödel geometry they admit
noncausal Gödel circles of radius greater than the critical
radius rc given by Eq. (11). But, taking into account
Eqs. (22) and (23) we have now that

rc ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fR

�2ð�þ pÞ

s
sinh�1ð1Þ; (24)

making apparent that the critical radius, beyond which
there exist noncausal Gödel circles, depends on the two
physically relevant ingredients, namely, the gravity theory
and the matter source components, as one would expect
from the outset.
Before proceeding, some words of clarification are in

order concerning the first inequality of the WEC, which
ensures the positivity of the matter density �. In general
relativity [fðRÞ ¼ R] Eqs. (23) and (22) clearly yield �� ¼
�2p ¼ m2=2, making clear that both the matter density and
the pressure are positive. However, for a general fðRÞ (with
nonlinear terms in R) these equations do not necessarily
lead to � > 0 for all values m2 ¼ 2!2. In this way, the
above general result concerning perfect-fluid Gödel-type
solutions may not hold for some fðRÞ gravity if one further
demands the first WEC inequality (� > 0), which from
Eq. (22) leads to

m2fR � f

2
� 0; (25)

where fR � 0 and both f and fR are evaluated at R ¼ m2.
As a concrete example, we consider the extensively

discussed fðRÞ theory given by

fðRÞ ¼ R� �

Rn ; (26)

where � and n are free parameters to be determined by
local gravity constraints and cosmological observations. In
the metric approach the gravity theories of the form (26)
are know to be plagued with problems [3–5,27]. In the
Palatini approach, however, combination of a dynamical
autonomous systems analysis (study of the fixed points and
stabilities against perturbations) yields n >�1 for �> 0,
which can be shown to permit cosmological models with
radiation-dominated, matter-dominated and de Sitter
phases [9]. Furthermore, recent constraints from a combi-
nation of type-Ia supernova (SNe Ia), baryon acoustic
oscillation peak (BAO) and cosmic microwave background
radiation (CMB) shift give n 2 ½�0:3; 0:3� and � 2
½1:3; 7:1� at 99.7% confidence level [8–12].
For gravity theory of the form (26) the positivity of the

energy density (25) gives

2For studies of the interrelations between the energy condi-
tions (on scales relevant for cosmology) and observational data
see Ref. [26].

3Bampi and Zordan theorem was obtained originally in the
framework of general relativity and extended to the context of
fðRÞ gravity in the metric formalism in Ref. [19].
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m2nþ2 þ ð2nþ 1Þ� � 0: (27)

Now taking into account the above dynamical systems
constraint on n and �, one has that there are real values
for m such that (27) holds only for n in the interval n 2
ð�1;�0:5Þ, whose intersection with the above interval
permitted by observations is empty. This makes clear that
the Palatini fðRÞ gravity (26) does not admit Gödel ge-
ometry as a perfect-fluid solution with � > 0, and for the
values of n and � allowed by dynamical systems along
with the above combination of observational data. In this
sense, this theory remedies the causal pathology in the
form of closed timelike curves which is allowed in general
relativity.

C. Single scalar field solutions

Since any perfect-fluid Gödel-type solution of Palatini
fðRÞ gravity that is subject to the WEC condition �þ p >
0 is noncausal, the question as to whether other matter
sources could generate Gödel-type causal solutions natu-
rally arises. In this section we shall examine this question
by considering another different matter source, namely, a
single scalar field�ðzÞ, whose energy-momentum tensor is
given by

TðSÞ
AB ¼ �jA�jB � 1

2�AB�jM�jN�MN; (28)

where a vertical bar denotes components of covariant

derivatives relative to the local basis �A ¼ eðAÞ� dx� [see
Eqs. (12) and (13)]. Following Ref. [21] it is straightfor-
ward to show that a scalar field of the form �ðzÞ ¼ "zþ
const satisfies the scalar field equation h� ¼
�ABrArB� ¼ 0 for a constant amplitude " of �ðzÞ.
Thus, the nonvanishing components of energy-moment
tensor for this scalar field are

TðSÞ
00 ¼ �TðSÞ

11 ¼ �TðSÞ
22 ¼ TðSÞ

33 ¼ "2

2
; (29)

and the field equations (15) can be written in the form

ð3!2 �m2ÞfR þ f

2
¼ 0; (30)

