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In this paper, we explore the properties of gravitational lensing by black holes in the Randall-

Sundrum II braneworld. We use numerical techniques to calculate lensing observables using the tidal

Reissner-Nordstrom (TRN) and Garriga-Tanaka metrics to examine supermassive black holes and

primordial black holes. We introduce a new way to parametrize tidal charge in the TRN metric which

results in a large increase in image magnifications for braneworld primordial black holes compared to

their 4-dimensional analogs. Finally, we offer a mathematical analysis that allows us to assess the validity

of the logarithmic approximation of the bending angle for any static, spherically symmetric metric. We

apply this to the TRN metric and show that it is valid for any amount of tidal charge.
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I. INTRODUCTION

Gravitational lensing provided the first experimental
verification of general relativity (GR) through observations
of starlight bending around the Sun during an eclipse in
1919 [1,2]. Gravitational lensing is a very important probe
of cosmological and astrophysical questions [3,4]. The vast
majority of lensing studies are in the weak deflection limit,
with light rays bent on the order of, at most, arc seconds.
Over the last decade, there has been a renewed interest in
strong deflection limit lensing and using it as a probe of
GR. Some studies use a numerical method [5–8] and a
more analytical approach has been used as well [9–15]. In
the last few decades, the mass of the supermassive black
hole (SMBH) at the center of the galaxy (Sgr A*) has
become well known [16,17], so the Galactic center is
often cited in the above lensing studies as an ideal candi-
date for the study of strong deflection limit lensing [5–
8,12,13,18,19].

As the trajectory of a photon brings it closer to a black
hole’s photon sphere, it undergoes a growing bending
angle, and if the point of closest approach is incident
with the photon sphere, this bending angle goes to infinity.
This gives rise to a theoretically infinite sequence of im-
ages close to the photon sphere on both sides of the optic
axis due to photons looping around the black hole before
reaching the observer. These images are termed relativistic
images and their use as a probe of GR was pioneered by [5]
and expanded to include the topic of naked singularities
and cosmic censorship in [6,8]. However, as noted in these
articles, relativistic images are highly demagnified and
their observational prospects are very dim at present. A
later analysis [12] showed that a relatively ‘‘bright’’ rela-
tivistic image (brighter than the 32nd magnitude in the K-
band) may be visible in late 2017 through early 2018.
Further investigations by [13,14,20] discuss prospects for
observation of secondary images that undergo a large

bending angle. Studying the properties of these secondary
images requires some of the techniques coming from stud-
ies in the strong deflection limit. As observation of images
lensed in the strong deflection limit is a distinct possibility,
a close study of their properties is warranted. As mentioned
above, [9,11,21] introduce a formalism that simplifies the
calculation of observables for lensing in the strong deflec-
tion limit and introduces simple formulas for image posi-
tions and magnifications. This formalism can be used for
any spherically symmetric metric and [10,19,22,23] ex-
pand the analysis of strong field lensing to metrics which
come from the Randall-Sundrum (RS) II braneworld sce-
nario, a theory that has evoked great interest in the last
decade. In Sec. II, we review the two methodologies for
solving the lens equation for lensing observables in the
strong deflection limit, the numerical method of [5], and
the analytical method based on approximating the bending
angle with a logarithmic term by [11,21]. In Sec. III, we
introduce the Randall-Sundrum braneworld and discuss
several 4-dimensional solutions on the brane for the 5-
dimensional black hole of RS II theory. We comment on
several metrics that come from this theory and their regime
of applicability. In Sec. IV, we calculate the observational
properties of a galactic object lensed by the supermassive
black hole at Sgr A*, and a galactic source lensed by a
primordial black hole in our Solar System. We compare the
observables when modeling the black hole with the
Schwarzschild metric as well as with several braneworld
black hole metrics. In Sec. V, we introduce a general test
for the logarithmic approximation of the bending angle for
all spherically symmetric metrics and show that it works
for all values of tidal charge. Section VI contains a dis-
cussion of the results and possible future research
directions.

II. STRONG DEFLECTION LIMIT LENSING

In Sec. I, we discussed the importance of lensing in the
strong deflection limit. To go beyond the weak deflection*binnun@sas.upenn.edu
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limit for the bending angle, we will need to derive lensing
quantities directly from the metric. In this paper, we will
only be considering metrics of the spherically symmetric
form:

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ CðrÞd�2: (1)

The weak deflection limit approximation is only valid in
the limit of a small bending angle and when the point of
closest approach is far from the black hole. When the point
of closest approach is close to the black hole, the bending
angle is derived from the equations of motion [24]

g�� _x
� _x� ¼ 0 (2)

to be

�ðr0Þ ¼ 2
Z 1

r0

�
BðrÞ
CðrÞ

�
1=2

��
r

r0

�
2 CðrÞ
Cðr0Þ

Aðr0Þ
AðrÞ � 1

��1=2 dr

r

� �; (3)

where r0 is the point of closest approach. Once we can
calculate the bending angle of a null geodesic as a function
of r0, the results are used in conjunction with the
Virbhadra-Ellis lens equation [5]:

tan� ¼ tan��DLS

DS

½tan�þ tanð�� �Þ�; (4)

where DLS, DL, �, and � are, respectively, the distance
from the lens plane to the source plane, the distance from
the observer to the lens plane, the angle of the image
relative to the optic axis, and the angle of the source
relative to the optic axis. DS, which is not pictured in
Fig. 1, is the total distance from the observer plane to the
source plane and isDLS þDL. In [25], there is a discussion
of lens equations used in gravitational lensing. While con-
cluding that the ‘‘improved Ohanian’’ lens equation
[25,26] is more accurate than Eq. (4), [25] notes that the
Virbhadra-Ellis lens equation is precise to within a factor
of 10�4 in most situations. This suffices for the purposes of
this paper and offers the best way to compare our results
with existent work, the majority of which is done with the
Virbhadra-Ellis equation. While this is not an exact lensing
solution [27], this approximation is accurate and easy to
use for calculating relativistic images [25]. A typical gravi-
tational lensing scenario is pictured in Fig. 1.

