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The seesaw mechanism is conceived on the basis that a mass scale, �, and a dimensionless scale, s, can

be fine-tuned in order to control the dynamics of active and sterile neutrinos through cosmon-type

equations of motion: the seesaw cosmon equations. This allows for sterile neutrinos to be a dark matter

candidate. In this scenario, the dynamical masses and energy densities of active and sterile neutrinos can

be consistently embedded into the generalized Chaplygin gas (GCG), the unified dark sector model. In

addition, dark matter adiabatically coupled to dark energy allows for a natural decoupling of the (active)

mass varying neutrino component from the dark sector. Thus mass varying neutrinos turn into a secondary

effect. Through the scale parameters, � and s, the proposed scenario allows for a convergence among three

distinct frameworks: the cosmon scenario, the seesaw mechanism for mass generation, and the GCG

model. It is found that the equation of state of the perturbations is the very one of the GCG background

cosmology so that all the results from this approach are maintained, being smoothly modified by active

neutrinos. Constrained by the seesaw relations, it is shown that the mass varying mechanism is responsible

for the stability against linear perturbations and is indirectly related to the late time cosmological

acceleration.
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I. INTRODUCTION

Theoretical efforts to interpret the observational data
and to understand the nature of the dark sector do neces-
sarily involve a vivid interplay between general relativity,
astrophysics, and particle physics. Since the simplest so-
lution to account for the late time accelerated expansion of
the Universe, the one given in terms of a tiny positive
cosmological constant, is plagued with conceptual prob-
lems, one has been compelled to examine different solu-
tions [1–7].

Motivated by the high energy physics, an interesting
alternative for obtaining the necessary negative pressure
to account for the accelerated expansion involves the dy-
namics of a scalar field, �, evolving slowly down its
potential Vð�Þ [8,9]. These models assume that the vac-
uum energy can vary, a feature discussed much earlier [10].
Other alternatives include k-essence [11,12], phantom en-
ergy models [13,14], cosmon fields [15,16], superaccelera-
tion models [17], and also several modifications of gravity
[18–21].

A challenging related issue concerns models of mass
varying particles [22–24]. These are coupled to a light
scalar field that drives their energy through their dynamical

mass. The idea of this mass varying mechanism [7,23,24]
is to introduce a coupling between a relic particle, usually
neutrinos, and the dark sector: dark energy or dark matter
separately, or all together [25,26]. Such models admit an
adiabatic regime in which the scalar field, usually related
with dark energy, rolls down the minimum of its effective
potential, which is set by the dark matter dynamical mass.
As a direct consequence of this new interaction, the parti-
cle mass is altered by the dynamics of the scalar field.
Because of phenomenological reasons, one still expects

a small contribution from neutrinos to the cosmic dynam-
ics. In fact, it is well-known that the active neutrino masses
are tiny compared to the masses of the charged fermions.
The smallness of the neutrino masses is usually understood
in terms of the seesaw mechanism in extensions of the
standard model (SM) of the electroweak (EW) interactions.
The EW interactions involve only left-handed neutrinos
such that no renormalizable mass term for them is compat-
ible with the SM gauge symmetry SUð2ÞL �Uð1ÞY . Once
one assumes the conservation of baryon and lepton num-
bers, the seesaw mechanism admits neutrino masses from
dimension five operators. Neutrino masses should then
involve two powers of the vacuum expectation value of
the Higgs doublet. These masses are suppressed by the
inverse power of a large mass scale, M, of a right-handed
Majorana neutrino. This superheavy Majorana neutrino is
associated to lepton number violating effects in extensions
of the SM.
Assuming that the sterile neutrino mass, M � Mð�Þ,

exhibits a dynamical behavior driven by the scalar field,�,
then the sterile neutrino becomes an interesting candidate
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for the aforementioned mass varying dark matter. This,
through the seesaw mechanism, gives origin to a mass
varying neutrino (MaVaN) [22–24] component corre-
sponding to active neutrinos that exhibit secondary mass
effects due to the seesaw mechanism. In models of coupled
dark energy, in which the scalar field couples to other
matter components, it is natural to expect a coupling to
active and to sterile neutrinos.

In this work, one explores the consequences of such a
coupling. This leads to cosmological scaling solutions
where dark energy tracks the evolution of matter and/or
radiation. For the present cosmological epoch, it is pre-
dicted that the energy densities of dark energy and matter
are of the same order of magnitude. If the tracking can be
altered by the growing mass of neutrinos, such that they
become nonrelativistic (NR) at low redshift, one can inter-
estingly match the observed Universe.

One should notice that mass varying dark matter is
unusual in the formulation of the MaVaN models. The
unification of dark energy and dark matter naturally offers
this possibility. The generalized Chaplygin gas (GCG) is
particularly relevant in this respect [2–4] as it is shown to
be consistent with the observational constraints from cos-
mic microwave background [27], supernova [28–30],
gravitational lensing surveys [31], and gamma ray bursts
[32].