!2fR � f

2
¼ 0; (31)

ðm2 �!2ÞfR � f

2
¼ k2"2: (32)

Equations (30) and (31) yield ð4!2 �m2ÞfR ¼ 0, which
leads to m2 ¼ 4!2 for any Palatini fðRÞ theories that
satisfy the WEC condition fR > 0. This give rise to the
unique class of Gödel-type solutions

m2 ¼ 4!2; (33)

fR ¼ �2"2

2!2
; (34)

f ¼ k2"2; (35)

where f and fR are to be evaluated at R ¼ 2ðm2 �!2Þ ¼
3m2=2. From Eqs. (11) and (33) one clearly has that the
critical radius rc ! 1. Hence, for this unique solution
there is no violation of causality of Gödel type for any
Palatini fðRÞ gravity with fR > 0.
Finally, we note that the Palatini fðRÞ theory of form

(26) permits this unique causal solution for the values of n
and � allowed by the above dynamical systems plus ob-
servational data analyses. Indeed, Eq. (26) along with
Eqs. (33)–(35) give

m2 ¼ 2

3

�
�

2
ðnþ 3Þ

�
1=ðnþ1Þ

; (36)

which shows thatm2 is independent of the amplitude of the
scalar field. Thus, for n 2 ½�0:3; 0:3� and, for example,
� ¼ 3:45 (the best fit value found in [10]) one has m 2
½2:5; 1:6�. For any other value of � allowed by observations
we obviously have a different range of values for m but
again with no breakdown of causality of Gödel-type.

V. FINAL REMARKS

A good deal of effort has recently gone into the study of
the so-called fðRÞ gravity. This is motivated by the fact that
these theories provides an alternative way to explain the
late accelerating expansion of the Universe without invok-
ing either dark energy matter component or the existence
of an extra spatial dimension. If gravity is governed by a
fðRÞ a number of issues should be reexamined in the fðRÞ
framework. This includes, for example, solar system tests,
a correct Newtonian limit, gravitational waves, black
holes, four distinct phases in the evolution history of the
Universe, and the breakdown of causality at a nonlocal
scale.
The underlying space-time manifolds of fðRÞ gravity

theories are assumed to be locally Lorentzian. Thus, in
both formulation of fðRÞ gravity the causal structure of the
space-time has the same local properties of the flat space-
time of special relativity, and hence the causality principle
is locally satisfied. The nonlocal question, however, is left
open, and violation of causality can come about. The
general relativity Gödel model [15] is the best known
example of a cosmological solution of in which causality
is violated at a nonlocal scale.
In this paper, we have examined Gödel-type models and

the violation of causality problem in Palatini fðRÞ gravity
generalizing the results of Refs. [19–21]. For physically
well-motivated perfect-fluid matter source, we have shown
that every solution with arbitrary � that satisfies the weak
energy condition �þ p � 0 (or equivalently df=dR > 0)
is necessarily isometric to the Gödel geometry, making
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explicit that the violation of causality is a generic feature of
Palatini fðRÞ gravity theories. This extends to the context
of Palatini fðRÞ the Bampi-Zordan theorem [16] which was
previously established in the context of Einstein’s theory,
and has been extended recently to the framework of fðRÞ in
the metric formalism [19]. We have derived an expression
for the critical radius rc (beyond which the causality is
violated) for an arbitrary Palatini fðRÞ theory that satisfies
the WEC condition fR � 0 making apparent that the vio-
lation of causality depends upon both the fðRÞ gravity
theory and the matter source components ð�; pÞ.

We concretely studied Gödel-type perfect-fluid solu-
tions in the specific fðRÞ ¼ R� �=Rn Palatini gravity
theory. We showed that, for positive matter density (with
�þ p > 0) and for � and n within the interval permitted
by the observational data, this theory does not admit Gödel
geometry as a solution of its field equations. In this sense,

this theory remedies the causal anomaly of Gödel type
which is allowed in general relativity. We have also exam-
ined the violation of causality of Gödel type by considering
a scalar field as a matter source. For this source we showed
that any Palatini fðRÞ gravity gives rise to a unique Gödel-
type solution with no violation of causality.
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