In a spherically symmetric scenario, the magnification
of an image is given by

� ¼
�
sin�

sin�

d�

d�

��1
: (5)

There are two distinct approaches in going from the bend-
ing angle to the observables of image positions and image
magnifications. First we will review the approach of
[11,21,28] that approximates the bending angle with a
logarithmic term. The results in this section can be applied

to any spherically symmetric, static metric. Then we will
review the completely numerical approach of [5–8] in a
Schwarzschild spacetime. This paper extends the numeri-
cal results in the literature to braneworld black holes. In a
later section of the paper (Sec. V), we will show a general
method for showing that the analytical approach reprodu-
ces the numerical approach for a particular spacetime.

A. Analytical solution

While an exact solution to the bending angle without
reference to a background metric is given by [27,29] with
solutions being given in integral form, the earliest attempt
at trying to develop an analytic approach to relativistic
images was done by [9], where they attempted to express
Eq. (3) as an expansion of an elliptic integral. They then
found the first-order expansion of the elliptic equation from
its divergence at the photon sphere. This approach is later
used to calculate lensing observables in the braneworld
scenario [10]. The approach wewill be working with in this
paper was developed by [21] and we will develop the
formalism with the intent of demonstrating its range of
effectiveness in Sec. V.
The equations of motions in Eq. (2) have cyclic coor-

dinates t and � leading to conserved quantities

E ¼ AðrÞ _t; (6)

FIG. 1. The simplest system used to study gravitational lens-
ing. A source at S, a lens at L, and an observer.
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J ¼ CðrÞ _�; (7)

and the following expression for _r:

_r ¼ � Effiffiffiffiffiffiffi
BC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

A
� J2

E2

s
; (8)

where an overdot represents a derivative with respect to the
affine parameter. The radial and angular motion of the null
geodesic can then be characterized by the ratio of the two
conserved quantities:

u � J

E
: (9)

For a photon which is initially traveling with _r < 0, Eq. (8)
must vanish for the photon to invert its motion and avoid
falling into the black hole. For a given value of u and
assuming the function C

A has a single minimum, _r ¼ 0

will occur when

Cðr0Þ
Aðr0Þ

¼ u2; (10)

where r0 is the point of closest approach. Since
C
A is lower

bounded, this equality can only be satisfied if u is greater
than the minimum value

um ¼
ffiffiffiffiffiffiffi
Cm

Am

s
; (11)

where we have defined Am � AðrmÞ. The point rm repre-
sents the radial coordinate of the photon sphere.

These terms suggest the rewriting of Eq. (3) as

��i ¼
Z Di

r0

u

ffiffiffiffi
B

C

s �
C

A
� u2

��1=2
dr (12)

with the notation Di ¼ DLS, DL, breaking the bending
angle integral into two parts—the first for the infall and
the second for the portion of the photon’s path from the
radial minimum to the observer. To perform a detailed
analysis of the bending angle around r0 ¼ rm, we will
examine the function

Rðr; uÞ ¼ CðrÞ
AðrÞ � u2: (13)

From the previous discussion, we have shown that Rðr; uÞ
has a minimum at rm for any u. It also vanishes at ðr0; uÞ by
definition of r0 and at ðrm; umÞ by definition of um. We are
interested in the properties of the bending angle corre-
sponding to an inversion point very close to the photon
sphere rm, so we parametrize the inversion point as

r0 ¼ rmð1þ �Þ; (14)

which corresponds to an impact parameter that is also very
close to the minimum

u ¼ umð1þ 	Þ: (15)

These properties allow for expansion of Rðr; uÞ in orders of
	 and �. The lowest order nonvanishing terms are

Rðr; uÞ ¼ 0 ¼ 1

2

@2R

@r2
ðrm; umÞr2m�2 þ @R

@u
ðrm; umÞum	

(16)

and this creates the simple relationship between 	 and � of

	 ¼ � �m

2u2m
�2; (17)

where

�m ¼ 1

2

@2R

@r2
ðrm; umÞ: (18)

We have gone through this part of the derivation in detail
because we will comment in Sec. V about the validity of
leaving off the higher-order terms in 	 and �. From here,
[21] uses this expansion of Rðr; uÞ to perform the integra-
tion in Eq. (12). Continuing along these lines, they define
the position of the source (DLS) and the observer (DL) with
the coordinate 
 defined by

r ¼ r0
1� 


(19)

with 0 � 
 � 1. Eventually [21] finds that the bending
angle is

�� ¼ a log
4
O
S

�2
þ bO þ bS (20)

with the subscripts O and S corresponding to the observer
and source, respectively, and a and bi are functions of the
metric

a ¼ rm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Bm

Am�m

s
; (21)

bi ¼
Z 
i

0
d
sgnð
Þgð
Þ; (22)

gð
Þ ¼ um

ffiffiffiffiffiffiffiffiffiffiffi
Bð
Þ
Cð
Þ

s
½Rð
; umÞ��1=2 rm

ð1� 
Þ2

� umffiffiffiffiffiffiffi
�m

p
ffiffiffiffiffiffiffi
Bm

Cm

s
rm
j
j : (23)

This result is equivalent to the result in [11] when 
O ¼

S ¼ 1. In order to calculate image positions and magni-
fications, we use the formalism of [11]

�a ¼ a

2
; (24)

�b ¼ ��þ
Z 1

0
gð
Þd
þ �a log

2�m

Am

; (25)

and adopt Eq. (9) from [11]
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�ð�Þ ¼ �a log

�
�DL

um
� 1

�
þ �b: (26)

Using this logarithmic term in conjunction with a simpli-
fied lens equation

� ¼ ��DLS

DS

��n; (27)

where ��n is the bending angle once 2�n has been
subtracted to account for the ‘‘loops’’ that the photon has
made, we can easily solve for �n0 which gives us the image

position that corresponds to a bending angle �ð�Þ ¼ 2�n:

�0n ¼ um
DL

ð1þ enÞ; (28)

en ¼ eð �b�2n�Þ= �a: (29)

The image position for a given source position � is then
given by �n0 and a correction term:

�n ¼ �0n þ umenð�� �0nÞDOS

�aDLSDL

; (30)

where the correction is much smaller than �n0 . It is straight-
forward to derive the magnification of the nth relativistic
image as

�n ¼ en
u2mð1þ enÞDOS

�a�D2
LDLS

: (31)

This outlines the analytical approximation in the strong
deflection limit. We will use it in this paper to briefly
compare results with the purely numerical method. Also,
we will examine to see if there are circumstances under
which the higher-order terms in Eq. (16) would be relevant
and therefore interfere with this form of the strong deflec-
tion limit approximation. We now review the numerical
algorithm for gravitational lensing.