Once one sets the mass dependence on�, the dark sector
scalar field, one notices that the cosmological evolution of
the unified fluid composed by mass varying dark matter
and evolving dark energy has a dynamics similar to that of
the cosmon field [16,33,34]. Thus, at least partially, it turns
out that the mass varying mechanism can be considered as
the main agent of stability and of the cosmic acceleration.
In fact, the stability issue might have different solutions
since the MaVaN mechanism has been discussed in the
scenarios of supersymmetric theories [35], quintessence
power-law and logarithmic potentials [36], multiple-
neutrino models configuring acceleron fields [37], and
more generically, neutrino dark energy has also been dis-
cussed in the framework of linear perturbation theory in a
model independent way [24]. Any cosmological fluid
which effectively reproduces the effects of the GCG natu-
rally offers analogous possibilities as discussed in [38].

Assuming that the scalar field drives the behavior of the
masses of active and sterile neutrinos, the mass varying
mechanism and the conditions for a stable cosmological
scenario naturally emerge in the context of the GCG
model. Remarkably, the seesaw masses and energy den-
sities of active and sterile neutrinos can be consistently
embedded in the GCG scenario without any additional
assumption. Such a connection is mediated by a mass
scale, �, and a dimensionless scale, s, similarly to
cosmon-type dynamical equations [16,33,34]. These are
dubbed seesaw cosmon equations. This procedure gives
origin to a remarkable convergence of three distinct frame-

works: the cosmon-like dynamics, the seesaw mechanism
for mass generation, and the GCG scenario. The equation
of state of the perturbations is the very one of the back-
ground cosmology so that all effective results arising from
the GCG model are maintained, although modified by
neutrinos in a quite subtle way.
This work is organized as follows. The decoupling

mechanism for active and sterile neutrinos is described in
Sec. II. This is obtained through the coupling of a scalar
field in the seesaw relations, which leads to the dynamical
properties ensued by the mass varying mechanism. In
Sec. III, the interplay with the GCG model is discussed.
In Sec. IV, the main properties of a unified treatment of
dark matter and dark energy in a dark energy scenario for a
�-like equation of state, p ¼ ��, are reviewed. This leads
to a dynamical mass prescription different from the one
obtained through the simplified version of the seesaw
mechanism explored in Sec. III. Specific mass dependen-
cies on the scalar field for which the mass varying dark
matter results in an effective GCG model are discussed.
Finally, the results for energy densities, growing neutrino
mass, and stability conditions from a positive squared
speed of sound c2s are discussed in Sec. V. Three cosmo-
logical scenarios are examined, actually associated to three
different growing mass relations: �ð�Þ ¼ � exp½�3ð�þ
1Þ�=2� (case 01), �ð�Þ ¼ exp½�3ð�þ 1Þ�=2� (case 02)

and �ð�Þ ¼ tanh½3ð�þ 1Þ�=2�2�=ð�þ1Þ exp½�3ð�þ
1Þ�� (case 03). The obtained results indicate that the
proposed approach is quite appealing as it unifies neutri-
nos, dark matter, and dark energy. In Sec. IV, the main
implications of the developed scenario are summarized.

II. THE SEESAW MECHANISM FOR MAVAN’S

The connection of mass varying dark matter with neu-
trinos does provide, as will be seen, interesting constraints
on the neutrino masses, on the dark energy density, and on
the equations of state and the stability conditions. This can
be understood through the equations arising from the
Lagrangian densities of active (A) and sterile (S) neutrinos,
c A;S,

L A;S ¼ i �c A;S��@
�c A;S þ kA;S �c A;Sc A;S; (1)

where two mass scales, kA ¼ � and kS ¼ M, have been
introduced. The seesaw mechanism suggests that � is
small, while M should be large:

�� ¼ ðM=2Þ½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðm=MÞ2

q
� and

M ¼ ðM=2Þ½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðm=MÞ2

q
�:

(2)

These states correspond to the eigenvalues of the mass
matrix

0 m
m M

� �

A. E. BERNARDINI AND O. BERTOLAMI PHYSICAL REVIEW D 81, 123013 (2010)

123013-2



written in the orthogonal basis of chiral left- and right-
handed neutrinos, �L;R, related with the matter fields, c A;S,

by

c A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p
ðs�L � �RÞ and

c S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p
ð�L þ s�RÞ;

(3)

where the dimensionless quantity s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=M

p
has been

introduced. It follows that LA þLS ¼ LL þLR þLLR,
whereLL;R correspond to the kinetic terms andLLR yields

the mass mixing terms. The equivalence between the
stress-energy tensor in the chiral basis and the matter field
basis follows from the relationships for the energy density
�A þ �S ¼ �L þ �R and for the pressure pA þ pS ¼
pL þ pR. After introducing an auxiliary mass scale � ¼ffiffiffiffiffiffiffiffiffiffiffi
�M

p � m, one can define two energy scales, �1 ¼
ð�S þ �AÞ=2 and �2 ¼ ð�S � �AÞ=2 which evolve as re-
ciprocally coupled cosmon-type equations. In a
Friedmann-Robertson-Walker universe it corresponds to