B. Numerical solution

In the numerical procedure first outlined by [5,6], con-
servation of J and E is used to relate the image position
with the point of closest approach. All the equations in this
section up to here are true of any spherically symmetric,
static metric. However, since numerical techniques will be
employed in this section, the functions of the metric must
be specified, and this section assumes the use of a
Schwarzschild metric. In addition, this section and the
rest of this paper use geometric units in which c ¼ G ¼
1 [1]. This approach can be applied to any metric, as it is in
Sec. IV. The impact parameter u is conserved, and in the
asymptotic Minkowski space [which is required for use of
Eq. (4)], the perpendicular distance from the center of the
lens to the null geodesic is

u ¼ DL sin�: (32)

This is only valid if the source is in the asymptotic region

(DLS � 2M). At the point of closest approach, solving the
geodesic equations yields

u ¼ r0

�
1� 2M

r0

��1=2
: (33)

To simplify, we use the following definitions:

x � r

2M
; (34)

x0 � r0
2M

; (35)

to make the coordinates in terms of ‘‘Schwarzschild radii.’’
Since Eq. (32) is equivalent to Eq. (33), we can now

describe the image position in terms of the coordinate of
closest approach (as well as the reverse):

sin� ¼ 2M

DL

x0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

x0

q : (36)

For a given value of � we insert Eq. (3) into Eq. (4) and
solve for x0. This gives us a solution of the lens equation.
Since Eq. (4) is transcendental, there are infinite positive
and negative solutions corresponding to images on both
sides of the lens. The solution with the highest (lowest)
value of x0 represents the classic lensing solution for the
primary (secondary) image. To find a relativistic image, we
must determine what range the bending angle would be in
to yield a relativistic image. While it is possible that a
source will align nearly perfectly with the optic axis and
have a smaller angular position than the relativistic image
[7], in reality, a relativistic image will be closer to the optic
axis (the line connecting the observer and source planes
perpendicular to both planes) than the source. In [12,14],
realistic possibilities for strong field images in the center of
our galaxy do not occur with stars that are highly aligned
with the optic axis (as the orbit of known stars near the
center of the galaxy do not pass close to the optic axis).
Hence, relativistic images will form at a smaller angle from
the optic axis than the source angle and the bending angle
for the first relativistic image on the side of the lens is
slightly less than 2�. Therefore, to find the correct bending
angle that solves Eq. (4), the search for a correct value x0
should be in the region that yields a bending angle of 2�.
So, the first step is to compile a table of the values of x0 that
yield the values of n�. This is found in Table I. To find a
specific relativistic image, be it on either side of the lens,
the bending angle must be estimated (it will be close to
2�n for nth order images with sources close to the optic
axis) and corresponding values for x0 searched near the
appropriate value.
In addition to image position, image magnification is an

important observational quantity. The general formula is
given by Eq. (5), but incorporating Eq. (4) and expressed in
terms of known functions of x0, magnification is given by
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� ¼ sec2�� DLS

DS
½sec2�þ sec2ð�ðx0Þ � �Þ�

sec2�

�
d�

d�
� 1

�
:

(37)

Once we have solved for image position and x0, the only
unknown is d�

d� which can be broken up into

d�

d�
¼ d�

dx0

dx0
d�

(38)

and the calculation of these two quantities for the
Schwarzschild metric is given in [5]. We have just illus-
trated how to go from a source position to an image
position (given either as an angle, �, or as a point of closest
approach, x0) and an image magnitude.

One of the reasons why the numerical method is carried
out is to make full use of Eq. (4) as the bending angle can
be large and the weak-field approximation does not hold.
However, as [9] points out, for a relativistic image with a
highly aligned source, � is only slightly different than 2�n
and the small angle approximation can be utilized to make
solving the equation more tractable, a point incorporated
by Virbhadra into the numerical algorithm in [7]. One of
the advantages of the numerical method is that it is univer-
sally valid and does not depend on approximations that are
only valid in the strong or weak deflection limits, an
important point when studying realistic scenarios for
strong deflection limit lensing [13,14].

III. BLACK HOLES IN THE BRANEWORLD

An important and still unverified idea in modern physics
is the existence of extra dimensions. This idea had its
origins in the attempts of Kaluza and Klein to unify the
electromagnetic force with GR by introducing an extra
dimension, which was compactified in Klein’s model (see
reviews in [30,31]). More recently, a class of these models
was proposed where the standard model fields are con-
strained to a 3-brane while gravity propagates in a higher-

dimensional bulk. Models which incorporate ideas along
this vein are colloquially referred to as braneworld models,
starting with the outbreaking [32]. This paper will be based
on a particular braneworld scenario of Randall and
Sundrum [33,34].
The Randall-Sundrum I model [33] emerges from 11-

dimensional M theory when the gauge fields of the stan-
dard model are confined on two 1þ 9 branes located on the
end points of an S1=Z2 orbifold, a scenario whose impor-
tance is highlighted by [35] and further developed by [36–
38]. Six dimensions are compactified, making gravity ef-
fectively 5 dimensional. The Randall-Sundrum II scenario
is this model with the second brane taken to infinity [31].
The 5-dimensional metric in the absence of matter is
known to be [34]

ds2 ¼ e�2kjzj½dt2 � d3x� þ dz2; (39)

where k is the energy scale of the 5-dimensional cosmo-
logical constant

�5 ¼ � 6

l2
¼ �6k2 (40)

and l is the characteristic size of the extra dimension. This
cosmological constant prevents gravity from ‘‘leaking’’
into the bulk at low energies. The metric in the presence
of matter is more complicated. First, it is not clear whether
a static black hole solution exists for a RS II braneworld.
Although [39] has shown the existence of a static black
hole in a 2þ 1 brane setup, it is unclear what the solution is
and whether there even is a static black hole solution in the
corresponding 3þ 1 brane scenario [40–44]. One ap-
proach is to write down the induced Einstein equation on
the brane and attempt to solve it. Following the derivation
of [45], the induced Einstein equations on the brane will be

G�� ¼ ��g�� þ �2T�� þ 6
�2

�
S�� � 
�� þ 4

�2

�
F ��;

(41)

where� is the 4-dimensional cosmological constant which
comes from a combination of the 5-dimensional cosmo-
logical constant and the brane tension, � is related to the
coupling constant in 5 dimensional as well as the brane
tension �, S�� is a term that is second order in the stress-

energy tensor, F �� expresses contributions from the 5-

dimensional stress-energy tensor aside from the 5-
dimensional cosmological constant [31,45], and 
�� is

the double contraction of the Weyl tensor with the unit
normal to the brane. The derivation of Eq. (41) is per-
formed in greater detail in [31]. To find the vacuum solu-
tion around a source, the following assumptions are made:
The brane tension is finely tuned so that� in 4 dimensional
is zero. Because we deal with a vacuum solution in 4
dimensional, the terms T��, F��, and S�� are therefore

zero outside the source. This reduces the vacuum Einstein
equations to

TABLE I. The coordinate of closest approach required to yield
a particular bending angle in both the numerical technique and
the analytical approximation for a Schwarzschild spacetime. The
analytical approximation tends to converge with the numerical
technique as x0 approaches the photon sphere, as the analytic
approach loses validity as one moves away from the photon
sphere. � is the fractional difference between the analytical and
numerical results. See Sec. V for elaboration on the validity of
the analytical approach.

�ðx0Þ x0 Num x0 Ana �

� 1.7603 1.7084 0.029 47

2� 1.5451 1.5433 0.001 15

3� 1.5091 1.5090 0.000 05

4� 1.5019 1.5019 2� 10�6

5� 1.5004 1.5004 8� 10�8
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R�� ¼ �
��: (42)

In order to find a solution to the equations, some assump-
tions must be made about the form of 
��. A weak-field,

linear perturbative expansion is known [46], but the solu-
tion has the wrong form in the strong field [30]. The non-
linear strong field regime requires a different metric—
perhaps one metric will not be sufficient to cover the entire
brane spacetime, but different metrics will apply in differ-
ent regimes. Attempts to study the problem have yielded
several possible black hole metrics [19,46–49] and the
effect of these metrics on lensing has been studied as
well [10,19,22,50]. This paper will add to the literature
by performing numerical studies of lensing using these
metrics.

The simplest solution, the ‘‘black string,’’ was found by
[48] which describes an effective Schwarzschild solution
on the brane (by setting the Weyl term 
�� ¼ 0). There are

a number of instabilities and difficulties with this solution
[51], and it is uninteresting from our perspective because
the induced metric in 4 dimensions is Schwarzschild and
observables in the Schwarzschild solution have already
been calculated numerically. Wewill now set forth 3 differ-
ent metrics to be studied.

A. Garriga-Tanaka

An important solution for gravity in the braneworld
scenario is the Garriga-Tanaka (GT) solution [46]. This
metric comes from the fact that the linearized metric can be
found at low energies (corresponding to scale r � l). The
perturbation on the brane is written in terms of a Green’s
function which is dominated by the low-energy zero mode
of the 5-dimensional graviton. When calculating the line-
arized correction to the metric for a point source, the
Newtonian potential, to a first-order correction is

1

2
h00 ¼ VðrÞ � GM

r

�
1þ 2l2

3r2

�
; (43)

where h00 is a convention used for the difference from a
Minkowski spacetime of the weak-field metric term g00.
Incorporating the weak-field potential from Eq. (43) yields
the following metric:

dS24 ¼ �
�
1� 2M

r
� 4Ml2

3r3

�
dt2 þ

�
1þ 2M

r
þ 2Ml2

3r3

�
dr2

þ r2d�2: (44)

This is the working metric for the weak-field limit, or on
scales r � l. Sometimes, these limits are not identical and
this will be discussed in the next section. This metric is
only expected to work in the linear regime, as the Ricci
scalar does not vanish as it should (as 
�� is traceless)

beyond first order in M [30].

B. Myers-Perry

For small enough distance scales, we can consider the
black hole as a 5-dimensional Schwarzschild black hole.
On this length scale, the anti–de Sitter (AdS) curvature
does not greatly affect the geometry of the black hole.
Finding the metric can be done using the Myers-Perry
general form for the 4-dimensional induced metric for a
higher-dimensional black hole [52,53]. This metric is [22]

dS24 ¼ �
�
1� r2H

r2

�
dt2 þ

�
1� r2H

r2

��1
dr2 þ r2d�2; (45)

where the black hole horizon radius rH is given by

rH ¼
ffiffiffiffiffiffiffi
8

3�

s �
l

lP

�
1=2

�
M

MP

�
1=2

lP: (46)

The approximate distance scale for which this metric
can be considered accurate is r 	 l because that is the
domain in which the graviton does not differentiate be-
tween the AdS dimension and the other ones. lP andMP are
the known standard 4-dimensional Planck length and mass.

C. Tidal Reissner-Nordstrom

The ‘‘tidal’’ Reissner-Nordstrom (TRN) metric [47]
comes from the showing that all the constraints known
for 
�� (symmetric, trace free, and conservation equations)

are satisfied by the stress-energy tensor associated with the
Einstein-Maxwell solutions of the standard 4-dimensional
Einstein equations. By making the equivalence

�2T�� $ �
�� (47)

and using the appropriate choice of constants, a solution to
Eq. (41) is found:

ds2 ¼ �
�
1� 2M

r
þ Q

r2

�
dt2 þ

�
1� 2M

r
þ Q

r2

��1
dr2

þ r2d�2: (48)

Unlike the Reissner-Nordstrom solution,Q here is allowed
to be negative, strengthening the effect of gravity. Since
this metric is taken to apply only in the strong field, as its
asymptotic behavior is incorrect for nontrivial values ofQ,
tidal charge is weakly limited by studies of neutron stars
[54] and perhaps potential observations of event horizon
structure [55] which are still inconclusive. The TRNmetric
is not favored for large black holes according to [43], but it

is an interesting candidate for the strong field because the Q
r2

term encodes a 5-dimensional potential that one would
expect to see in a Randall-Sundrum braneworld. Studies
[19,22] about the lensing effects of the TRN metric around
Sgr A* have set Q ¼ q4M2 where �1< q< 0, as this
allows for significant effects from the braneworld term.
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IV. BLACK HOLE LENSING IN THE
BRANEWORLD

The greatest impetus for the study of relativistic images,
images formed deep within the strong deflection regime
near the photon sphere of a black hole, is the ability to test
GR against an alternative theory of gravity. Photons that
reach us after probing close to a black hole are most likely
to carry signs of gravity’s true nature. There have been
previous studies of strong deflection lensing around brane-
world black holes [10,19,22]. However, all use some vari-
ant of the analytical formalism developed by [11,21]. In
this section, we will calculate lensing observables in two
scenarios: The SMBH at the center of the galaxy lensing a
galactic source and a small primordial black hole at Solar
System scales lensing a galactic source. For both, we will
use the numerical technique.