_� 1 þ 3Hð�1 þ p1Þ � _�
d�

d�

@�1

@�
þ _�

ds

d�

@�2

@s
¼ 0; (4)

and

_� 2 þ 3Hð�2 þ p2Þ � _�
d�

d�

@�2

@�
þ _�

ds

d�

@�1

@s
¼ 0; (5)

where H ¼ _a=a is the expansion rate of the universe and
the overdot denotes differentiation with respect to time
( _� d=dt). The third terms in the above equations corre-
spond to a mass varying term [see Eq. (A4) in the
Appendix], while the last ones are associated to the ex-
change of energy due to the nonadiabatical behavior of
energy densities 1 and 2. Notice that there is no sense in
defining a Lagrangian density for the component �2, which
does not correspond to an observable energy density scale.
The �1 component can be identified to matter fields, while
�2 is an auxiliary energy density which measures the
coupling between the physical observables. In fact, both
energy densities, 1 and 2, are driven by cosmon-type
equations. The cosmon signature is revealed by the depen-
dence of the scales � and s on the value of a slowly varying
classical scalar field�, the seesaw cosmon field [16]. Since
the scalar field depends on the scale factor a, � � �ðaÞ,
the seesaw mass terms get transformed into dynamical
quantities, �ð�Þ and Mð�Þ. After combining Eqs. (2),
and observing that

�Aða; �; sÞ ¼ �Aða; �sÞ; (6)

and

�Sða; �; sÞ ¼ �Sða; �=sÞ; (7)

it is easy to identify the evolution of these with the evolu-
tion of active and sterile energy densities, �A and �S, by
means of decoupled equations

_� A þ 3Hð�A þ pAÞ � _�
d�

d�

@�A

@�
¼ 0; (8)

and

_� S þ 3Hð�S þ pSÞ � _�
dM
d�

@�S

@M
¼ 0; (9)

as

d ln�

d�
¼ ð1=2Þ

�
d ln�

d�
þ d lnM

d�

�
;

and

d lns

d�
¼ ð1=2Þ

�
d ln�

d�
� d lnM

d�

�
:

Thus, the mass varying mechanism translates the depen-
dence of the mass terms on the scale factor, a, i.e.�ðaÞ and
MðaÞ (see the Appendix). The coupling between relic
particles and the scalar field as described by Eqs. (8) and
(9) is relevant only for NR fluids. Since the strength of the
coupling is suppressed by the relativistic pressure, as long
as particles are ultrarelativistic (UR), the active and sterile
neutrino energy densities, �A and �S, decouple from each
other and evolve adiabatically [39], remaining coupled

only to the scalar field. That is, in the UR regimes, @�
@m �

@�
@s / ð�� 3pÞ � 0.

In a previous work, it has been suggested that one could
treat MaVaN’s as a perturbative component derived from
an unperturbed adiabatic energy density solution ��

[25,26]. The above results provide a quantitative justifica-
tion for that. As can be seen, all the information from the
dark sector (dark energy plus dark matter) acting on the
(active) neutrino sector is carried out by the explicit de-
pendence of � � �ð�Þ. From the cosmological point of
view, it results in mass eigenstates for active and sterile
neutrinos that evolve separately, which is not the case for
the coupled chiral eigenstates �L and �R. At primordial
times, when s2 � 1, such mass eigenstates are indistin-
guishable, and the chiral eigenstates are well-defined. At
late times they turn into sterile and active mass eigenstates,
maintaining the identity of the flavor sectors.
In order to proceed, one identifies the large mass energy

density component of the above equations, �S, to the
energy density of dark matter, then the seesaw cosmon
framework provides the connection between dark matter
and dark energy through the cosmon field equation [15,16],

_�� þ 3Hð�� þ p�Þ þ _�
dM
d�

@�S

@M
¼ 0; (10)

originally written as

€�þ 3H _�þ dVð�Þ
d�

¼ � dM
d�

@�S

@M
; (11)

with the usual assignments for the �� and p� (cf.
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Eqs. (17)). Equations (9) and (10) result in the adiabatic
equation for the dark sector,

_� DS þ 3Hð�DS þ pDSÞ ¼ 0; (12)

with �DS ¼ �� þ �S ¼ �� þ �1 þ �2 and H2 ¼ �DS

(with H in units of H0 and �DS in units of �Crit ¼
3H2

0=8�GÞ. Despite the intrinsic dependence on �, the

equation of motion for the dark sector is not modified by
�A, the active neutrino energy density component. The
cosmological dependence of �A on � can be computed
through Eq. (8) considering active neutrinos as a test fluid.

The phenomenological consistency of the proposed sce-
nario can be assessed quantitatively expressing �A and �S

as energy densities of a degenerate fermion gas (DFG) at
different relativistic regimes,

�AðaÞ ¼ ð8�2Þ�1�ðaÞ4½	ðaÞð2	ðaÞ2 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðaÞ2 þ 1

q
� arcsinhð	ðaÞÞ�

�SðaÞ ¼ ð8�2Þ�1�ðaÞ4s�8½�s2	ðaÞð2�2s4	ðaÞ2 þ 1Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2s4	ðaÞ2 þ 1

q
� arcsinhð�s2	ðaÞÞ�;

(13)

where 	ðaÞ ¼ ðT0qAÞ=ða�ðaÞÞ and the relation between
the fluid thermodynamic regimes is parametrized by the
coefficient � ¼ qS=qA. As discussed in the Appendix, the
DFG prescription is suitable for describing the transition
between UR and NR regimes. In this case, the effects due
to the coupled dark matter (Mð�Þ) and dark energy (�)
can be monitored through Eqs. (8)–(10).

In the Fig. 1 one can see the exact correspondence
between the above mentioned energy densities and the
‘‘modified’’ scale parameter �s2. In the NR limit of a
DFG, one has �A=�S � ��3s2.