In order to choose an appropriate metric for calculating
relativistic image properties, we need to calculate the
location of the photon sphere of a black hole. This is
because relativistic images need to have a very large
bending angle (at least � for what [10] terms ‘‘retrolens-
ing’’). Such a large bending angle requires that the coor-
dinate of closest approach for the null geodesic be very
close to the photon sphere. Hence, knowledge of that scale
tells us what regime we are dealing with and, therefore,
which metric is appropriate. The photon sphere in brane-
world metrics is given by setting [Eq. (11) in [6]]:

2CðrÞBðrÞ þ r
dCðrÞ
dr

BðrÞ � r
dBðrÞ
dr

CðrÞ ¼ 0: (49)

This yields

rGTps ¼ Mþ 31=3M2

ð�5l2Mþ 3M3 þ ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5l4M2 þ 6l2M4

p
Þ1=3

þ ð�5l2Mþ 3M3 þ ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5l4M2 þ 6l2M4

p Þ1=3
31=3

;

(50)

rMP
ps ¼ ffiffiffi

2
p

rH; (51)

rTRNps ¼ 1
2ð3Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 8Q

q
Þ: (52)

Note that these are all different than in the Scwarzschild
metric in which rps ¼ 3M. We now follow the procedure

outlined in Sec. II but use the appropriate braneworld
metric.

A. Supermassive black hole

When considering the black hole at Sgr A* as a lens, we
use the values DL ¼ 8:3 kpc and M ¼ 4:3� 106M
 [17].
We model the source as a point source at DS ¼ 2DL.
Modeling the SMBH at Sgr A* as a braneworld black
hole can be done with the Garriga-Tanaka metric, as the

photon sphere is of order 107 km which is much greater
than the scale of the extra dimension l. However, since the

correction to the Schwarzschild metric is of order Ml2

r3
�

10�31, the lensing corrections due to the Garriga-Tanaka
metric are negligible as can be seen in Table II. Although
some numerical studies indicate that such a large black
hole is unlikely to have an exterior metric significantly
different than Schwarzschild [43], a case can be made for
the tidal Reissner-Nordstrom metric as the spacetime cur-
vature near the surface of the SMBH is much greater than
on the surface of the Earth and, therefore, is not excluded
by our tests of Newtonian gravity on Earth. The curvature
of spacetime is measured by the Kretschmann scalar (as the
Ricci scalar is zero in the vacuum outside a black hole),
which is for the Schwarzschild spacetime

K ¼ RabcdR
abcd ¼ 48

m2

r6
: (53)

The ratio of the Kretschmann scalar calculated at the
surface (photon sphere) of the SMBH to the Kretschmann
scalar calculated at the surface of the Earth is

KSgrA�

K�
� 2000: (54)

This implies that gravity near the black hole is strong in
comparison to gravity at the Earth’s surface and, therefore,
braneworld gravity may show up in strong gravitational
fields while not being detected on Earth. In addition, there
are few constraints on positing a 1

r2
correction term to the

gravitational potential that only exists in the strong field, so
we can take the TRN metric as a specific example of a 1

r2

correction term to the metric. The TRN metric requires a
choice as to the parametrization of the variable Q. In the
literature [10,19,22],Q is usually taken to have dimensions
Q / M2, so that the integral for the bending angle is
dimensionless when rephrased in terms of Schwarzschild
radii [see Eq. (56)]. The dimensionless of the metric is
desirable and therefore makes this parametrization of Q a
natural choice:

Q ¼ q4M2 (55)

with jqj usually taking on values between 0 and 1. The
weakness of this approach is that it makes the assumption
that the strength of the bulk’s ‘‘backreaction’’ onto the
brane is / M2. While this allows a neat result that eases
calculations for relativistic observables and maximizes the
braneworld effect by maximizing Q in the case of large
black holes, it is an ad hoc assumption. We will explore
other parametrizations of the backreaction onto the bulk
for other cases of the black hole. For the case of the SMBH,
we will use this parametrization as it gives the maximal
amount of tidal charge. The results of the location of the
Einstein rings for different values of q are contained in
Table II. Since the first relativistic image appears very
close to the position of the first relativistic Einstein ring,
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and higher-order relativistic images appear close to their
corresponding Einstein ring, the position and separation of
the first two relativistic Einstein rings is a good indication
of the properties of image positions for relativistic images.

The effect of the braneworld metric on image magnifi-
cation can be seen in Table III. Use of the TRN metric
slightly demagnifies the images of a source almost directly
behind (� ¼ 1:45 �arc sec ) at the distance DS ¼ 2DL.
For the higher value of tidal charge, the images are even
more demagnified. Repeating this calculation for multiple
source positions ranging from 1 arc sec to 1 �arc sec , the
total magnification changes, but the ratio between the
magnification in a Schwarzschild spacetime and a TRN
spacetime for a specific value of q remains the same. For a
SMBH, the GT metric will not produce any deviation from
the standard GR results because the non-Schwarzschild
term in the GT metric scales as ð lmÞ2. However, the TRN

metric displays theoretically differentiable results, a result
that encourages further study. The images in the TRN
results are fainter than the corresponding images in the
Schwarzschild metric for this particular case, but this is not
at all a general characteristic of braneworld strong field
images. This will be discussed further at the end of this
section.