The characteristic magnitude of the active neutrino
masses involves an appropriate combination of dimension-
less Yukawa couplings, Yj, �j �m2

j=M with mj � Yjv

(v� 2� 1011 eV). Consistency with the observed flavor
oscillations requires for the neutrino mass at least one
neutrino to have �j * 0:05 eV. That is, Yj of the order

one implies an upper bound for the large mass scale M &
1023 eV, from which follows that s2 * 10�24. Given that
the present value of the ratio �A=�S is, for phenomeno-
logical reasons, of Oð10�2Þ, a DFG of active neutrinos, at
least approximately in the NR regime, leads to ��3 � 1022,
and hence, two widely different momentum scales for
active and sterile neutrinos, qS=qA � 10�7. Thus, sterile
neutrinos behave like ultra cold dark matter (CDM). In
addition, if one assumes that �� could be parametrized by

a 
�4 theory, or some type of quintessence potential, the
adiabatic evolution of the scalar field allows for assigning a
mass for the scalar field. Such predictions for m� are

consistent with the lower bound on the mass derived
from assumptions about the adiabatic evolution of the
scalar field since nucleosynthesis. The scalar field mass
should then be greater than the rate of expansion at nu-

cleosynthesis, which is of order of �10�16 eV. However,
the conditions for the adiabatic regime for the light scalar
field to be settled down at the minimum of its potential
prior to nucleosynthesis are quite model dependent.
The above discussion shows that a considerable fine-

tuning is required to generate the different scalar field
mass, an issue that demands an embedding of the model
in a more encompassing framework, such as, for instance,
the minimal supersymmetric SM with the addition of one
singlet chiral superfield [40]. Another possible avenue
involves a unified picture of dark energy and dark matter
where the former corresponds to an additional singlet
scalar field which one identifies to the quintessence field
[41,42], while the latter with the quantum excitations of
this singlet, which can be coupled to the Higgs boson.

III. THE INTERPLAY WITH THE GCG MODEL

One considers now some generic features of the pro-
posed model and explores its connection with the GCG
model.

FIG. 1 (color online). The correspondence between the energy
density components and the modified seesaw scale parameter
�s2 (first plot), and the equation of state wi ¼ pi=�i. Sterile and
active neutrinos are assumed to behave like a DFG in NR (	 ¼
0:1), relativistic (	 ¼ 1), and UR (	 ¼ 10) regimes. For the NR
limit of a DFG, one has �A=�S � ��3s2 (straight solid line in the
plot).
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The GCG model is characterized by an exotic equation
of state [4,27] given by

p ¼ �As�0

�
�0

�

�
�
; (14)

where As and � are constants. This equation of state can be
obtained from a generalized Born-Infeld action [4]. Several
studies yield convincing evidence that the GCG scenario is
a phenomenologically consistent approach to explain the
accelerated expansion of the Universe. Inserting the above
equation of state into the unperturbed energy conservation
equation (12), one obtains through a straightforward inte-
gration [4]

� ¼ �0

�
As þ ð1� AsÞ

ða=a0Þ3ð1þ�Þ

�
1=ð1þ�Þ

; (15)

and

p ¼ �As�0

�
As þ ð1� AsÞ

ða=a0Þ3ð1þ�Þ

���=ð1þ�Þ
: (16)

One of the most striking features of the above equations is
that the energy density interpolates between a dust domi-
nated phase in the past, where � / a�3, and a de Sitter
phase, � ¼ �p, at late times. This evolution is ruled by the
model parameters, � and As, which are positive and
smaller than unity. Of course, � ¼ 0 corresponds to the
�CDM model. It sets 0<� � 1. For As ¼ 0, GCG be-
haves like matter, whereas for As ¼ 1, it behaves as a
cosmological constant. Hence, in order to consider it as a
unified model for dark matter and dark energy, one has to
exclude these two possibilities so that As must lie in the
range 0< As < 1. This property makes the GCG model an
interesting candidate for the unification of dark matter and
dark energy, i.e. for the dark sector energy density �DS of
our proposal.

The GCG can be described by an underlying scalar field,
�, which can be either real [2,29] or complex [3,4]. In the
former case, one can identify it with the cosmon field � so
that � and p are given in terms of � by

� ¼ 1

2
_�2 þ Vð�Þ; p ¼ 1

2
_�2 � Vð�Þ: (17)

This allows for obtaining the dependence of the scalar
field, �, on the scale factor, a, and the explicit dependence
of �, p, and V on �. Following Ref. [29], one obtains
through Eqs. (15)–(17)

_� 2ðaÞ ¼ �0ð1� AsÞ
ða=a0Þ3ð�þ1Þ

�
As þ ð1� AsÞ

ða=a0Þ3ð�þ1Þ

���=ð�þ1Þ
;

(18)

and assuming a flat universe described by Friedmann
equation H2 ¼ � (again with H in units of H0 and � in
units of �Crit ¼ 3H2

0=8�G), one gets

�ðaÞ ¼ � 1

3ð�þ 1Þ

� ln

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Asð1� ða=a0Þ3ð�þ1ÞÞ

q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� As

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Asð1� ða=a0Þ3ð�þ1ÞÞ

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� As

p

3
75;

(19)

where it is assumed that

�0 ¼ �ða ¼ a0Þ ¼ � 1

3ð�þ 1Þ ln
�
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� As

p
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� As

p
�
: (20)

One then readily finds the scalar field potential,

Vð�Þ ¼ 1

2
A1=ð1þ�Þ
s �0f½coshð3ð�þ 1Þ�=2Þ�2=ð�þ1Þ

þ ½coshð3ð�þ 1Þ�=2Þ��ð2�=ð�þ1ÞÞg: (21)

Thus, the dynamics of the GCG scalar field is given by the
evolution of � on the above potential.
Turning now to the simplest version of the seesaw

mechanism for which a single flavor neutrino mass is
linearly related to the scalar field, �, i.e. mð�Þ ��, after
observing that the logarithm of the squared scale parameter
s2 has an analytical structure similar to that of �ðaÞ,

lnðs2Þ ¼ lnð�=MÞ ¼ ln

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðm=MÞ2p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðm=MÞ2p þ 1

#
; (22)

one can rewrite the auxiliary scale m=M in terms of the
GCG parameters As and�, and on terms of the scale factor,
a, as

mðaÞ
MðaÞ ¼ m0

M0

a3ð�þ1Þ=2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As

1� As

s
ða=a0Þ3ð�þ1Þ=2; (23)

where a0 is determined by a phenomenological adjustment
[it can be set equal to unity if one redefines As and �0 in
Eq. (15)]. After a simple mathematical manipulation, one
obtains

lnðs2Þ ¼ lnð�=MÞ ¼ �3ð�þ 1Þ�ðaÞ: (24)

Equations (22)–(24) yield the following relationships for
active and sterile neutrino masses:

�ð�Þ ¼ � exp½�3ð�þ 1Þ�=2� and

Mð�Þ ¼ � exp½þ3ð�þ 1Þ�=2�:
(25)

The behavior set by Eqs. (23) and (25) implies to the scale
parameter s an exponential dependence on �, s ¼
exp½�3ð�þ 1Þ�=2�, corresponding to an exponential di-
vergency between mass scales. This is consistent with
several classes of quintessence models [43]. Naturally,
once the prescription for masses and couplings is known,
the behavior of the neutrinos can be understood through
Eqs. (8) and (9).
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It is evident that the procedure described above is fairly
general. The form of Mð�Þ and modifications on the
equation of state for dark energy can lead to quite different
scenarios. For instance, it also admits constant mass dark
matter, which should result in neutrino masses given by
�ðaÞ / exp½�3ð�þ 1Þ�ðaÞ�, or even a constant mass
scale � ¼ m, as will be discussed in the analysis of the
following section.

Similarly to the present work, a minimal model for the
MaVaN scenario with only one species of the massless
Dirac fermions coupled to the scalar field is discussed in
Ref. [44]. Through methods of thermal quantum field
theory, an equation is derived for the fermionic mass
generated in the coupled model. It is shown that the mass
equation has nontrivial solutions only for special classes of
the potentials and only within certain temperature inter-
vals. In this sense, our approach is not minimal since we
have the parameters s and �, i.e. 2 degrees of freedom that
are linked by the GCG equation of state. It clearly yields in
constraints on the potentials for the cosmon scalar field at
our model.

IV. MASS VARYING DARK MATTER FROM AN
EFFECTIVE GCG

Aiming to obtain a deeper understanding of the proposal
of the previous section, one shows that the coupling of dark
matter to dark energy through the mass varying mechanism
in the seesaw cosmon scenario can be indeed matched with
the GCG model. In order to perform that, one assumes that
the GCG equation of state (14) just describes the behavior
of a fluid with energy density �DS.

From Eqs. (9) and (10), one sees that if the seesaw
cosmon field obeys the following equation of state:

��ð�Þ ¼ �p�ð�Þ ¼ Uð�Þ

¼
�
As cosh

�
3ð�þ 1Þ�

2

���2�=ð1þ�Þ
; (26)

thus the problem consists in obtaining the relationship
between the scalar potential Uð�Þ and the variable mass
Mð�Þ which satisfies the equation

dUð�Þ
d�

þ @�S

@M
dMð�Þ
d�

¼ dUEffð�Þ
d�

¼ 0; (27)

a stationary condition directly obtained from Eq. (10). The
effective potential UEffð�Þ that sets the evolution of the
scalar field has two terms: the first one arising from the
original quintessence potential Uð�Þ, and the second one
due to a coupling to the dynamical mass Mð�Þ. For
suitable choices of Uð�Þ and for couplings satisfying
Eq. (27), the competition between these terms leads to a
minimum of the effective potential. In the quasistatic re-
gime, it is possible for the field to adjust itself to the
minimum of the potential in an adiabatic way. The time
scale for that must be short when compared to the time

scale over which the background density is changing. In
this regime, matter and scalar field are tightly coupled and
evolve effectively as a single fluid. In the proposed ap-
proach, once assuming the equation of state p� ¼ ���,

the described behavior is rather natural. Equation (26)
leads to �DS þ pDS ¼ �S þ pS which, in the CDM limit,
gives pS ¼ 0 and �DS þ pDS ¼ �SðaÞ ¼ MðaÞnðaÞ,
where nðaÞ is the particle number density. Since the de-
pendence of M on a is mediated by �ðaÞ, i.e. MðaÞ ¼
Mð�ðaÞÞ, from Eqs. (15), (16), and (19), it follows after
some mathematical manipulations that