Since we have chosen Q in Eq. (48) to be parametrized

by q / Q
4m2 , the explicit form of Eq. (3) for the TRN metric

when using the equality in Eq. (35) is

�TRNðx0Þ ¼
Z 1

x0

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
x0
ð1� 1

x0
þ q

x2
0

Þ � ð1� 1
x þ q

x2
Þ

q dx

x
� �:

(56)

Since there is no dependency on mass for the bending angle
in either the TRN or Schwarzschild (q ¼ 0) scenarios,
there is no dependency on mass in the ratio of the magni-
fications [Eq. (37)] either. This is seen explicitly by con-
sidering Eq. (5). As demonstrated by [5], the positions of
relativistic images are very insensitive to source positions.
Hence, the x coordinate position of the nth relativistic
image is very close to the value of the x coordinate that
yields a bending angle of 2�n and the angular position of
this image, �, scales with M. If we hold � to be constant,
the term �

� in Eq. (37) will scale as M. When we consider
d�
d� , it is proportional tom

dx
d� .

dx
d� is essentially constant in�

(see graphs of image position against source position in
[5]) and therefore the entire term scales as M. So the
magnification of a relativistic image for a constant source
position scales asM2. We can repeat the same argument for
the bending angle in the braneworld scenario because Eq.
(56) does not contain any dependency onM. Magnification
would then have a scaling of M2 as well. Hence, further
studies of this form of the TRN metric will not yield
interesting results, as the difference between a
Schwarzschild and a TRN lens does not change with the
mass of the lens. In the next section, we will change the
parametrization of the tidal charge for smaller black holes
and analyze the difference this makes for lensing
properties.

B. Primordial black holes

One explanation for dark matter is primordial black
holes (PBHs) that can form from a variety of mechanisms
[56,57]. Gould [58] proposes femtolensing of gamma-ray

TABLE III. This table contains the magnifications of relativistic images formed by a source at twice the distance of Sgr A* (see the
caption of Table II) and at an angular position of � ¼ 1:45 �arc sec or 10�3 times the Einstein angle in the Schwarzschild geometry
for a directly aligned source. These properties are calculated using several different metrics. The values for the GT metric are
indistinguishable from the Schwarzschild metric and, therefore, have not been shown.

Sch TRN (q ¼ �0:1) TRN (q ¼ �0:5)

Outer relativistic image (opposite side of source) �5:94� 10�12 �5:54� 10�12 �4:48� 10�12

Inner relativistic image (opposite side of source) �1:10� 10�14 �7:85� 10�15 �3:97� 10�15

Inner relativistic image (side of source) 1:10� 10�14 7:85� 10�15 3:97� 10�15

Outer relativistic image (side of source) 5:94� 10�12 5:54� 10�12 4:48� 10�12

TABLE II. This table calculates the properties of Einstein rings formed by a source directly aligned with Sgr A* (M ¼ 4:3� 106M

and distance DL ¼ 8:3 kpc) and with a source distance of 2DL. This table contains the angular positions of the primary Einstein ring
and two relativistic Einstein rings formed by the source. The location of the second relativistic Einstein ring is very close to the photon
sphere and the change in its location in different metrics is a reflection of the different structure of the photon sphere in the braneworld
scenario. Note the identical results for the Garriga-Tanaka and Schwarzschild metrics. Also note the difference in the gap between the
first and second relativistic Einstein rings in each geometry.

Sch Garriga-Tanaka Tidal RN (q ¼ �0:1) Tidal RN (q ¼ �0:5)

Einstein ring 1.452 arc sec 1.452 arc sec 1.452 arc sec 1.452 arc sec

1st relativistic Einstein ring 26.57 �arc sec 26.57 �arc sec 28.22 �arc sec 33.38 �arc sec
2nd relativistic Einstein ring 26.54 �arc sec 26.54 �arc sec 28.19 �arc sec 33.37 �arc sec
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bursts, which are usually extra galactical [59], by compact
dark matter. If PBHs make up a large fraction of dark
matter in the Universe, there is a chance of observing a
gamma-ray burst with an interference pattern characteristic
of lensing by a small black hole. An interference pattern
resulting from such a lensing could potentially be observed
by the ongoing Fermi Gamma-ray Space Telescope. This
idea is extended to the braneworld black hole scenario by
[50], who examine the effects of a GT metric of the
interference pattern. A problem with analyzing a primor-
dial black hole of the size considered by [50], 10�18M
, is
that relativistic images will pass in a very highly curved
area near the black hole. The radius of curvature will be of
order 10�14 m, which is smaller than the wavelength of all
electromagnetic radiation except for hard gamma rays,
rendering the treatment unsuitable for the geometric optics
approximation applied in this paper [1,60]. Therefore, we
will consider a black hole of mass 10�14M
. In the
Schwarzschild metric, the horizon size will be about 3�
10�11 m and we can consider it to have some validity for
even soft gamma rays. In the TRN spacetime, the horizon
size will be even larger (about 10�6 m for q ¼ �0:5),
making our results applicable for the entire ultraviolet
spectrum. Since the point of closest approach is smaller
than the scale of the extra dimension (r 	 l), I will ignore
the Garriga-Tanaka metric and focus on the TRN and
Myers-Perry metrics.

While we can use the same parametrization as in
Eq. (55), as explained before, the results would be quali-
tatively similar. Also, it would be interesting to explore a
scenario in which Q does not scale strictly as M2. In the
paper introducing tidal charge, [47] considers a scenario in
which tidal charge is fixed and does not depend on the mass
of the gravitating body. For such a source of tidal charge,
they cite an upper bound for Q of

Q 	 2M
R
; (57)

because higher values for Q will violate bounds on solar
system tests if this metric is applied to our Sun. This bound
considers the possibility that Q is a fixed feature of ge-
ometry and does not scale with mass (this bound does not
apply if the TRN is proposed to only be the strong field
limit of the metric). If we introduce this idea into our
parametrization, the behavior of relativistic images in the
braneworld scenario diverges from the behavior of
Schwarzschild black holes.

Now, I would like to consider a hybrid scenario. Let us
say that we want Q / M instead of M2, we would then
need to introduce a mass scale in order to keep the metric
and Eq. (56) dimensionless. This will be a hybrid of tidal
charge: part of it will come from mass getting reflected
back at a linear rate and part will come from a fixed feature
of the geometry. If Eq. (57) is to be satisfied, we must have
Mscale 	 M
 so I set it as

Mscale ¼ 10�3M
 � 1m; (58)

and then we can introduce the parametrization:

Q ¼ q2MMscale: (59)

This makes the bending angle integral:

�TRNðx0Þ ¼
Z 1

x0

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
x0
ð1� 1

x0
þ qMscale

2Mx2
0

Þ � ð1� 1
x þ qMscale

2Mx2
Þ

q dx

x

� �: (60)

It is evident from Eq. (60) that braneworld effects are
inversely proportional to the lens mass. We will consider
sources at Solar System scales. We will model our lens as a
primordial black hole at 1 AU and our source at 1 Mpc. The
source angular position � is set as one-millionth of the
Einstein angle for this configuration (in this case,
10�12 arc sec ). In Table IV we compare the difference
between relativistic images in the Schwarzschild and bra-
neworld spacetimes. The large amount of tidal charge
relative to the mass of the black hole magnifies images
near braneworld black holes by several orders of magni-
tude compared to images near their Schwarzschild
counterparts.

C. Magnification in the braneworld

In the previous sections, we have shown that for the
TRN metric, relativistic images in the braneworld are
slightly fainter for relativistic images around supermassive
black holes and are greatly enhanced for primordial black
holes. The distinction between the results in the case of
primordial and supermassive black holes can be clarified
by examining the two components in Eq. (5). The two
component magnifications are termed tangential magnifi-
cation (�t) and radial magnification (�r) and are defined as

TABLE IV. This table calculates the magnification of the outer two relativistic images on each side of the optic axis for a primordial
black hole at 1 AU lensing a distant source at 1 Mpc, with � ¼ 10�12 �arc sec .

Sch TRN (q ¼ �0:1) TRN (q ¼ �0:5) Myers-Perry

Outer relativistic image (opposite side of source) �1:66� 10�29 �1:95� 10�21 �9:74� 10�21 �8:97� 10�25

Inner relativistic image (opposite side of source) �3:08� 10�32 �2:69� 10�25 �1:35� 10�24 �1:24� 10�28

Inner relativistic image (side of source) 3:08� 10�32 2:69� 10�25 1:35� 10�24 1:24� 10�28

Outer relativistic image (side of source) 1:66� 10�29 1:95� 10�21 9:74� 10�21 8:97� 10�25
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�t �
�
sin�

sin�

��1
; (61)

�r �
�
d�

d�

��1
: (62)

Reference [11] approximates both of these quantities and
puts them in analytical form:

�t ¼
�
�

�0n

��1
; (63)

�r ¼
�
1þ �aDLDLS

umenDS

��1
: (64)

From Eq. (63), the tangential magnification of a relativ-
istic image is directly proportional to the image position of
the relativistic image. This will always be larger when
using a braneworld metric because of the strengthened
gravity in the braneworld metric. Since for primordial
black holes, Q can be very large relative to the mass of
the black hole, the photon sphere is approximated from
Eq. (52) as rTRNps � ffiffiffiffiffiffiffi

8Q
p

when Q � M. So, the tangential

magnification is always larger in the braneworld scenario,
sometimes considerably greater.

The variation in behavior of braneworld magnifications
as mass changes comes from the radial magnification.
From Eq. (64), it is apparent that for small radial magni-
fications (which is always the case for relativistic images),
radial magnifications are proportional to

�r / umen
�a

: (65)

This relation can be physically motivated—um is a mea-
sure of the photon sphere’s size. This is because the coor-
dinate of relativistic image is close to the location of the
photon sphere. Magnification of the relativistic image is
/ dx

d� , so when x is rescaled to reflect a larger photon

sphere, the derivative becomes larger as well. The term
en defines how quickly images decay toward the photon
sphere for the nth image. If en is greater, the image will
shift more with a change in source position and therefore,
the radial magnification will be brighter. The image bright-
ness is also inversely proportional to �a.

It is simple to compute the behavior of each of these
quantities in a braneworld scenario. In Fig. 2, we show the
behavior of quantities �a and �b as q gets larger. The behav-
ior of um for large jqj is given by Eq. (52).

As can be seen from Fig. 2, the quantity �a is equal to 1
for a Schwarzschild metric and becomes smaller as �q
becomes large and asymptotes to 1ffiffi

2
p . The quantity �b ¼

�0:400 in a Schwarzschild spacetime, but asymptotes to
�0:691 for a 5-dimensional spacetime. Therefore, en (for
n ¼ 1) varies from 0.001 25 in the Schwarzschild limit to
0.000 0521 in the q ! �1 limit. When tidal charge is
weaker (supermassive black hole), um is not much larger

than the q ¼ 0 value; the smaller en term dominates and
the relativistic image is demagnified. When there is a great
deal of tidal charge (Q � M), the great increase in um
makes up for the en term and the relativistic image is
brighter compared to its Schwarzschild counterpart.
For all black holes, relativistic images will be at a larger

image position when using a braneworld metric, because
the photon sphere of a braneworld metric is larger than its
Schwarzschild counterpart. Hence, the tangential magnifi-
cation is always higher using a braneworld. Radial magni-
fication, as we have shown, depends on the value of the
tidal charge. For a given source and lens position, the radial
magnification is lower bounded, even as jqj gets very large,
but the tangential magnification is not upper bounded. For
a large enough tidal charge, magnification will be en-
hanced for a braneworld image.

V. APPLICABILITY OF THE ANALYTICAL
METHOD

In Sec. II, constructing a logarithmic approximation for
the bending angle depends on the relationship in Eq. (17)
between the impact parameter and the minimum radial
coordinate. When expanding Rðr0; uÞ ¼ 0 in orders of 	
and �, Eq. (16) is obtained by truncating at the first nonzero
term in both r and u. However, the relationship between �
and 	 is not being considered at an infinitesimal distance
from the photon sphere. For example, in a Schwarzschild
geometry, the first relativistic Einstein ring occurs with
approximately r0 � 3:09M [5], which corresponds to � ¼
0:03. This corresponds to 	 ¼ �0:0013. To be able to
approximate the bending angle with a logarithmic term,
we must be able to neglect the higher-order terms that do
not appear in Eqs. (16) and (17). While [11,21] show that
this first-order treatment is adequate for typical spherically
symmetric metrics such as the Schwarzschild, Reissner-
Nordstrom (RN), and Janis-Newman-Winicour (JNW)

5 0 5 10

0.5

0.0

0.5

1.0

Log q

b
a

b

a

FIG. 2 (color online). The behavior of strong field quantities as
the behavior becomes 5 dimensional. The dotted line is the
quantity �a and the dashed quantity is �b. From left to right, the
quantity q becomes a progressively larger negative number.
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metrics. However, some signs of this approximation break-
ing down are seen for RN and JNW metrics when they
become near extremal [11]. Our goal in this section is to
perform a general analysis of the higher-order terms in the
general case and then apply it to show the validity of the
logarithmic approximation in the case of the TRN metric.
To analyze the general case, we will expand out Eq. (16)
for one more order in both 	 and �, which yields