M ð�Þ ¼ M0

�
tanhð3ð�þ 1Þ �2Þ
tanhð3ð�þ 1Þ �0

2 Þ
�
2�=ð1þ�Þ

; (28)

which is consistent with Eq. (27). Hence, one sees that the
adequacy to the adiabatic regime is conditioned by the
mass varying behavior.
In a previous study [45], it was shown how the behavior

ofMð�Þ and Uð�Þ differs from the one of �ðaÞ and Uð�Þ
in the GCG model, and how the composed fluid deviates
from the GCG scenario. It has been assumed that the mass
varying dark matter behaves like a DFG in the relativistic
regime (hot dark matter [HDM]) and in the NR regime
(CDM). For the mass varying CDM coupled to dark energy
with p� ¼ ���, the GCG leads to similar predictions for

w ¼ p�=��, independently of the scale parameter a. The

same is not true for HDM as the GCG-like behavior holds
just close to the present (a� a0).

V. ENERGY DENSITY, NEUTRINO MASS, AND
STABILITY

As mentioned, the evolution of matter components are
constrained by several factors: the precise peak location of
the cosmic microwave background anisotropies, the
change in the growth of cosmic structures, and the prop-
erties of nonlinear structures which provide detailed infor-
mation to test such models. Here a preliminary analysis is
performed to compare neutrino masses and the correspond-
ing conditions for stability for three cases of neutrino
dynamical masses. Because of previous arguments, these
cases take place in the context of the GCG model. The first
two cases correspond to a neutrino mass dependence on the
cosmon field. For the first case, the off-diagonal mass
matrix elements, the Dirac mass terms,mð�Þ, have a linear
dependence on �, mð�Þ ��, which results in a tiny mass
eigenvalue �ð�Þ ¼ � exp½�3ð�þ 1Þ�=2�. For the sec-
ond case, the off-diagonal mass matrix elements are con-
stants, mð�Þ � const, and the dynamical masses are
generated by the dependence on the Majorana mass term
Mð�Þ, which results in �ð�Þ ¼ exp½�3ð�þ 1Þ�=2�. The
third case describes a sterile neutrino with a dynamical
mass evolving like the GCG with mass varying dark matter
coupled to dark energy with an equation of state, pDE ¼
��DE. Since the prescription for decoupling mass varying
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dark matter from the effective GCG leads to sterile neu-
trino mass given by Eq. (28), the active neutrino mass

should be given by �ð�Þ ¼ tanh½3ð�þ 1Þ�=2�2�=ð�þ1Þ �
exp½�3ð�þ 1Þ��. Keeping in mind the connection estab-
lished by the seesaw mechanism for the third case, thus the

mass matrix term should be given by mð�Þ ¼ tanh½3ð�þ
1Þ�=2�2�=ð�þ1Þ exp½�3ð�þ 1Þ�=2�.

Considering that the cosmological background evolves
according to the GCG model, Fig. 2 exhibits the behavior
of the dark sector for the three considered cases. The
evolving neutrino masses lead to evolution of the neutrino
energy densities which are shown in Fig. 3, where active
and sterile neutrino energy density ratios, �A=�S, are
plotted as function of the scale factor a. The sterile neu-
trino is assumed to behave like dark matter. Notice that
different thermodynamic regimes are considered at
present: NR, relativistic, and UR. As expected, once the
active neutrino reaches the NR regime, the masses and
densities are not independent and follow the exponential
behavior given by �A=�S / s2 ¼ exp½3ð�þ 1Þ��.

The equation of state for active neutrinos in the NR
regime at present is shown in Fig. 4. Despite the explicit
model dependence of the masses on the scalar field, Figs. 3
and 4 show similar global features that are typical of the
proposed framework. The resulting mass dependence on
the scale factor for the three considered cases is depicted in
Fig. 5. In the three cases one sees a sharp increase of the
neutrino masses at a recent past (a * 0:2).

Our analysis shows that the active neutrino mass com-
ponent grows when coupled to dark matter through the

seesaw cosmon field within the GCG model. This is con-
sistent with the treatment of neutrinos as a test fluid, in the
sense that its cosmological equation of motion decouples
from the dark sector which governs the cosmological
evolution. In addition, it provides the conditions to analyze
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FIG. 2 (color online). Energy densities � ¼ �ðaÞ=�0 in terms
of the scale factor, a (with a0 ¼ 1), for the components of a
unified background fluid (effective GCG): mass varying dark
matter (DM) �S and cosmon-like dark energy (DE). Three cases
are considered for the dynamical neutrino masses: �ð�Þ ¼
� exp½�3ð�þ 1Þ�=2� (case 01), �ð�Þ ¼ exp½�3ð�þ 1Þ�=2�
(case 02) and �ð�Þ ¼ tanh½3ð�þ 1Þ�=2�2�=ð�þ1Þ exp½�3ð�þ
1Þ�� (case 03). The dark matter densities are computed
for Mð�Þ in correspondence to the GCG scenario through
Eq. (23), with As ¼ 4=5 and � ¼ 1 (solid line), 1=2 (dotted
line), 1=4 (dash-dotted line), and 1=8 (dashed line).

FIG. 3 (color online). Active and sterile neutrino energy den-
sity rate �A=�S as a function of the scale factor, a (with a0 ¼ 1).
Both sterile and active components are assumed to behave like a
DFG. The results are obtained for different GCG models with
As ¼ 4=5 and parameters � ¼ 1 (solid line), 1=2 (dotted line),
1=4 (dash-dotted line), and 1=8 (dashed line). Three cases are
considered for the neutrino masses (case 01: red lines, case 02:
blue lines, case 03: green lines) in agreement with Fig. 2 for
nonrelativistic (NR), relativistic, and ultrarelativistic (UR) neu-
trinos at present.
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instabilities. The possibility of adiabatic instabilities in
cosmological scenarios was previously pointed out in the
context of a mass varying neutrino model of dark energy
whereas the dynamical dark energy model is obtained
through the coupling of a light scalar field to neutrinos,
but not to dark matter [46]. The ensuing effects have been
extensively discussed in the context of mass varying neu-
trinos, in which the growth of the neutrino’s mass and the
recent accelerated expansion are linked through the scalar
field coupling. In the adiabatic regime, these models face
catastrophic instabilities on small scales, since the sound
speed squared of the coupled fluid is negative. Starting
with a uniform fluid, such instabilities would give rise to
exponential growth of small perturbations. The natural
interpretation of this is that the Universe becomes inho-
mogeneous with neutrino overdensities subject to nonlin-

ear fluctuations which eventually collapse into compact
localized regions [47].
Our approach allows one to perform a stability analysis

for NR active neutrinos independently of the dark sector
evolution. The first step is obtaining the squared speed of
sound, c2s , for neutrinos.
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FIG. 4 (color online). Neutrino equation of state w ¼ pA=�A

for the GCG cosmological model with neutrinos behaving like a
DFG in the NR regime (	 ¼ 0:1 at present). The GCG parame-
ters and the neutrino mass dependence on � are in correspon-
dence with the previous figures.

FIG. 5 (color online). Growing neutrino mass (�ðaÞ=�0) in
dependence on the scale factor, a. Masses are normalized in
terms of �0 at present (a ¼ a0 ¼ 1). The GCG parameters and
the neutrino mass dependence on � are in correspondence with
the ones in the previous figures. The GCG scenarios where As ¼
4=5 and � ¼ 1; 1=2; 1=4; 1=8 are considered.
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FIG. 6 (color online). Squared speed of sound c2s ¼ dp=d� in
dependence on the scale factor, a (with a0 ¼ 1), for neutrinos
(magenta lines); for the cosmon-like dark energy component, DE
(black lines); and for the corresponding GCG scenario (blue
lines). The GCG parameters and the neutrino mass dependence
on � are in correspondence with the previous figures. Neutrinos
are assumed to behave like a DFG in the NR regime (	 ¼ 0:1 at
present).
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Figure 6 illustrates the results for c2s for DFG of neu-
trinos (�), the seesaw cosmon dark energy and the GCG
plus neutrinos. The results are compared with those of a
GCG scenario with As ¼ 4=5 for � ¼ 1 (solid line), 1=2
(dotted line), 1=4 (dash-dotted line), and 1=8 (dashed line).
The role of neutrinos on the positiveness of c2s is measured
in terms of those for the GCG scenario. One sees that the
influence of neutrinos on the positiveness of c2s for the
GCG is not relevant. Actually for the first two cases, NR
neutrinos lead to vanishing perturbations on the back-
ground at present, so that the test fluid approach is quite
accurate.

The results obtained from the analysis of the third case
show that for the models where the stationary condition
[cf. Eq. (27)] implies that, p� ¼ ���, one obtains c2s ¼
�1 from the very start. The effective GCG plus neutrinos is
free from this inconsistency, i.e. the coupling of the dark
energy component with mass varying dark matter allows
for removing such inconsistency as c2s ’ dp�=d�� > 0.

VI. CONCLUSIONS

In this work it is shown that GCG contains some key
ingredients in the description of the universe dynamics and
that it allows for a suitable background for the mass vary-
ing and the seesaw mechanisms. Furthermore it has been
pointed out that the mass varying behavior of the dark
matter component can be matched with the GCG model.

The main features of the proposed model can be sum-
marized as follows: (i) The cosmological evolution of
neutrino energy densities is driven by coupled cosmon-
type field equations where active and sterile neutrino states
are connected through the seesaw mechanism for mass
generation. (ii) Dark matter is, most often, not considered
in the MaVaN models. The treatment of dark energy and
dark matter in the GCG unified scheme naturally offers this
possibility. Identifying sterile neutrinos as dark matter
coupled with dark energy provides the conditions to imple-
ment such a unified picture in the MaVaN formulation.
Moreover, the constraints imposed by the seesaw mecha-
nism in order to establish a unique analytical connection to
the GCG in terms of a real scalar field were found. (iii) The
dynamics of the coupled fluid composed by neutrinos, dark
matter, and dark energy is driven by one single degree of
freedom, the scalar field, �ðaÞ. Since the GCG allows for
an explicit dependence on the scale factor, a, s and �
dependence on the scalar field do imply a dependence on
the Universe’s evolution. Because of the connection be-
tween the GCG and the seesaw masses, the proposed
approach actually yields an effective model for MaVaN’s
coupling to the dark sector. Of course, one can interpret the
mediation of the scalar field as a dependence on the di-
mensionless scales a=a0, s, and �=M.