�m�
2 þ �m�

3 ¼ 2u2m	þ u2m	
2; (66)

where

�m ¼ 1

6

@3R

@r3
ðrm; umÞr3m: (67)

First, consider the right side of Eq. (66). The higher-order

term @3R
@u3

ðrm; umÞ is 0 from the definition of Rðr0; uÞ. We

can neglect the 	2 term for the following reason. The ratio
of the 	 terms is known—the ratio of the first-order term to
the second-order term is 2

	 . This remains fixed regardless of

the geometry because the u2 term inRðr0; uÞ is independent
of the metric. In the Schwarzschild case, 	 is much smaller
than � and, therefore, higher-order terms in 	 are less
significant than higher-order terms in �. This holds true
in most spacetimes and can be checked using Eq. (17).
Examining the left side of Eq. (66), the ratio between the
second-order and third-order terms in � is

�m

�m�
: (68)

The greater this quantity is, the less significant the third-
order term is. Since �m and �m are functions of the metric,
the ratio of these two terms depends on the underlying
spacetime. Since the validity of this approximation scheme
is known for the Schwarzschild metric, it is useful to

compare the ratio �m

�m
in different spacetimes to its ratio in

the Schwarzschild spacetime. For a Schwarzschild metric:

�m

�m

¼ 3

8
: (69)

This result explains why the approximation scheme in
Sec. II only holds up for points of closest approach that
are close to the photon sphere (small �). For large �, the
higher-order terms remain significant. However, as dem-
onstrated in [11,21], it can be considered valid for the
domain of relativistic images. Hence, we know that for
the ratio in Eq. (69), we can consider the bending angle
approximation to be valid. If, for an alternate spacetime,
this ratio becomes bigger, the approximation will be better.
If the ratio becomes smaller, the approximation will fare

worse. For the TRN metric, the ratio �m

�m
depends on the

parameter q. As �q gets larger, the ratio gets smaller as
well and the approximation gets worse as well. The ana-
lytical expression for both �m and �m can be obtained

easily. Figure 3 displays the relationship between q and �m

�m
.

Figure 3 shows that as q gets smaller, �m

�m
drops from its

starting value of 3
8 in a Schwarzschild metric. For the

parametrization in Eq. (59), the amount of tidal charge
can be very large. We can evaluate the performance of
the approximation in the limit of large tidal charge:

lim
q!�1

�m

�m

¼ 1

3
: (70)

This shows that for any amount of negative tidal charge,
the approximation will be worse than in the Schwarzschild
case, but only marginally so. This is borne out by an actual
comparison of results obtained by both methods. As � gets
larger, the validity of the approximation falls off quicker in
the TRN spacetime. As q ! �1, the TRN metric be-
comes a 5-dimensional metric, like the Myers-Perry met-
ric, for which strong deflection limit lensing has been
examined [10,22]. The result in Eq. (70) shows that the
strong deflection limit is accurate for the TRN metric and
for the Myers-Perry metric. For any spherically symmetric
metric, one test for this approximation scheme can be the

examination of �m

�m
in that spacetime.

VI. CONCLUSION

In this paper, we have shown various properties of
relativistic images and how the qualitative features of black
hole lensing for a braneworld black hole depend on the size
of the black hole. We have introduced a new parametriza-
tion of ‘‘tidal charge’’ for the tidal RN metric and have
thereby uncovered a richer phenomenology of braneworld
black hole structure in the strong deflection limit. We show
that the smaller the black hole is, the greater the effect of
the braneworld scenario is on the relativistic image ob-
servables. The lensing properties of small black holes are
especially relevant with the start of the LHC, which has the
possibility of producing TeV-scale black holes in the bra-
neworld scenario. While the lensing properties of such a
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m m

FIG. 3 (color online). The behavior of �m

�m
as �q becomes

larger. The decrease in its value shows that the logarithmic
approximation for the bending angle becomes worse as q gets
smaller.
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small black hole cannot be calculated using the geometric
optics approach employed in this paper, there is good
reason to suspect that lensing behavior in the braneworld
will be dramatically different than Schwarzschild behavior.
We have shown that relativistic images are greatly en-
hanced by the braneworld geometry, but it remains an
open question whether there are observational consequen-
ces to the image enhancement.

We also confirm that the analytical method serves as an
accurate probe of relativistic images, within a reasonable
margin of error. At this stage, when the observational
possibilites for relativistic images are more about the ob-
servation of the images than cataloguing the exact posi-
tions and magnitudes, a qualitative description of
relativistic images is enough to explore this topic further.
An advantage of the analytical approximation is that it
allows for the calculation of certain observables more
easily than using the numerical method. For example, the
sum of the magnitude of all relativistic images after the
first (which should appear unresolved) is easily accom-
plished using the analytical methodology. The analytical
formulation also can be easily applied to extended sources
[10], which is more difficult with the numerical method-
ology. However, use of a numerical integral is necessary in
the astrophysically relevant situation [12–14] of secondary
images of S stars oribiting Sgr A* that undergo a bending
angle in the middle of the region 0<�<�. Here, both
the weak and strong deflection approximations fail and
evaluating integrals numerically is required for accurate
calculation of primary and secondary image properties.
Hence, both methodologies will be relevant for the calcu-

lation of potentially observable consequences of relativis-
tic images.
It has been less than 10 years since the possibility of

observing relativistic images and other strong field images
has been considered in [5], and these images represent a
promising source for knowledge about gravity in its full
strength. Observation of Sgr A* is a major area of research,
and a theoretically interesting lensing observable can pave
the way for attempts to use high-resolution very long base-
line interferometry arrays to find these elusive images.
Upcoming instruments such as GRAVITY and MICADO
at the European Extremely Large Telescope (E-ELT) also
have the potential to make observations of strong deflec-
tion limit lensing near Sgr A*. Observation of a single
relativistic image has the potential to answer deeply fun-
damental questions such as whether there is an extra di-
mension, scalar charge, or even black holes. The immense
theoretical potential for relativistic observables in the vi-
cinity of Sgr A* should motivate effort to continue to refine
theoretical models and lensing scenarios.
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