In fact, the proposed choices are suggested by the GCG
scenario when it is parametrized by a real scalar field
[2,29]. Effectively, the procedure was to embed the mass

varying mechanism for active and sterile neutrinos as
established by seesaw relations. As a consequence of the
seesaw mass relations and of the canonical definitions of
quintessence energy density and pressure, one obtains the
quintessence potential for the scalar field. Other constraints
on the quintessence potentials should be due to modifica-
tions of the seesaw relations and/or changes on the cosmo-
logical background scenario of the GCG.
The described mechanism leads to a fast increase of the

neutrino masses, which results in a model dependent van-
ishing speed of sound at present. The dynamical mass
behavior, due to the evolution of the seesaw cosmon field,
coincides in a subtle way with the GCG dynamics.
However, this scenario is not unique. Nevertheless, without
any additional assumptions, it provides an attractive solu-
tion for the coincidence problem through the confluence of
three independent frameworks: the cosmon-like dynamics,
the seesaw mechanism for mass generation, and the GCG
model. For active neutrinos, an increase of the mass� by a
factor 106, corresponds approximately to a decrease of the
sterile neutrino mass M from the Planck scale to
1013 GeV. Thus, the GCG model modulates the increase
of the neutrino mass, which acts as a cosmological clock
to the present scenario of cosmological accelerated
expansion.
Unfortunately, in general, one cannot provide a sharp

criterion for the potential and for the mass varying depen-
dence on the scalar field to discriminate between the GCG
scenario and a unified fluid via a seesaw cosmon field that
mimics the GCG. Furthermore, it has been shown for
specific potentials that, in what concerns stability and
cosmic acceleration, many results found in the literature
can be recovered. Nevertheless, the background scenario
discussed here can be tested through computations of the
modifications on the power spectrum of large-scale struc-
ture. This is suggested by the study of Ref. [48], where it is
shown that the coupling between neutrinos and the cosmon
field leads to a rapid growth of neutrino perturbations
which become nonlinear on large length scales and even-
tually form neutrino lumps. Actually, new scenarios featur-
ing other mass dependencies on the seesaw cosmon field
can also be considered. Some of them can be scrutinized
observationally via the interactions between neutrinos and
dark sectors [49]. In particular, it is shown that the strength
of the coupling of dark matter to a quintessence field is
constrained to be less than 7% of the coupling to gravity
and that long-range interactions between fermionic dark
matter particles mediated by a light scalar with a Yukawa
coupling are constrained to be less than 5% of the strength
of gravity at a distance scale of 10 Mpc. A similar analysis
could be considered in the framework of our model.
Thus, the proposed unified scheme, despite similarities

with some quintessence models, is an ambitious and en-
compassing scheme where mass varying particles can be
related with the stability and the cosmic acceleration of the
Universe.
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APPENDIX: THE MASS VARYING MECHANISM
FOR A DFG

Aiming to understand how the mass varying behavior
takes place, it is assumed that for a particle statistical

distribution fðqÞ, where q � jpj
T0
, T0 is the background

temperature at present, in a flat Friedmann-Robertson-
Walker cosmological scenario. For a generic dynamical
mass defined by Mð�Þ, the corresponding particle density,
energy density, and pressure are expressed as

nðaÞ ¼ T3
0

�2a3

Z 1

0
dqq2fðqÞ;

�ða;�Þ ¼ T4
0

�2a4

Z 1

0
dqq2

�
q2 þM2ð�Þa22

T2
0

�
1=2

fðqÞ;

pða;�Þ ¼ T4
0

3�2a4

Z 1

0
dqq4

�
q2 þM2ð�Þa2

T2
0

��1=2
fðqÞ;

(A1)

where one has introduced the subindex 0 for denoting
present-day values, with a0 ¼ 1.

In the limit where T tends to 0, the Fermi distribution
fðqÞ becomes a step function that yields an elementary
integral with the upper limit equal to the Fermi momentum
qF. The energy density and pressure of a DFG can be
expressed in terms of elementary functions of the scale

factor, � � �ðaÞ ¼ T0qF=a and M � Mð�ðaÞÞ,

nðaÞ ¼ 1

3�2
�3;

�ðaÞ ¼ 1

ð8�2Þ ½�ð2�
2 þM2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þM2

q
�M4arcsinhð�=MÞ�;

pðaÞ ¼ 1

ð8�2Þ
�
�

�
2

3
�2 �M2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þM2

q

þM4arcsinhð�=MÞ
�
:

(A2)

Simple mathematical manipulations allow one to show that

nðaÞ @�ðaÞ
@nðaÞ ¼ ð�ðaÞ þ pðaÞÞ; (A3)

and

M ðaÞ @�ðaÞ
@MðaÞ ¼ ð�ðaÞ � 3pðaÞÞ; (A4)

from which one can obtain the energy-momentum conser-
vation equation

_�þ 3Hð�þ pÞ � _�
dM

d�

@�

@M
¼ 0: (A5)

The coupling between relic particles and the scalar field as
described by Eq. (A4) is relevant only in the NR regime
since the strength of the coupling is suppressed by the
pressure of the relativistic [TðaÞ ¼ T0=a 	 Mð�ðaÞÞ] par-
ticles, so that matter and scalar field fluids tend to decouple
and evolve adiabatically.
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